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ABSTRACT 
 

Hyperspectral remote sensing is an emerging field with many potential applications in the observation, 

management, and maintenance of the global transportation infrastructure. This report describes the 

development of an affordable framework to capture hyperspectral images and models to classify the 

images. The framework and models enable new approaches to plan, analyze, and assess the performance 

of multimodal transportation systems. Every hyperspectral image frame contains information in 

wavelengths that extend well beyond those that humans are capable of seeing or perceiving. The rapid 

size and cost reduction of both unmanned aircraft systems and hyperspectral image sensors enable easy 

scaling of the framework. Scaling is achieved simply by conducting multiple parallel missions to achieve 

broad area coverage at affordable prices. The authors showcase the general utility of the framework to 

enhance models used for roadway congestion forecasting, railway condition monitoring, and pipeline risk 

management. The authors offer additional insights by demonstrating a specific utility of the framework 

and models for the rapid detection of hazardous spills. Practitioners who utilize the framework and 

models to implement hyperspectral remote sensing platforms will benefit from greater situational 

awareness to make informed decisions in transportation systems development, operations, and 

maintenance.  
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EXECUTIVE SUMMARY 

 

The global transportation system is massive, open, and dynamic. Existing performance and condition 

assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, 

airways, and intermodal ports are expensive. Hyperspectral remote sensing is an emerging field with 

potential applications in the observation, management, and maintenance of the global transportation 

infrastructure.  Hence, this research explores the potential for using hyperspectral image analysis to 

remotely sense and evaluate the multimodal transportation infrastructure. 

Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records 

reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a 

broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a 

unique spectral signature that offers new opportunities for informed decision-making in transportation 

systems development, operations, and maintenance. 

Few spaceborne systems with hyperspectral image sensors exist. In general, spaceborne systems such as 

satellites and space stations are capable of capturing images of vast areas in a short period, but they 

provide lower spatial resolution than airborne systems. Consequently, some practitioners use manned 

aircraft to achieve higher spatial resolution when needed. However, the additional expense of custom 

missions and manned aircraft operation reduces the affordability of frequent hyperspectral remote sensing 

with broad area coverage. Fortuitously, the rapid size and cost reduction of unmanned aircraft systems 

and hyperspectral image sensors promise a third alternative. In addition, such systems are more scalable 

because practitioners can conduct multiple parallel missions to achieve broad area coverage at affordable 

prices. 

This report summarizes the research in three parts. Part I includes the results of a literature search to 

assess the application barriers that have traditionally limited the use of hyperspectral remote sensing for 

transportation applications. The authors formulate an operational framework for a pushbroom type of 

remote sensing system to achieve both high spatial and spectral resolutions with affordable hyperspectral 

image sensors. A taxonomy of potential applications subsequently identifies numerous existing and 

emerging opportunities to apply the framework for transportation systems analysis and performance 

assessments. Part II explores the utility of the framework in three important and distinct transportation 

applications: roadway congestion forecasting, railway condition monitoring, and pipeline risk 

management. A scenario analysis explains the general approach for utilizing hyperspectral image analysis 

to improve models that practitioners currently use in each of the application areas. Part III showcases 

detailed use of the framework and models to develop an innovative approach for detecting hazardous 

spills such as crude oil. In particular, the authors illustrate how using small unmanned aircraft systems 

with lightweight hyperspectral image sensors would enable resolution agile and real-time remote sensing. 

This final part includes the development of a new rapid hyperspectral image classification model to 

enable the real-time remote sensing capability. In summary, practitioners will benefit from using the 

hyperspectral remote sensing framework to advance the state-of-the-art of transportation systems 

planning and performance evaluation.
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1. INTRODUCTION 
 

The global transportation system is interdependent on the performance of large and complex multimodal 

and intermodal facilities that move people, goods, and waste. The U.S. transportation infrastructure 

consists of more than 4 million miles of roadways, 600,000 bridges, 1.5 million miles of above- and 

below-ground oil and gas pipelines, 100,000 miles of railroad tracks, 25,000 miles of navigable 

waterways, and 19,000 airports (BTS 2014). Trucks alone carry more than 8 billion tons of goods valued 

at more than $10 trillion each year (Bridgelall 2014). All countries rely on a high-performance multi-

modal transportation infrastructure for sustained economic growth and prosperity. Consequently, the need 

for regular performance measures of the entire network has become critical.  

Climatic factors and heavy vehicle traffic accelerate deterioration. Figure 1.1 illustrates the 

interdependencies between economic growth and performance measures. Population growth and quality-

of-life pursuits drive economic growth, which in turn fuels higher demand to transport more people and 

goods. To meet those demands while realizing economies of scale, organizations increase the size of the 

carriers such as trucks, rail cars, ships, pipelines, and aircrafts. Consequently, the infrastructure must bear 

a higher load density from the aggregate increase in the gross weight of carriers and their miles traveled. 

Together with climatic factors, an increase in load density accelerates the deterioration rate of surface 

transportation infrastructure such as roads, bridges, railroads, and runways. Maintaining a state of good 

repair requires regular performance measures to enable optimized maintenance cycles (Zietsman, et al. 

2011). Such practices improve the efficiency and cost-effectiveness of asset management goals to 

maximize the amount of infrastructure in good condition and to support a sustainable cycle of economic 

growth.  

 

Figure 1.1  Infrastructure Performance Measures Linked to Economic Growth 

U.S. highway agencies collectively spend billions of dollars annually to maintain highways (Cambridge 

Systematics, Inc. 2011). Freight railroads incur similar expense levels (AAR 2014). The old adage that 

“you cannot fix what you don’t know is broken” highlights the importance of regular performance 

measurements. Enhanced situational awareness of maintenance needs will optimize resource planning to 

curb adverse effects of escalating traffic load density. However, existing approaches to network-wide and 

continuous performance measures are expensive and time-intensive. Most jurisdictions still use manual 

labor to visually inspect and report on infrastructure condition. In most cases, network capacity 

diminishes when agencies must close portions of the network to accommodate the operations of non-
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destructive evaluation (NDE) and surface scanning equipment (Bridgelall 2013). Hence, agencies 

everywhere are seeking faster and more affordable ways to collect and analyze data to assess the capacity, 

performance, safety, and security of the transportation infrastructure. Hyperspectral remote sensing offers 

an opportunity to meet all of those needs. 

Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records 

reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a 

broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a 

unique spectral signature that offers new opportunities for informed decision-making in transportation 

systems development, operations, and maintenance. Figure 1.2 illustrates the concept of a hyperspectral 

image frame. 

 

Figure 1.2  Conceptualization of Hyperspectral Remote Sensing 

Few spaceborne systems with hyperspectral image sensors exist. In general, spaceborne systems such as 

satellites and space stations are capable of capturing images of vast areas in a short period, but they 

provide lower spatial resolution than airborne systems. Consequently, some practitioners use manned 

aircraft to achieve higher spatial resolution when needed. However, the additional expense of custom 

missions and manned aircraft operation reduces the affordability of frequent hyperspectral remote sensing 

with broad area coverage. Fortuitously, the rapid size and cost reduction of unmanned aircraft systems 

and hyperspectral image sensors promise a third alternative. In addition, such systems are more scalable 

because practitioners can conduct multiple parallel missions to achieve broad area coverage at affordable 

prices. 
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Part I of this report includes the results of a literature search to assess the application barriers that have 

traditionally limited the use of hyperspectral remote sensing for transportation applications. The authors 

formulate an operational framework and deployment models for a pushbroom type of remote sensing 

system to achieve both high spatial and spectral resolutions with affordable hyperspectral image sensors. 

A taxonomy of potential applications subsequently identifies numerous existing and emerging 

opportunities to apply the framework and model for transportation systems analysis and performance 

assessments. Part II explores the utility of the framework and models in three important and distinct 

transportation applications: roadway congestion forecasting, railway condition monitoring, and pipeline 

risk management. A scenario analysis explains the general approach for utilizing hyperspectral image 

analysis to improve models that practitioners currently use in each of the application areas. Part III 

showcases detailed use of the framework to develop an innovative model for detecting hazardous spills 

such as crude oil. In particular, the authors illustrate how using small unmanned aircraft systems with 

lightweight hyperspectral image sensors would enable resolution agile and real-time remote sensing. This 

final part includes the development of a new rapid hyperspectral image classification technique to enable 

the real-time remote sensing capability. 
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2. PART I – APPLICATION BARRIERS AND OPPORTUNITIES 
 
2.1 Section Introduction 
 

Remote sensing using spaceborne and airborne imaging platforms offer the key advantage of broad spatial 

coverage without degrading the infrastructure performance or capacity. Nevertheless, there have been 

relatively few applications of remote sensing in transportation. Even fewer use techniques involving 

hyperspectral image acquisition. Table 2.1 summarizes the literature available on remote sensing in 

transportation at the time of this research. The table indicates which application used a mix of 

panchromatic (P), color (C), multispectral (M), and hyperspectral (H) types of image acquisition. 

It is apparent from the literature review that the year 2000 marked the beginning of transportation-related 

applications of hyperspectral remote sensing. Government investment in transportation research hastened 

most of those early activities in the U.S. The Transportation Equity Act (TEA-21) directed the United 

States Department of Transportation (USDOT) to collaborate with the National Air and Space 

Administration (NASA) to form the National Consortia for Remote Sensing in Transportation (NCRST). 

The act resulted in a grant award that initiated the NCRST in 2000. 

The objective of this section is to characterize the barriers to hyperspectral remote sensing in 

transportation, assess the emerging opportunities, and to propose new utilities. The organization of this 

part of the report is three subsections that 1) assess the requirements from sensors and the data processing, 

and characterize some of the key non-technical barriers, 2) explore emerging opportunities that address 

some of the key barriers identified, and 3) introduce transportation application taxonomies that include 

new ideas to benefit from hyperspectral remote sensing. A scenario study will demonstrate how the 

models of highway capacity planning could leverage capabilities of remote sensing to update their 

parameters for improved performance. The final section summarizes and concludes the study. 

Table 2.1  Applications of Hyperspectral Remote Sensing in Transportation 

Applications P C M H 

Asphalt road surface condition assessment, Institute of Atmospheric Pollution Research 

& University of Rome, Italy (Mei, et al. 2014) 

x x x x 

Oil spill detection and impact prediction in ice-affected marine environments, 

LOOKNorth Center of Excellence for Commercialization and Research, NL Canada 

(Warren, et al. 2014) 

 x x x 

Land use monitoring in response to urbanization, Jawaharlal Nehru University, New 

Delhi, India (Rani 2014) 

  x  

Produce road condition indices from panchromatic images available at 46 cm from 

WorldView-2 (Digital Globe) satellite, the highest spatial resolution available in 2014, 

University of Colorado at Boulder, CO, USA (Yerasi 2014) 

x    

Road condition monitoring from hyperspectral imagery, University of São Paulo, Brazil 

& the Brazilian Transportation Planning Society, Brazil (Resende, Bernucci and 

Quintanilha 2014) 

   x 

Three-dimensional image reconstruction of scenes to identify and characterize unpaved 

road defects, Michigan Tech Research Institute, MI, USA (Dobson, et al. 2014) 

 x   

Three-dimensional image reconstruction of scenes to identify and characterize unpaved 

road defects, Geographic Information Science Center of Excellence, South Dakota, USA 

(Zhang 2013) 

 x   

Road type classification by distinguishing between asphalt, cement, and unpaved roads 

and course classification (good, intermediate, bad) of road condition, the University of 

Applied Sciences, Stuttgart, Germany (Mohammadi, Hahn and Engels 2011) 

   x 
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Applications (Continued) P C M H 

Information fusion, including hyperspectral and other remote sensing techniques, for 

transportation infrastructure surveillance by the Earth Observation and Natural Hazard 

Technologies Consortium of the European Commission, Italy (Proto, et al. 2010) 

x x x x 

Use of unmanned aircrafts to monitor construction progress and inventory roadway 

assets, Utah State University, UT, USA (Jensen, et al. 2009) 

 x   

Correlate the amount of dead vegetation along pipeline right-of-ways to gas leaks, 

International Institute for Geo-information Science and Earth Observation & Utrecht 

University, the Netherlands (Van der Werff, et al. 2008) 

   x 

Pipeline right-of-way monitoring for leak and encroachment detection, Electricore, Inc., 

CA, USA (Electricore, Inc. 2007) 

 x x  

Trained classification of transportation infrastructure from hyperspectral scenes, Midwest 

Transportation Consortium, University of Iowa, IA, USA (Sugumaran, Gerjevic and 

Voss 2007) 

   x 

Automated classification of urban surfaces to distinguish between roofs, roads, and other 

land features, the German Remote Sensing Data Center, Oberpfaffenhofen, Germany 

(Heiden et al., 2005) (Heiden, et al. 2007) 

   x 

Pothole identification and road condition assessment, Research Systems Inc. VA, USA, 

and SpecTIR Corp., NV, USA (Jengo, et al. 2005) 

 x  x 

Railroad track inventory and use assessment, Humboldt-University, Berlin, Germany & 

Center for Remote Sensing of Land Surfaces, Bonn, Germany (Damm, Hostert and 

Schiefer 2005) 

x x x  

Traffic analysis and forecasting using unmanned aircrafts, University of South Florida, 

FL, USA (Puri 2005) 

 x   

Pavement condition assessment, the National Consortia for Remote Sensing in 

Transportation (NCRST), CA, USA (Herold, et al. 2003) 

   x 

Survey of potential applications of remote sensing, the Aviation Institute at the University 

of Nebraska and the Nebraska Airborne Remote Sensing Facility, NE, USA (Bowen, 

Vlasek and Webb 2004) 

   x 

Roadway network extraction from remotely sensed images, Boeing-Autometric 

Corporation, CO, USA (Penn 2002) 

   x 

Wetland classification for compliance of environmental assessments, North Carolina 

DOT, EarthData Technologies, Mississippi State University, MS, USA (Mah, et al. 

2002) 

   x 

Submerged aquatic vegetation hazard identification for navigable waterways, George 

Mason University, funded by the EPA and the USGS, VA, USA (Gomez 2002) 

   x 

Classification of features in urban scenes, the University of New South Wales, Australia 

(Bhaskaran and Datt 2000) 

   x 

 
2.2 Assessment of Application Barriers 
 

Hyperspectral remote sensing promises significant utility in helping to advance applications in 

transportation. Although sensors and techniques of hyperspectral remote sensing have existed for several 

decades, practitioners have deployed only a few applications (Goetz 2009). The subsections that follow 

will further explore the barriers to adoption that include: 

 Limited availability of hyperspectral remote sensing platforms 

 Accessibility limitations of remote sensing 

 Difficulty of sensor miniaturization 

 Extensive latencies in the image processing chain  

 Non-technical barriers 

These are not necessarily exhaustive but they represent some of the most important barriers. 
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2.2.1 Limited Availability of Hyperspectral Remote Sensing Platforms 
 

Spaceborne platforms of hyperspectral remote sensing began in the year 2000 with the deployment of the 

experimental MightySatII.1 (Rafert 2014). As of 2014, only five satellites carry a hyperspectral imaging 

system. Table 2.2 provides their launch year and summarizes their key sensor operating parameters. 

Table 2.2  Existing and Planned Spaceborne Hyperspectral Imaging Platforms. 

Satellites Year Operator Type BL BU N GSD Swath Revisit 

MightySatII.1 2000 USAF (inactive) HSI 470 1050 145 30 15 5 

EO-1 Hyperion 2000 NASA HSI 400 2500 220 30 180 16 

PROBA-CHRIS 2001 Europe PAN 

HSI 

HSI 

 

400 

400 

 

1050 

1050 

1 

19 

63 

5 

17 

34 

13 

13 

13 

7 

 

HJ-1A 2008 CAST (China) MSI 

HSI 

430 

450 

900 

950 

4 

115 

30 

100 

700 

50 

4 

ISS HICO 2009 NASA/ONRL HSI 380 1000 102 92  42 14 

YouthSat 2011 India/Russia HSI 450 950 63 4000 70 5 

HISUI ALOS-3 2015 Japan HSI 400 2500 185 30 30 60 

EnMAP 2017 Germany HSI 420 2450 222 30 30 4 

PRISMA 2017 Italy HSI 400 2500 200 30 30 7 

HyspIRI 2022 NASA/JPL HSI 400 2500 200 60 145 19 

HSI, MSI, and PAN indicate the type of imaging systems as hyperspectral, multispectral, and 

panchromatic, respectively. BL and BU indicate the lower and upper wavelength bands, respectively. N 

indicates the number of wavelength channels. The ground sensing distance (GSD) and swath are in 

meters. The revisit period is in days. Spaceborne services have fixed orbits and they revisit a particular 

ground area at fixed intervals. 

From the literature review, Table 2.3 summarizes some of the most extensively utilized airborne 

platforms. Operators can schedule flight paths and missions with greater flexibility than spaceborne 

platforms. However, their operation may require special permits and approvals to enter restricted airspace 

above the targeted ground area. Secondly, airborne missions are limited to a shorter window of the day 

when the sun angle is within the desired range for proper illumination, whereas satellites maintain a sun 

synchronous orbit to achieve constant illumination. 

Table 2.3  Existing Airborne Hyperspectral Imaging Platforms. 

Airborne Owner BU BL IFOV N FOV Fr Max Speed 

AVIRIS NASA/JPL 360 2500 1.0 224 677 100 730 km/h 

HyMap HyVista Corporation 450 2500 2.5 128 512 500 837 km/h 

ProSpecTIR SpecTIR 400 2500 1.3 244 320 100 210 km/h 

CASI 1500H Itres Research, Canada 380 1050 0.49 288 1500 85 223 km/h 

HySpex Norsk Elektro Optikk 400 2500 0.75 256 1600 100 263 km/h 

APEX European Space 

Agency 

380 2500 0.48 508 1024 43.4 310 km/h 

Table 2.3 includes the instantaneous field-of-view (IFOV) per pixel of the optical system in milliradians 

(mr) and the total detector field-of-view (FOV) in number of spatial pixels. For comparison with the 

spaceborne platforms, the GSD Δϕx varies with flight altitude hs as 

.
2

tan2 









IFOV
hsx  (1) 
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For small angles, tan(θ) ≈ θ, hence Δϕx ≈ hs × IFOV. The frame rate Fr of the optical system is in frames 

per second and the maximum speed of the aircraft is in km/h. 

 
2.2.2 Accessibility Limitations of Remote Sensing 
 

Remote sensing is a type of non-destructive evaluation (NDE) method that complements surface scanning 

techniques. Hyperspectral systems provide signature recognition capability for many targets that other 

methods, such as multispectral and infrared remote sensing, cannot discriminate. 

The technique relies on how light of different wavelengths interact with the unique composition and the 

variations in particle sizes at the molecular level. The diffraction, refraction, and reflection of incident 

light are unique at the different narrow band wavelength regions. Remotely sensed imagery from satellites 

provides a birds-eye view of the ground; therefore, shadowing from trees and other large objects will 

occlude visibility. Although satellites can revisit areas in several days, cloud cover could hamper image 

acquisition. The atmosphere absorbs transmitted and reflected irradiance. This loss in energy reduces 

signal intensity and adds background noise. In addition, dust, dirt, or moisture on surfaces can reduce the 

image quality. 

The use of a mix of remote sensing platforms involves a tradeoff between mobility and accessibility as 

illustrated in Figure 2.1. Airborne sources provide significantly less area coverage because of their lower 

mobility. However, they do offer greater degrees of accessibility that addresses some of the visibility 

issues of spaceborne sources. Manned aircrafts still have limited accessibility to provide the resolution 

needed to monitor some aspects of the transportation infrastructure. For example, transverse pavement 

cracks become visible with one-meter resolution and manhole covers become visible at the centimeter 

resolution scale (Bowen, Vlasek and Webb 2004). Unmanned aircraft systems (UASs) promise even 

higher accessibility and resolution, but their substantial reduction in mobility increases the time needed 

per unit to monitor a vast transportation network. A fleet of UASs could remediate the mobility 

shortcoming but at the expense of additional training, maintenance, and operating costs. Even with higher 

resolution remote sensing, it remains infeasible to measure some physical parameters such as ride quality, 

which is an important indicator of road condition (Bridgelall 2014). 
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Figure 2.1  Remote Sensing Tradeoff in Mobility and Accessibility 

2.2.3 Difficulty of Sensor Miniaturization 
 

Techniques of wavelength separation involve high quality prisms, diffraction grating, or interferometers. 

Prisms use the principle of refraction that separate EM wavelengths based on their speed differences 

through transparent but denser than air media. Gratings use the principles of diffraction and interference; 

their mass production relies on an ability to create nanometer-scale temperature-stabilized grooves. 

Interferometers use the principle of constructive interference from EM phase alignment. Their 

construction relies on the ability to machine temperature-stabilized and nanometer-scale precision optical 

blocks with integrated beam splitters. These stringent precision requirements establish the need for 

minimum size and dimension requirements to maintain material strength and operating stability across a 

large temperature range. The focusing elements are lenses, curved mirrors, or combinations of those. 

Their design requirements, such as long focal distance, shock resistance, and temperature stability, set 

stringent design constraints that prevent scaling their construction below certain minimum dimensions. 

Figure 2.2 shows the optical configuration of the Hyperion imager that NASA deployed on the EO-1 

satellite (Pearlman, et al. 2001). The unit weighs 49 kg (~ 108 lbs.) and has a volume of approximately 

0.2 cubic-meters, which is about 25 times the volume of a regulation size basketball. 
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Figure 2.2  Optical Configuration of the Hyperion Hyperspectral Remote Sensing Platform 

2.2.4 Excessive Latencies in the Image Processing Chain 
 

Existing spaceborne and airborne services to acquire hyperspectral images require an application process 

that can take weeks or months and then a subsequent scheduling of the mission (Barry 2001). Once 

initiated, the flow of data from the image capture platform to the user is relatively slow. The EO-1 

satellite revisits the same ground area every 16 days, but weather and cloud cover can prevent image 

acquisition. Once cleared, the satellite requires 10.5 minutes of lead time before collecting the scene, and 

about 4 minutes of additional time to collect calibration data. The typical scene collection time is 30 

seconds. After downlink, the ground station forwards the raw data to NASA for ‘Level 0’ processing to 

decode, parse, validate, aggregate, and format the data. NASA can take up to five days to complete the 

Level 0 processing. Subsequently, NASA sends the data on tape via surface mail to TRW Inc. for ‘Level 

1’ processing to apply radiometric calibration and data interpolation. TRW then returns the processed data 

to NASA within three days for distribution. The user then performs image classification using a variety of 

supervised and unsupervised methods that are relatively computational complex. The process for existing 

airborne platforms is similarly extensive. For instance, the USGS suggests that researchers must allocate 

one to four months after AVIRIS data collection before receiving the processed image files.  

2.2.5 Non-Technical Barriers 
 

In addition to the technical and process impedances presented in the previous sections, there are numerous 

non-technical barriers. They include regulatory restrictions on flight missions, privacy concerns, liability, 

and the lack of standards. 

FAA Restrictions 
 

The Federal Aviation Administration (FAA) banned commercial UAS operations until the agency can 

address its safe operations among non-cooperative aircrafts and other airborne operations (Abid, et al. 

2014). As of 2014, the FAA requires certificates of authorizations (COAs) to conduct research at one of 

the six national test sites. 

Privacy Concerns 
 

The public is generally concerned about the loss of privacy from the practice of capturing images 

remotely, particularly when using small UASs with integrated cameras. The national press regularly 
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highlights cases that involve the use of drones by law enforcement agencies to conduct investigations. 

Such reports tend to awaken concerns about the legality of such surveillance and the potential violation of 

civil liberties (Abid, et al. 2014). 

Liability 
 

As image acquisition devices reduce in size, researchers will likely install them on small UASs. The 

severity of a UAS failure depends on the type, size, and propulsion option of the UAS. Fuels can ignite in 

the event of a crash (Abid, et al. 2014). Some UAS crashes have involved injury and property damage. 

Pilot distraction, similar to the notion of distracted driving, is another area of concern. 

Lack of Standards 
 

Contemporary systems for hyperspectral data acquisition consist of a broad range of sensors, platforms, 

resolutions, and image quality. The transportation industry currently lacks standards for image treatment 

within and across different acquisition platforms, spectral libraries, timeframes, and meteorological 

conditions. There are no standard recommendations for the systematic removal of sensor bias, geometric 

distortions, and radiometric non-uniformity. In addition, relatively few efforts incorporate atmospheric 

correction. Assembling full scenes from a mosaic of smaller swaths can introduce significant geometric 

and alignment errors. A first step in addressing the challenges posed by this situation is the systematic 

acquisition of spectral libraries using standard procedures, sensor settings, illumination, and 

meteorological conditions. 

2.3 Emerging Opportunities 
 

This section reviews the pushbrooming approach to hyperspectral image sensing and illustrates how the 

technique leverages sensor size reduction to enable use on small UAS platforms and small satellites. 

Advancements in computing that include more computationally capable microprocessors and cloud-

computing techniques are also enablers of the pushbrooming approach when deployed on small UASs. 

2.3.1 Pushbrooming Framework for Hyperspectral Image Acquisition 
 

The typical image sensor is a planar two-dimensional (2D) array of x × y photosites. The sensor has one 

electronic photosensor beneath each photosite to produce one pixel of the digital image. Most single chip 

color imagers include a color filter array, such as a Bayer filter mosaic, to pass energy from red (R), green 

(G), and blue (B) wavelength bands onto the individual photosensors of each photosite. To render the 

image, de-mosaicing image processing algorithms must subsequently interpolate light intensity from 

neighboring pixels to produce intensity values for the other two wavelength bands such that the final color 

image data will map one R-G-B triplet to each pixel of the image sensor. Other approaches use beam 

splitters or wavelength selective optical filters with multiple sensor arrays (Gilder 2005). A hyperspectral 

scene is a meta-data cube where each layer is a picture of the same scene sensed at a different wavelength 

band of the electromagnetic (EM) spectrum. Hence, the color imaging approaches do not scale much 

beyond the three R-G-B wavelength bands to accommodate the hundreds of wavelength bands of 

hyperspectral scenes. 

A pushbrooming framework for image acquisition enables the use of standard 2D photosensor arrays with 

pixel size cx × cy. This technique sweeps a narrow field-of-view (FOV) of dimensions (Nx × Δϕx) × Δθy 

along the ground path of the flight trajectory. The aperture of a pushbrooming imaging system limits the 

FOV to one row of the image sensor that contains Nx pixels as illustrated in Figure 2.3. The optical 

magnification factor for square pixels is Mη = (cx/Δϕx)2. Wavelength separating optics focus the EM 

energy from different wavelength bands onto each row of the image sensor. Therefore, each captured 
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frame of the 2D image sensor will contain the equivalent of one row of the image, but each row will 

register the same image from a different wavelength band. Hence, a relatively constant speed VG will 

improve the quality of the hyperspectral scene assembled from the sequence of image frames. 

 

 

Figure 2.3  Pushbrooming Approach of Hyperspectral Remote Sensing 

Some amount of FOV overlap γ will be necessary to aid the image assembly algorithm. Altogether, the 

constraints of the pushbrooming geometry dictate a minimum image capture frame rate Frm of 
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The Hyperion imager aboard the EO-1 satellite uses this approach and likely requires less FOV overlap 

than an airborne platform because of its relatively constant speed above the atmosphere. Airborne 

platforms will dictate an FOV overlap requirement that depends on the expected ride quality at the 

selected flight altitude and speed. The relative instability of small UAS platforms will also dictate more 

computationally complex approaches for image frame assembly, image noise reduction, geometric 

correction, and image classification. 
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2.3.2 Hyperspectral Sensor Miniaturization 
 

Although the miniaturization of the focusing and wavelength separation elements continues to pose 

significant challenges, there has been some progress. Figure 2.4 illustrates the key components of a 

hyperspectral camera. Advancements in precision machining enable the mass production of transmissive 

holographic diffraction gratings that implement the wavelength separation method (Muslimov 2014). The 

ability to create microlenses and to integrate aberration-corrected optical elements directly on top of the 

image sensor enables significant size and cost reduction of the light focusing element (Lambrechts, Tack 

and Pessolano 2011). 

 

Figure 2.4  Key Sensor Components Targeted for Miniaturization 

The ubiquitous adoption of image sensors for mobile phones results in the continuous quest for their 

performance enhancement and cost reduction. Several manufacturers currently leverage these trends to 

produce hyperspectral imagers that weigh less than 2 kg (less than 5 lbs.) and those are suitable for 

installation on small UAS platforms (Colomina and Molina 2014). 

2.3.3 Proliferation of Small UAS Platforms 
 

Lower building costs and a proliferation of commercial applications for UASs has led to their widespread 

use (Abid, et al. 2014). In 2014, the FAA issued exemptions to the commercial movie and television 

production industry that allow small UAS operations but with various restrictions (FAA 2014). At the 

time of this report, the FAA issued new operational rules governing routine commercial use of small 

UASs that clarified many of the previous restrictions (Federal Aviation Administration 2016). These 

evolving FAA regulations to integrate UASs fully into the airspace will likely continue to spur growth for 

smaller and more affordable aircrafts. Large organizations such as Amazon, Google, and Facebook 

announced their intent to deploy small UASs for a variety of commercial purposes. Analysts expect that 

the UAS industry will spend $89 billion by 2023 to develop more useful, safer, and easier-to-fly aircraft 

(Berger 2014). These trends will continue to challenge sensor manufacturers in the size, power, and 

weight reduction of hyperspectral imaging systems. 

2.3.4 Advancements in Computing 
 

The collection, processing, and interpretation of hyperspectral data involve significant computing 

resources. Image processing involves radiometric calibration, atmospheric correction, geometric 

alignment, and image stitching. Radiometric calibration involves the removal of temporal or spatial 

brightness variations in images that are associated with the image sensing system rather than the actual 

scene reflectance. Through wavelength selective absorption, scattering, and diffraction, the atmosphere 

modifies the target irradiance both spatially and spectrally, and those modifications change with time. The 
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amount of unwanted light depends on the atmospheric conditions at the time, the terrain of the scene, and 

the flight altitude. Atmospheric correction algorithms attempt to estimate and compensate for 

atmospherically induced variations in irradiance. Off-nadir viewing from pushbroom operations distorts 

three-dimensional (3D) image projections onto two-dimensional (2D) planes (Clark, Livo and Kokaly 

1998). Geometric correction entails knowing the instantaneous position and attitude (orientation) of the 

platform at the time of image acquisition.  

Image classification is a significant aspect of the interpretation and decision-making process. The 

classification methods and algorithms vary widely but they generally fall into two categories: supervised 

or unsupervised (Mather and Tso 2003). Supervised methods involve both statistical and machine 

learning approaches. The computation generally requires a complex calculation between every hyper-

pixel and the end member of a spectral class (Gao, et al. 2013). The algorithms of unsupervised methods 

are generally at least O(PN2+N3) computationally complex (Du and Fowler 2008). P is the number of 

pixels, and N is the number of bands. The continuous advancement and proliferation of multi-core 

processors, digital signal processors (DSP), and cloud computing architectures could now accommodate 

these complexities with greater ease. 

2.4 New Application Utilities 
 

This section illustrates how a pushbroom framework and associated model of hyperspectral remote 

sensing could enhance the utility of existing transportation applications as well as create new utilities. To 

focus the illustration, this section selects road condition assessments for the scenario study. The 

taxonomies of transportation applications introduced reveal numerous applications that could benefit from 

hyperspectral remote sensing. The scenario analysis selects highway capacity planning to demonstrate the 

link between theory and practice using results of the hyperspectral image classification. 

2.4.1 Utility Enhancement of Existing Applications 
 

More than 94% of the 4 million miles of paved roads in the United States contains asphalt. The material 

also covers about 85% of the nation’s airport runways and parking areas (NAPA; EAPA 2009). 

Hyperspectral remote sensing offers numerous utilities in the assessment of roadway surface conditions. 

Asphalt is easily discernible from other road types because the hydrocarbon of the bitumen binder has 

maximum absorption bands between 1730 nm and 2300 nm (Cloutis 1989). New asphalt has generally 

low reflectance (albedo) because bitumen absorbs solar radiation throughout the 250 – 2500 nm range 

(Heiden, et al. 2007). Deeper absorption bands also indicate newer roads (Smejkalová and Bujok 2012). 

The average reflectance across the EM spectrum increases as a pavement loses its bitumen surface from 

erosion and tire polishing (Herold, et al. 2008). With the loss of binder material, aggregate outcropping 

begins to reveal its mineral signatures (Mei, et al. 2014). Severe pavement cracking could decrease albedo 

by about 7% because of shadowing and scattering effects (Herold, et al. 2003). Hence, agencies could use 

hyperspectral remote sensing to catalog the age and relative condition of pavements. 

Improved condition assessment accuracy is also possible by analyzing higher resolution images from 

UAS platforms. As cracks develop, higher resolution images reveal a sharpening of the hydrocarbon 

features from the exposed layers of the original asphalt mix beneath. Water inlets create absorption bands 

in the longer wavelength regions. As water interacts with material beneath, iron absorption peaks also 

appear at 520, 670, and 870 nm (Meer, et al. 2012).  

The age and surface condition of pavements are important asset management parameters but agencies are 

generally more concerned about characterizing their ride quality. Although there is generally a strong 

correlation between the age of a road and the ride quality it provides, the former is not necessarily an 

indicator of the latter. For instance, agencies often characterize the ride quality of new roads to assess the 
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contractor’s performance and to determine fee penalties based on overall roughness. Hence, estimating 

the age of the pavement from its albedo and the sharpness of its hydrocarbon spectral features alone is not 

necessarily sufficient information to characterize its ride quality, which is a task that nearly all state 

highway agencies undertake annually (Bridgelall 2014).  

The higher resolution and greater accessibility of UASs could yield 3D images that also enable texture 

analysis.12 The combined information obtained from a pushbrooming approach using UAS platforms 

could result in an ability to classify ride quality qualitatively as shown in Figure 2.5. 

 

Figure 2.5  Application Enhancements with High Resolution Imaging 

2.4.2 Taxonomy of Hyperspectral Applications in Transportation 
 

The transportation applications that can benefit from utilizing hyperspectral remote sensing fall into the 

following two groups: a) planning and development and b) maintenance and operations. Figure 2.6 

illustrates the taxonomy. The first group has two sub-categories, namely capacity planning and 

environmental assessment. Likewise, the second group has two sub-categories, namely infrastructure 

monitoring, and safety & security. Sustainable transportation development means that actions taken today 

must not adversely affect the ability of future generations to thrive. Hence, planning in transportation 

focuses on how to design and manage the system capacity and assets to accommodate the mobility and 

accessibility demands of travel, now and in the future. Developments must be sustainable as population, 

traffic, and production grows. Therefore, planners aim to minimize adverse impacts to the environment 

while accommodating the demands. Infrastructure monitoring involves multimodal performance measures 

as previously described. Safety and security aspects of transportation involve a variety of risk 

management and emergency response measures as the taxonomy indicates. Future research will expand 

on the details of how hyperspectral remote sensing provides utility and benefits for each of these areas. As 

an example, the next section provides a scenario study for one specific area. 
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Figure 2.6  Taxonomy of Hyperspectral Applications in Transportation 

2.4.3 Application Scenario in Highway Asset Management 
 

The capacity of a transportation network depends on the density and speed at which traffic can safely 

flow through its corridors. To illustrate how data from hyperspectral remote sensing could be valuable in 

planning, this section first develops the capacity and operational models for freeways.  

The models then provide insights for practitioners to incorporate remotely sensed data to update their 

various parameters for improved accuracy in analyzing different portions of the complex network. 

Roadway capacity depends on numerous factors that include functional class, geometry, terrain, traffic 

mix, peak hour volume, and driver familiarity with the route. The Highway Capacity Manual (HCM) of 

the Transportation Research Board (TRB) is the accepted standard for highway capacity and level of 

service determination (HCM 2000).  

Freeways are divided highway facilities with full control of access because regulations limit their access 

to certain types of vehicles, and their access points are limited to specific locations. They typically have 

two or more lanes for the exclusive use of through traffic in each direction, and the HCM defines their 

capacity Cf as 

fff SC  101700
 (3) 

where Sff is the free-flow speed. The base free-flow speed Sbff is a function of the speed limit, whereas the 

free-flow speed is the speed at which drivers feel comfortable traveling the facility. Hence, adjustments to 

the base free-flow speed produce the free-flow speed as follows: 
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where fLW, fLC, fN, and fID are adjustment factors that account for non-ideal lane widths, lateral clearance, 

number of lanes, and interchange density, respectively. To calculate the level-of-service provided, the 

HCM converts the peak hour volume of vehicles VT to passenger car equivalents (PCE) or VPCE where 
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in units of passenger cars per hour per lane (pcphpl). The number of lanes in one direction is NL and the 

factor that accounts for driver familiarity with the facility is fp. The default driver-population factors for 

urban and rural highways are 1.0 and 0.975, respectively. The peak-hour factor fPH is an indicator of the 

cyclical variations in traffic distribution through the segment for any given day. It is the ratio of the 

vehicle volume in the peak hour period V60 to the vehicle volume in the peak 15-minute period V15 of that 

hour such that 
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The default peak-hour factors for urban and rural areas are 0.92 and 0.88, respectively. Heavy vehicles 

require more time-headway than passenger cars to accommodate their limited acceleration and 

maneuverability on different terrain. Hence, a heavy vehicle factor fHV will normalize the traffic mix to 

passenger car equivalents. The fHV factor is 

   111

1




RRTT

HV
EPEP

f

 
(7) 

where PT and PR are the proportions of trucks (and busses) and recreational vehicles, respectively. ET and 

ER are corresponding terrain-dependent model parameters provided in tables of the HCM. The ability to 

identify and classify vehicle types as well as traffic density using hyperspectral remote sensing provides a 

low-cost means to update the model parameters regularly, or for individual jurisdictions. 

A popular model for the non-linear change in average speed Sav with volume is (Roess, Prassas and 

McShane 2011): 
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(8) 

where TAADT is the annual average daily travel time for vehicles traveling a segment of length Ds and 

capacity Cs. Using hyperspectral remote sensing to update the average speed, travel time, and volume of a 

segment will update the model parameters γs and ρ. The average speed Sav relates to the traffic density 

DPCE as follows: 
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in units of passenger cars per mile per lane (pcpmpl). Remotely sensed data can regularly identify the 

average speed and density of vehicles across any segment of the roadway. The high spectral contrast 

between manufactured and natural surfaces improves the classification accuracy to determine geometric 

factors such as lane widths, number of lanes, shoulder clearances, median type, terrain type, and access 

point or interchange densities, even from relatively low-resolution satellite images. The current version of 

the highway capacity model does not include a factor that accounts for the influence of surface condition 

on average speed. Hence, the ability to estimate a condition index using the method described in Figure  

and calibrating for the average speed and density observed for different facilities will further improve the 

model. The emerging opportunities that would enable real-time hyperspectral remote sensing also 

introduce the possibility of adaptive modeling. Such capabilities would enable the adaptive models to 

account for short-term changes in traffic conditions, incidents, and weather events that affect corridor 

capacity. This general approach is applicable to multimodal capacity estimation that includes railways, 

pipelines, and waterways. 

2.5 Section Discussion and Conclusion 
 

The increasing loads from heavy vehicles that support growth in commerce accelerate infrastructure 

deterioration. Agencies adopt asset preservation practices to prolong the service life of infrastructure. 

However, they lack the resources needed to monitor asset condition with the frequency necessary to 

identify their optimized maintenance cycles. The multimodal transportation infrastructure is vast and 

dynamic. Existing methods of condition and performance assessments are laborious and expensive. This 

research highlighted the emerging opportunities for hyperspectral remote sensing to address the resource 

gaps and to provide broad coverage and timely assessments. The barriers to deployment identified 

provided some insights to explain the lack of hyperspectral remote sensing utility in transportation 

applications. The analysis highlighted five barriers to deployment. Among them, the accessibility 

limitations of existing sensor platforms and their extensive process chain latencies burden transportation 

applications that require high-resolution images and rapid results. The other three barriers that include a 

lack of imaging platforms, bulky sensors, and regulatory constraints are common to most other 

applications such as precision agriculture. However, emerging opportunities that are countering those 

barriers include the popularization of UAS utility in consumer applications, sensor miniaturization, and 

advancements in computing. In particular, the pushbrooming method of hyperspectral image acquisition 

leverages the cost and size reduction trends of conventional image sensor systems that are now common 

in nearly all mobile phones. These emerging opportunities also enhance the benefits of applying 

hyperspectral remote sensing to existing applications in transportation such as pavement condition 

assessment. These opportunities create new utilities in nearly all categories of transportation applications. 

This research used the scenario of highway capacity planning to demonstrate a link between the models 

and the practice of updating them by extracting relevant data from the analysis of hyperspectral scenes. 

Future opportunities that enable real-time hyperspectral remote sensing will lead to adaptive multimodal 

models that account for short-term changes that affect corridor capacity. 
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3. PART II – GENERAL FRAMEWORK FOR TRANSPORT SYSTEMS 
ANALYSIS 

 

This section illustrates opportunities to utilize the hyperspectral remote sensing framework to develop 

improved models for a few select applications in transportation.  The section presents a generalized 

approach for applying the framework to develop the models and then offers three specific application 

scenarios to demonstrate their utility.  The selected scenarios explain the models used to analyze roadway 

mobility, railroad energy consumption, and pipeline risk management.  The core concept is to identify 

specific applications that can benefit uniquely from both the high spatial and high spectral resolutions of 

hyperspectral remote sensing. 

3.1 Section Introduction 
 

While hyperspectral remote sensing has rapidly emerged as a mature field since the early 2000s (Rafert 

2014), relatively few applications of hyperspectral analysis in transportation currently exist.  As of 

January 2015, there were only 14 applications reported in the worldwide literature (Bridgelall, Rafert and 

Tolliver 2015).  Early research concluded that the high uncertainty and latency of results from existing 

airborne and spaceborne platforms create major impediments to the widespread use of remote sensing for 

applications in transportation (Brecher, Noronha and Herold 2003).  Nevertheless, the growing popularity 

and capabilities of small, low-cost unmanned aircraft systems (UASs) coupled with the steady 

advancement of lightweight hyperspectral imager payloads of decreasing cost promises vast 

improvements in mobility, accessibility, spatial resolution, and image quality.  However, the government 

regulations and privacy concerns of many countries continue to hinder the deployment of UASs for 

commercial applications (TRB 2003).  Even at the conclusion of rulemaking and policy enactment, the 

global transportation industry will need to promote awareness of hyperspectral remote sensing as a viable 

alternative to terrestrial methods.  Agencies will need to train a workforce with the new skills needed to 

capitalize on these emerging opportunities in remote sensing in general and hyperspectral analysis in 

particular.  As corporations and nations launch low-cost hyperspectral imaging satellites, and small UASs 

equipped with hyperspectral image sensors proliferate, new applications in the transportation sector are 

likely to emerge rapidly. 

The global transportation network is expansive, dynamic, multimodal, interdependent, and accommodates 

a diverse range of human behaviors and needs.  Analysts study such complex networks by using models 

to characterize, understand, and predict their behavior, economics, and risks.  The accuracy and utility of 

those models depend on the quality and frequency of data available to quantify their operational 

parameters and validate their explanatory variables.  Beyond improved modeling capabilities, 

hyperspectral remote sensing and joint spatial-spectral analysis offers the potential to provide regular and 

accurate information to enable adaptive transportation infrastructures that would support the future 

operation, safety, and security of connected and autonomous vehicles. 

The organization of the remainder of this section is as follows: Section 3.2 introduces the general 

framework to link transportation systems analysis and hyperspectral analysis.  The authors then introduce 

a range of applications where they foresee high utility for hyperspectral analysis within the general 

framework.  Section 3.2 presents specific scenario analysis covering three different application areas to 

demonstrate how the outputs of hyperspectral image classification would improve models that 

practitioners use currently to study a variety of transportation networks. Section 3.4 discusses the results 

and concludes this section of the report. 
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3.2 General Application of the Framework 
 

Practitioners worldwide are seeking cost-effective and simplified tools to help them address numerous 

problems that arise continuously from the massive, open, dynamic, and multimodal global transportation 

network. According to data from the Central Intelligence Agency, approximately 40 million miles of 

roadways, 1.4 million miles of navigable waterways, and more than 40,000 airports cover the planet’s 

surface. This infrastructure also includes an interacting and interdependent network of railways, pipelines, 

and shipping ports along with their associated geological and oceanographic structures. 

The most serious problems include reducing congestion, energy consumption, polluting emissions, crash 

risks, and managing the safety and security of hazardous transport. The growing worldwide population 

and international commerce drives increasing demands for mobility and accessibility across the global 

network. Hence, solutions must have the capacity to scale internationally, the ability to provide results in 

real time, and the propensity for standardization. Hyperspectral remote sensing with fleets of ground-

based or UASs offers such an opportunity. Combinations of spatial and spectral data are central to the 

hyperspectral analysis of scenes from many elements of the global transportation infrastructure.  

Practitioners with the appropriate training in hyperspectral remote sensing will gain the ability to 

capitalize on their capabilities and capacity to solve complex transportation problems and enable new 

applications more cost effectively. This section introduces a general framework to benefit from 

hyperspectral remote sensing by linking the analytical models of transportation systems analysis to 

outputs of the image analysis. 

A first step in the general application of the framework is to identify the parameters of a transportation 

system model or aspects of the system that are directly observable using machine vision and analysis 

techniques. Numerous models already exist to study, estimate, and forecast the cost, performance, 

condition, safety, and security of multimodal and intermodal transportation networks. Existing approaches 

to estimate the values for observable model parameters require manual visual inspections or expensive 

terrestrial sensing equipment. Hyperspectral remote sensing using fleets of UASs has the ability and 

capacity to scale and provide cost-effective data collection platforms. Small and agile UASs are capable 

of capturing high spatial-spectral resolution scenes from transportation right-of-ways that include 

roadways, bridges, waterways, ports, pipelines, and railways. 

The proliferation of high-speed wireless standards, low-power embedded computing, high-capacity 

memories, and cloud-computing platforms will continue to provide a steadily improving conduit for 

metadata data warehousing and analysis. These opportunities will continue to yield both rapid and cost-

effective hyperspectral remote sensing and decision-support platforms. Therefore, transportation systems 

analysis would benefit from a change in paradigm by designing and developing new or improved models 

that are amenable to machine vision and image analysis methods or by modifying existing models that 

rely on terrestrial only data formats. 

The ability to achieve rapid and wide area coverage with both high spatial and spectral resolution will 

enable numerous applications in multimodal and intermodal transportation capacity planning, 

environmental assessment, infrastructure monitoring, safety, and security. Capacity planning 

encompasses asset management, urban planning, travel demand forecasting, parking demand forecasting, 

corridor planning, and traffic analysis. Environmental assessment encompasses wetland identification, 

habitat protection, post-disaster management, and historical site assessment. Infrastructure condition and 

performance monitoring includes roadways, bridges, railways, terminals, pipelines, waterways, seaports, 

and airports. The area of transportation safety and security encompasses snow and ice detection and 

removal, toxic spill cleanup, law enforcement, hazard risk management, vulnerability assessment, and 

emergency response. Numerous parametric or empirical models are available to study and optimize the 

processes within each of these areas. 
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3.3 Scenario Studies and Results 
 

The next sections will conduct three different scenario analyses in roadway congestion forecasting, 

railway condition monitoring, and pipeline risk management. 

3.3.1 Roadway Congestion Forecasting 
 

It is possible to use a flow-density model to forecast impending congestion for specific roadway types and 

geometries by measuring only the traffic density.  Researchers still do not have precise closed form 

models to describe traffic flow and often turn to simulations that use empirical models.  Congestion is 

largely a result of the interaction between vehicles that slow their speed.  To understand how remote 

sensing can provide measurements that computers or planners can use to optimize traffic flow, this 

section derives the model of stable operating points. 

It is convenient to analyze traffic flow in terms of spatial data representing a dynamic supply of vehicle 

gaps or time-headways along a segment or a bottleneck. The premise of this approach is that trailing 

distances are a function of speed because humans and computers need to account for reaction time, sight 

distances, and the deceleration achievable under prevailing conditions.  Solving the equations of motion 

in terms of time-headway Th yields volume Vp as the dependent variable where 
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Tr, Av, and Lv are the reaction time, average vehicle deceleration, and the average length of a vehicle, 

respectively. This solution is most relevant to a freeway facility where the selected speed Sv is directly 

proportional to the achievable headway Th such that 

.hvv TAS 
 (11) 

Practically, speed selection depends on other factors. They include the speed limit and the presence of 

flow obstructions such as construction, incidents, and slow-moving vehicles in the traffic stream. 

The average deceleration achievable also depends on the traffic mix and terrain. For example, the 

deceleration of a car will be lower if it must match that of a leading truck on a rural two-lane highway that 

has no passing zones. This analysis removes those constraints to determine the stable operating points in 

free- and forced-flow traffic. 

Intuitively, time-headway extends the space that a vehicle occupies. Hence, as speed increases, vehicles 

eventually exhaust the available lane capacity. The time-headways are relatively small at slow speeds and 

this is why flow increases initially as speed increases. Eventually, the expanding time-headways begin to 

deplete capacity rapidly and become the dominant factor that actually decreases the vehicle flow rate.  

Manipulating the equations of motion and flow, and solving for volume as a function of density D yields 
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Solving for the peak volume yields 
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The density Dopt at which the maximum volume occurs is 
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It is evident an optimum density that would maximize flow exists. Given the average length of a vehicle, 

the optimum density depends only on the average vehicle deceleration and driver reaction on that facility.  

FigureFigure 3.1 plots this non-linear relationship for Lv = 5.5 meters, Av = -6.5 m/s2, and Tr = 0.66 

seconds. 

 

 

Figure 3.1  Theoretical Volume-Density Relationship 

The same volume is achievable on either side of the peak value. However, the average speed will be 

higher in free-flow conditions, which are on the left side of the peak. Traffic transitions into forced-flow 

conditions as the density increases beyond the peak flow condition. The vehicle speed is the slope of a 

line from the origin to any point on the volume-density curve. For example, the volume is 1000 

vehicles/hour for speed S1 and S2 but the density of vehicles is higher for the lower speed S2. This model 

assures that having an ability to identify and count vehicles in a remotely captured image will enable the 

accurate quantification of traffic density and hence the flow conditions. 

The ability to identify vehicles from their spectral signatures is a mature field (Suzuki and Carrabba 

2001), (McIntee 2008), and (Palenik, et al. 2014). The Digital Automotive Image System (DAIS) 

provides spatial information to identify vehicles manufactured within the past 20 years (NIST 2016).  

New “snapshot” hyperspectral sensors obtain a single spatial-spectral image within a few milliseconds 

(Lambrechts, Gonzalez, et al. 2014). Hence, they essentially eliminate speed-based distortions and the 

computational processing typically associated with a pushbroom type system. 

3.3.2 Railway Condition Monitoring 
 

Energy, or fuel consumption, is one of the largest factors in the cost of railroad operations, and it is an 

important consideration in route and locomotive selection. Several factors affect railroad energy 
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consumption. They include infrastructure and equipment related considerations. Infrastructure related 

factors include the line condition, degree of curvature, and the terrain type. Equipment related factors 

include the energy efficiency of locomotives and rolling resistance. The latter is a function of gross 

weight, speed, and aerodynamic factors. Remote sensing can help to characterize and catalog line 

segments of various degrees of curvatures, grades, and other conditions that impede rolling motion to 

validate existing energy consumption models, and to provide updated inputs to improve them. 

A commonly used model for the force needed per ton of railroad car FRC is (Armstrong 1990): 

RRRRC GDRF 208.0 
 (15) 

where RR is the rolling resistance on flat terrain, DR is the degree of curvature, and GR is the grade in 

percentage. All units are in pounds-per-ton (lb/ton). Various models exist that relate the flat-terrain rolling 

resistance to characteristics of the car. The Canadian National model is most applicable to modern cars 

that use roller bearings where: 
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The first two terms represent the speed-independent resistance, which is a function of track quality and 

bearing resistance, the number of axles NAC, and the total weight of the car WC in tons. The third term is 

dependent on the vehicle speed VR (mph) where the resistance is a function mostly of wheel-rail interface 

factors such as flange friction, dynamic flange motion, and wheel resistance. The last term is also speed-

dependent; it includes a streamlining coefficient cdr and the frontal car area acr to account for aerodynamic 

effects such as air pressure, rear drag, and air turbulence. 

The high spectral contrast of metal rails and the intervening material such as ballast, soil, and vegetation 

makes it possible to assess the uniformity of line quality. Uneven wear and rusting will produce variations 

in their spectral signature to indicate changes in rolling resistance. Irregular spatial geometry on flat 

terrain such as buckling, kinks, cracks, and railhead abrasions can impede smooth rolling motion. UAS- 

based hyperspectral systems with resolution agile snapshot sensors provide a method of simultaneously 

acquiring images at both the spectral and spectral resolutions needed. Such platforms have the ability to 

zoom adaptively and obtain higher spatial resolution of target areas within a small field of view. The 

ability to assess these conditions could provide inputs for improving the rolling resistance model and 

augment maintenance information to improve railroad safety. The energy required for any route is 

directly proportional to the sum of forces needed to move the train along various portions of the track 

having different combinations of rolling resistance, curvature, grade, and speed limit. 

3.3.3 Pipeline Risk Management 
 

The visual identification of toxic spills along pipeline rights-of-way can be nearly impossible because of 

their changing appearance over time and the limited accessibly of those environments. Fortuitously, the 

characteristically strong reflectance features of toxic materials such as hydrocarbons and brine make 

hyperspectral techniques suitable for their detection (Salem and Kafatos 2001). Infrared remote sensing 

has proven effective in the detection of oil spills on open water (Warren, et al. 2014).  The combination of 

hydrocarbon absorption peaks provides unique signatures for the early detection of spills and the 

subsequent monitoring of cleanup efforts. The ability to classify hyperspectral scenes in real time will 

provide navigational adaptability to guide UAS-based imagers to suspected spill areas for higher 

resolution image acquisition. However, the computational complexity of existing high performance 

classifiers limits their ability to provide real-time results (Borengasser, Hungate and Watkins 2010). 
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This research introduces a simple spectral classifier (SSC) to demonstrate the separability in feature space 

of hydrocarbon materials from other forms of ground cover. Figure 3.2 displays the SSC feature space for 

selected materials sampled from endmembers of the NASA Advanced Spaceborne Thermal Emission 

Reflection Radiometer (ASTER) Spectral Library (Baldridge, et al. 2009).  

 

Figure 3.2  The SSC Feature Space for Selected Materials 

The SSC incorporates the bandwidth normalized albedo and standard deviation of endmember spectral 

signatures to create a simple two dimensional classification space. The standard deviation σg of the 

reflectance spectra is 
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where the mean reflectance percentage or albedo μg is 
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The reflectance percentage in spectral band n is gn and the wavelength-normalized albedo (AVN) is 

LH

g
AVN
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


  (19) 

where λH and λL are the highest and lowest wavelength bands, respectively. Similarly, the wavelength-

normalized standard deviation (SDN) is 
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The physical meaning of the AVN is the reflective nature of a material per unit of wavelength across the 

spectral region of interest. The SDN is a measure of the overall variations in reflectivity of a material per 

unit of wavelength.  The SSC feature space naturally organizes these materials into the six classes shown 

in the figure. The classes are aquatic, living organics, dry organics, manufactured surfaces, snow, and 

hydrocarbons. These materials represent a majority of the ground cover in and around typical 

transportation infrastructures. 

At small zenith angles, aquatic materials are highly absorptive throughout the spectral region.  This 

characteristic places the ice and water spectra at an extreme corner of the feature space. Conversely, snow 

is highly reflective in the visible region and varies in albedo at longer wavelengths. Those features place it 

in the upper portion of the feature space. 

The measure of separability is the Euclidian distance proportion of the maximum distance in the 

normalized feature space. The Euclidian distance proportion Dη is 
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where Dmax is the maximum Euclidean distance for all features in the normalized space, g and h are 

vectors of the extracted features for any two materials, x and y are the scaled feature space vector 

components for the horizontal and vertical axis, respectively. 

The average separability for hydrocarbons from the other material classes is 43.4%. Excluding the outlier 

materials of hydrocarbons and snow to remove the bias provides an average inter-class separability of 

22.1%, which is still relatively high. The average intra-class separability, however, is only 3.3%.  This 

result demonstrates that hydrocarbons separate reasonably well from the other classes. However, an 

improved ability to distinguish amongst materials of the same class would likely require a more 

computational complex algorithm. 

This scenario demonstrates the potential for the real-time detection of hazardous spills containing high 

hydrocarbon and water content by using simple but effective classifiers that offer ample separability 

between material classes. 

3.4 Section Conclusion 
 

The primary benefit derived from using hyperspectral remote sensing to characterize the global 

transportation infrastructure is the simultaneous spatial and spectral information that it provides about the 

targets. Typical models of transportation systems analysis utilize information only from the spatial and 

temporal domains. This study introduced a generalized framework for the utilization of both spatial and 

spectral data to improve and enable many applications in transportation systems. The authors 

demonstrated the framework within three specific areas where hyperspectral remote sensing provided an 

appropriate approach to quantify the identified parameters. Table 3.1 summarizes their expert assessment 

of conservative spatial and spectral capabilities needed for the three application areas analyzed.   
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Table 3.1  Typical Spatial and Spectral Requirements 

Application 

Resolution 

Requirements 

Roadway 

Congestion 

Monitoring 

Railway 

Condition 

Monitoring 

Pipeline 

Risk 

Assessment 

Spatial 1 m 5 cm 1 m 

Spectral 15 bands 

10 nm/band 

12 bands 

10 nm/band 

4 bands 

50 nm 

 

Implementation difficulties such as sensor cost, instrumental complexity, payload weight, data archiving, 

rapid image analysis, and high latencies in the data decision framework are rapidly diminishing. The 

authors have recently acquired a UAS with procurement procedures in place to accept delivery of a 

hyperspectral mosaic sensor. The team is currently planning to conduct field-based observations relevant 

to these three topics.  Hyperspectral remote sensing will lead to a paradigm shift in transportation systems 

modeling. 
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4. PART III – FRAMEWORK APPLICATION FOR HAZARDOUS 
SPILL DETECTION 

 

This section demonstrates additional details in using the hyperspectral remote sensing framework 

developed in the previous sections. It further explores application of the framework to develop a model to 

manage pipeline risks, particularly the rapid detection of hazardous spills. 

4.1 Section Introduction 
 

Sustained growth in industrial and commercial activities that rely on hazardous material transport 

increases the risks of hazardous material spills. Government studies indicate that traffic carrying 

flammable, corrosive, poisonous, and radioactive materials exceed 800,000 shipments per day (Craft 

2004). A case study of crude oil transport demonstrates that spills from pipelines, trains, and commercial 

motor vehicles pose a serious threat to public safety (USDOT 2015). The release of hazardous materials 

often results in environmental contamination and property damage that cost millions of dollars and years 

to remediate (GAO 2014). Corrosion is a leading cause of pipeline failures (USDOT 2011). Hence, the 

risk of future accidents increases with pipeline aging. Currently, the age of more than 70% of the crude oil 

pipelines in the U.S. exceeds 45 years. The lack of pipeline capacity has led to a factor of 24 increase in 

rail carloads from 2008 to 2012 (GAO 2014). This ramp in rail traffic has raised new concerns about 

testing and packaging. In the United States, there are more than 630,000 miles of hazardous liquid 

gathering and transmission pipelines, and more than 140,000 miles of railroad (USDOT 2011). Many 

miles of the pipeline and railroad rights-of-way pass through populated and environmentally sensitive 

areas. 

The lack of regular ground inspections and systems to detect hazardous material releases result in missed 

detections. A government study found that the public generally reports pipeline leaks quicker than 

company installed sensors (Kiefner & Associates, Inc. 2012). Operators cannot easily inspect buried 

pipes, and rugged terrain often precludes ground inspections (Kiefner & Associates, Inc. 2012). Remote 

sensing using spaceborne and airborne platforms offer the potential to monitor large areas for hazardous 

material spills quickly and regularly (Bridgelall, Rafert and Tolliver, Hyperspectral Imaging Utility for 

Transportation Systems 2015). Hyperspectral image sensors add a spectral dimension to enhance 

sensitivity and reduce missed detections (Bridgelall 2014). However, high-altitude platforms limit the 

spatial resolution needed to preclude false positives. The emergence of small, rotary and fixed-wing, 

unmanned aircraft systems (UASs) offer the potential for resolution agile platforms. Their ability to trade-

off mobility and accessibility while flying enables the possibility of validating potential targets in real 

time. Pilots or autopilot algorithms can adapt sensor parameters and/or maneuver the aircraft to obtain 

higher resolution images of select target areas. However, real-time adaptation requires a method of rapid 

hyperspectral image classification to provide operators or algorithms with the data needed to make 

decisions while navigating. 

The computing capacity that existing methods of hyperspectral image classification need to match the 

typical rate of image acquisition is impractically large. The desired combination of high computational 

capacities, low power consumption, and low cost is not yet available for integration with UASs 

(Bridgelall, Rafert and Tolliver 2015). Methods of hyperspectral image classification vary in performance 

and computational complexity as a function of the available spatial and spectral resolutions. An increase 

in the onboard processing requirement typically leads to a more rapid depletion of the energy available for 

flight endurance. The limited wireless bandwidth and communications range available also precludes the 

real-time transmission of hyperspectral data to a remote processor. 
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The objective of this research is to develop a method of rapid hyperspectral image classification that can 

detect anomalous materials such as hydrocarbon spills with performance levels that approach the 

prevailing methods. The organization of this paper is as follows: the next section will provide a 

background on the existing methods of hyperspectral image classification and their computational 

complexities. The third section will develop the methods and models of rapid feature extraction and 

classification. The fourth section will assess the performance of the method using two criteria and provide 

case studies of each. The final section will summarize and conclude the research. 

4.2 Background 
 

Noise and distortions from the data collection apparatus and the large path lengths through the 

atmosphere corrupt reflectance values. Furthermore, contamination such as dirt, vegetation, and water 

distorts the spectral signature of a pure target material such as hydrocarbons. Classification methods, 

therefore, attempt to assign every hyper-pixel to a class of materials based on some measure of similarity. 

Current methods of hyperspectral image classification fall into two categories: supervised or unsupervised 

(Mather and Tso 2003). The former requires a training set or a library of endmembers to determine each 

pixel assignment based on similarities of their characteristics. Unsupervised methods preclude training 

requirements by forming clusters of closely related hyper-pixels.  

Methods of unsupervised classification, such as principle component analysis (PCA), independent 

component analysis (ICA), and singular value decomposition (SVD), identify at least one orthogonal 

feature set in the hyperspectral scene. However, they are at least O(PN2+N3) computationally complex 

(Du and Fowler 2008). Here, P is the number of hyper-pixels and N is the number of spectral bands. An 

important shortcoming is that new orthogonal features generally do not provide a clear physical meaning 

for data interpretation and decision-making (Prats-Montalbán, Juan and Ferrer 2011). Algorithms such as 

the Iterative Self-Organizing Data Analysis Technique (ISODATA) assign hyper-pixels with similar 

characteristics into clusters. The iterative procedure is very sensitive to the number and types of initial 

features selected. Convergence depends on the heuristics of setting a threshold for the number of 

endmember reassignments. Such algorithms are O(PKN2I) complex where K is the number of clusters, 

and I is the number of iterations (Tarabalka, Benediktsson and Chanussot 2009). To minimize their 

computational complexity, analysts typically incorporate methods of feature selection to identify a 

minimum number of subset bands that would maintain some measure of sufficiency in class separability. 

However, the feature selection algorithms themselves typically have O(PNK) complexity (Bajcsy and 

Groves 2004). 

Supervised methods assign each hyper-pixel to one of several user-defined classes based on a measure of 

similarity to members of each class. Spectral similarity measures include both statistical and machine 

learning methods. The statistical methods most often used are Spectral Angle Mapper (SAM), Minimum 

Distance Classifier (MDC), Maximum-Likelihood Classifier (MLC), Spectral Information Divergence 

(SID), and Spectral Correlation Mapper (SCM). The SAM is by far the most popular method (Homayouni 

and Roux 2004). The computationally complexities of the prevailing supervised methods range from 

O(N2) to O(N3). The literature lacks algorithms that are significantly less computationally complex. 

4.3 Method of Rapid Classification 
 

The method of rapid classification described in this research is a hybrid supervised-unsupervised 

technique. The unsupervised aspect is a feature extraction method that operates once on every new hyper-

pixel and library endmember. The supervised aspect is a comparison of feature sets that uses either radial 

cell or rectangular quadrant assignments in a two-dimensional (2-D) feature space. The feature extraction 

for library endmembers is precomputed. Hence, it could occupy a much smaller amount of digital 
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memory within onboard computers. The reduced computational complexities of one-time feature 

extraction per new hyper-pixel, and the simpler similarity comparisons with endmembers enable the 

potential for real-time classification. For equidistant endmembers, the assignment will be the same as that 

of the nearest hyper-pixel neighbor that does not have an ambiguous assignment to the same set of 

equidistant endmembers. 

4.3.1 Feature Extraction 
 

The typical spectral library contains a list of endmembers represented as atmosphere corrected albedo 

values for each spectral band available (Figure 4.1). The albedo is a measure of the portion of incident 

solar energy reflected from a material. NASA’s earth observation satellites regularly measure and report 

the average albedo of the earth’s surface in the visible wavelength ranges. This value has been about 30% 

(Richards 1999). The typical ground cover materials of remote areas include various types of vegetation 

and bare soil (Baldridge, et al. 2009). The overall shape of each endmember will be unique with sufficient 

spectral resolution and bandwidth. The selectivity of the approach, which is an ability to discern among 

different materials, improves with greater spatial and spectral resolutions. A unique advantage of UASs is 

the ability to enhance spatial resolution and signal quality by moving the sensor closer to the target. This 

resolution agile capability will enhance the quality of images within the sensitivity range of the system to 

detect lower spill concentrations among contaminating materials. 

One of the simplest features often extracted is the average albedo. Related efforts used the average albedo 

to estimate the age of asphalt pavements (Herold, et al. 2008), to identify snow-cover, and to track 

waterways in real-time (Clark, et al. 2010). This research modifies the average albedo and defines another 

statistical feature to form a simple 2-D feature space. 

The Wavelength Normalized Average Albedo (AVN) 
 

The average albedo μg and the wavelength normalized average albedo (AVN) is provided by Equation 

(18) and (19), respectively, in the previous section. The normalization per wavelength band facilitates 

comparisons between endmembers with different spectral resolutions and bandwidths, potentially from 

combining different libraries. Hence, normalization accommodates band selection methods that attempt to 

eliminate wavelength channels that do not appreciably decrease the separability between a subset of 

endmembers targeted to a specific application. A similarly modified feature is the normalized standard 

deviation (SDN) defined previously. The pair of extracted features {AVN, SDN} provides a low 

complexity feature space that establishes the separability amongst endmember classes. 
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Figure 4.1  Spectral Signatures for Typical Ground Cover 

The Wavelength Normalized Standard Deviation (SDN) 
 

To diversify the feature space, the SDN characterizes the variability of a spectral signature. The standard 

deviation σg of the reflectance spectra is provided by Equation (17) in the previous section. The SDN is 

provided previously by Equation (20). As mentioned previously, division by the spectrum bandwidth 

normalizes the variations across the available spectral ranges of library endmembers. The physical 

meaning of the AVN is the reflective nature of a material per unit of wavelength across the spectral region 

of interest, whereas the SDN is a measure of the overall variations in reflectivity of a material per unit of 

wavelength. 

4.3.2 Distance Measure 
 

The simple spectral classifier (SSC) computes a pair of {AVN, SDN} feature for each hyper-pixel of the 

acquired image frame and compares their distance with each target endmember. For a given spatial and 

spectral resolution, the level of reflectance noise and material contamination of the target will 

proportionately increase the feature space distance between the captured signature and the signature of the 

corresponding library endmember. Therefore, a feature space that exhibits relatively large separation 

distances among endmember combinations will accommodate a greater level of target noise and 

contamination while maintaining its association with the endmember class of materials. Subsequently, an 

ability to compare the average separability of selected endmembers in their respective classifier feature 

spaces establishes an effective approach to compare their relative potential for generating false positives. 

This approach is a first step that precludes the enormous expense of conducting extensive field 

experiments to compare actual false positive rates among different classifiers. 
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As mentioned previously, the SSC uses the Euclidian distance proportion of the maximum distance in the 

normalized feature space as the measure of separability. The Euclidian or radial distance proportion Dη is 

provided by Equation (21) of the previous section. The SDN feature space is scaled to equal the dynamic 

range of the AVN feature space. 

The SSC feature space for 15 typical ground cover materials organizes into six macro-classes of materials 

(Figure 3.2). Members of the same class have similar spectral signatures. Hence, the average separability 

among intra-class signatures is substantially less than the average separability among inter-class 

members. At small zenith angles, materials of the aquatic class are highly absorptive throughout the 

spectral region. This characteristic places water and ice at an extreme lower corner of the feature space. 

Conversely, snow of different consistency is typically highly reflective in the visible region and varies in 

albedo at longer wavelengths. Those features place it near the top of the feature space. The hydrocarbon 

endmembers shown in the feature space are relatively small concentrations of benzene or unleaded 

gasoline mixed with clay (Baldridge, et al. 2009). The hydrocarbons exhibit a combination of high 

average reflectivity and medium variability in albedo that places it at the extreme right corner of the SSC 

feature space. 

By inspection, the SSC separates hydrocarbons and snow reasonably well from the other materials so that 

they appear as outliers in the feature space. Conversely, intra-class materials such as evergreen trees and 

green grass exhibit less separability. Hence, applications that need to distinguish among intra-class similar 

materials will likely require a different type of classifier that features a higher average separability but 

likely more computationally complex. This limitation of the SSC points to a trade-off in computational 

complexity and intra-class separability. Consequently, the rapid classification capability of the SSC will 

be most suitable for applications that seek to identify anomalies in a scene for further scrutiny. For 

example, oil spilled from a pipeline onto a vegetation or soil patch will likely exhibit obvious and abrupt 

changes in the SSC material classes. Subsequently, the appropriate use of UASs will provide a resolution 

agile capability for closer inspection and validation. 

4.4 Results and Discussions 
 

The two key performance measures are the average separability of endmembers in the new feature space 

and the computational complexity of the new classifier. The separability analysis will use the materials 

sampled from the ASTER Spectral Library (Baldridge, et al. 2009). A case study of the separability 

performance will compare the relative distances between endmember combinations in the SSC and the 

SAM feature spaces. Comparing the actual computational resource needs of several classification 

methods will require a new benchmark that is appropriate for computer architectures that manufacturers 

optimize to process images at high speed. A case study of the computational complexity using state-of-

the-art mobile image processors will quantify the trade-off in processing needs and image classification 

speed. 

4.4.1 Separability Performance 
 

The average feature-space distance between the same combinations of inter- and intra-class endmember 

samples provides a means to compare the relative separability of different classifiers. Table 4.1 shows the 

separability for materials in the denser cluster near the center of the feature space as a proportion of the 

maximum SSC feature space distance (cell entries ‘na’ mean not applicable.) This comparison excludes 

the outlier clusters such as hydrocarbons and snow to remove bias in the separability assessment. This 

combination also simplifies the table to a more meaningful set of materials for ease of visualization and 

clarity. Hence, these endmember samples from the large spectral library will serve as the standard to 

compare the SSC separability with other classifiers. 
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Table 4.1  SSC Separability Matrix for Typical Ground Cover 

  Soil (Dark) Tree (Con) Tree (Dec) Concrete Ice 

Soil (Light) 8.0% 18.9% 17.3% 17.4% 40.3% 

Grass (Green)  na 0.4% 2.4% 13.7% 27.8% 

Tree (Conifer)  na  na 2.4% 14.1% 27.8% 

Shingle (Asphalt)  na  na  na 3.2% 20.0% 

Pavement (Concrete)  na  na  na  na 23.2% 

 

The average separability for the selected materials is 15.8%. The inter-class separability (highlighted 

cells) is 22.1%. whereas the intra-class separability is 3.3%. Borrowing from the interpretation of chi-

squared statistics goodness-of-fit testing that uses a 5% significance threshold, a candidate signature is not 

likely a member of the tested class if its separability is greater than 5%. Therefore, the greater than 10% 

separability among different classes qualifies the SSC performance to identify materials that are likely 

contaminants or anomalies, e.g., oil spills that do not naturally occur within vegetation, top soil, or 

aquatic bodies. However, the less than 5% intra-class separability indicates that this method may not be as 

suitable for distinguishing among materials with similar signatures. 

Case Study of Relative Separability 
 

The SAM is one of the most popular techniques for quantifying the separability of spectra in feature 

spaces (Meer, et al. 2012). The model represents spectra as a vector in N-dimensional space and computes 

the “angle” between vectors as the measure of similarity. The SAM maps the separation of two vectors in 

multidimensional space to an angle αs in degrees such that  
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(22) 

where f is the spectrum of a hyper-pixel, g is the reference spectrum, and n is the index of the wavelength 

band (Sohn and Rebello 2002). It is evident that for identical hyper-pixels where f = g the expression 

evaluates to zero degrees. This approach requires that the compared spectra have matching spectral bands. 

Of the material combinations analyzed in this study, only six were comparable using the SAM. It is 

possible to resample spectra to equalize their wavelength bands, but resampling introduces errors that 

distort the results of the feature extraction methods. 

The proportional SAM distances for the available combinations are the angle of separation as a 

percentage of the maximum separation angle in the feature space, which is 90 degrees (Table 4.2). The 

average SAM separability improvement over the SSC for this sample of library endmembers is 7.2%. 

This comparison focused on the materials in the center cluster of the SSC space and excluded the outliers 

such as hydrocarbons and snow. Therefore, the less than 10% improvement of the SAM over the SSC for 

materials with signatures that are more similar indicates that both would be similarly effective. Moreover, 

this result also indicates the potential effectiveness of the SSC classifier in identifying anomalies such as 

hydrocarbons. 
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Table 4.2  Class Separability for SAM and SSC 

Class Separability SAM SSC Difference 

Soil (Light) – Soil (Dark) 17.2% 8.0% 9.2% 

Grass (Green) – Tree (Deciduous) 8.0% 0.4% 7.6% 

Tree (Evergreen) – Tree (Deciduous) 4.1% 2.4% 1.7% 

Shingle (Asphalt) – Concrete 16.2% 3.2% 13.0% 

Shingle (Asphalt) – Ice 25.8% 20.0% 5.8% 

Concrete – Ice 29.1% 23.2% 5.9% 

AVERAGE 16.7% 9.5% 7.2% 

 

4.4.2 Computational Complexity 
 

This study defines the multiply-accumulate complexity (MACC), denoted Π[D] where D is the number of 

clock cycles that a model requires when implemented on processors capable of single-cycle multiple-

accumulate (MAC) operations. The typical digital signal processor (DSP) and some alternative 

architectures optimized for mobile devices implement a MAC operation within a single instruction cycle. 

However, they implement divisions using a series of bit shifting and comparison operations that amount 

to approximately 42 clock cycles for a 32-bit signed division (Cheng 2000). The MACC notation is more 

convenient than the Big-O notation to benchmark the computing time on processors optimized for signal 

and image processing. As is customary with the Big-O notation, the MACC ignores operations that do not 

include multiplications, such as additions or comparisons (subtractions). The MACC also excludes 

divisions and multiplications by integer constants that are powers of two because DSPs can calculate 

those using single-cycle bit-shifting operations that consume negligible resources. Additionally, the 

MACC excludes operations that algorithms can precompute and store in memory for later use. For 

instance, algorithms can precompute operations that involve only library endmembers. Furthermore, the 

MACC excludes computations that operations can store from previous cycles of an iteration.  

Spectral Angle Mapper (SAM) 
 

The SAM has a MAC complexity of 3Π[N] operations plus one square root, one division, and one 

arccosine operation. The Taylor series expansion for a square root operation provides the baseline for 

estimating the number of MAC operations where (Thomas and Finney 1995): 
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The selection of C provides the desired precision. The exponential and factorial operations of each 

iteration can use extra memory to precompute and store the results for future iterations. The exponent of 

the argument z requires Π[C] operations by storing the results from previous iterations. Multiplication 

with the precomputed constants of each iteration requires one additional MAC. Therefore, the MACC of 

the square root operation is 2Π[C]. 

The Maclaurin series expansion for the arccosine of the argument z is (Thomas and Finney 1995): 

 
   









C

k

k

k
z

kk

k
z

1

12

2
12!4

)!2(

2
arccos



 

(24) 



33 

 

In a manner similar to the square root operation, precomputing the constants will reduce the iterative 

computational requirements. The exponential operation requires Π[2C + 1] and multiplication by the 

constant in each iteration will require one additional operation. Hence, the MACC of the arccosine 

operation is 2Π[2C + 1]. Therefore, the total MAC complexity of the SAM classifier per image frame of 

P hyper-pixels is 

ΠSAM = P × K × {Π[3N] + Π[8C] + Π[44]}. (25) 

 

Bhattacharya Distance (B-Distance) 
 

The Bhattacharya Distance (B-Distance) and the Maximum Likelihood Classifier (MLC) are two other 

frequently utilized classifiers. The B-distance is an index that is proportional to the amount of overlap 

between two probability density functions f(x) and g(x) of hyper-pixel vector x (Landgrebe 2002). For 

Gaussian density functions, the model is 
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where σf and σg are the standard deviations of the first and second spectra, respectively, and μf and μg are 

the means of the first and second spectra, respectively. Each variance requires Π[N + 1] operations. The 

series expansion for a logarithm operation is (Thomas and Finney 1995): 
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By inspection, the logarithm operation requires 2Π[C + 1] MAC cycles. Therefore, the total MACC of the 

B-Distance per image frame of P hyper-pixels is 

ΠB-dist = P × K × {2Π[N + 1] + 2Π[C + 1] + Π[172]}. (28) 

 

Maximum Likelihood Classifier (MLC) 
 

The MLC estimates the probability gi(x) that an observed hyper-pixel x belongs to a predetermined 

spectral class ωi of the ith class in the scene such that 
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where p(ωi) is the probability that spectral class ωi is present in the scene (Richards 1999); |Ωi| is the 

determinant of the covariance matrix for the group of spectra in class ωi; Ωi
-1 is the inverse of the 

covariance matrix; μi is the mean vector for the group of spectra in class ωi. MLC implementations may 

precompute the matrix determinants and inversions for each target class; hence, the MACC does not 

include them. Furthermore, the first term to determine the probability of class presence in a scene is done 

only once for each class endmember. This procedure requires calculating at least a variance for each 

hyper-pixel that will require at least Π[(N + 1)P] operations, plus the final natural logarithm. The final set 

of matrix operations will require at least Π[2N] operations for a single endmember representing a class. 
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The division by 2 is a right-shift operation, so the MACC does not include it. Therefore, the total MACC 

of the MLC per image frame of P hyper-pixels is 

ΠMLC = P × K × Π[2N] + Π[P(N + 1)] + 2Π[C + 1]. (30) 

 

Wavelength Normalized Standard Deviation 
 

Computing SDN requires Π[N] + Π[1] + 2Π[C] MAC cycles. The wavelength ratios are precomputed. 

The AVN requires Π[2]. The SSC operates on each of the P hyper-pixels only once to determine their 

{AVN, SDN} coordinate. The SSC assigns each coordinate to the class having the minimum Euclidian 

distance. There are P × K Euclidian distance calculations that require 2Π[C] + Π[3] MAC cycles. 

Therefore, the one-time SSC computation per hyper-pixel and the assignment to a class requires P × 

{Π[N] + 2Π[C] + Π[3] } and P × K × {2Π[C] + Π[3]} operations, respectively. Therefore, the total 

MACC of the SSC classifier is 

ΠSSC = P × K × {2Π[C] + Π[3]} + P × {Π[N] + 2Π[C] + Π[3]}. (31) 

Assigning SSC features to a rectangular quadrant of the feature space would reduce the complexity 

further by requiring only P × K subtraction operations. This would yield a SSC-Rectangular (SSC-R) 

classifier that has a complexity of 

ΠSSC-R = P × 1 × {Π[N] + 2Π[C] + Π[3]}. (32) 

 

Case Study of Computational Complexity 
 

As of 2015, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor has been the most 

popular platform for airborne hyperspectral image acquisition. It provides N = 224 spectral channels that 

range from 360 to 2500 nanometers (Coulter, Hauff and Kerby 2007). When aboard a Twin-Otter aircraft 

at an altitude of 4 km, the AVIRIS provides a spatial resolution of 4 meters. Hence, there will be 

P = 62,500 hyper-pixels per square-kilometer of the scene. Although a typical application will tend to 

classify materials into dozens of classes, this case study will use the K = 15 material types shown for the 

SSC as prototype endmembers for a class. The highest exponent of the polynomial in the series expansion 

should be at least C = 3 when computing the arccosine, logarithm, and square root functions with at least 

one significant digit of accuracy (Muller 2006). To summarize, the parameters for the case study are 

P = 62,500, N = 224, C = 3, and K = 15. 

The processing requirements computed are per square-kilometer of hyperspectral scenes collected with 

the AVIRIS Twin Otter system (Table 4.3). For this scenario, the number of classifications per frame is 

PK, which totals 937,500. The third and fourth columns list the number of MAC operations per 

classification (Πs/PK) and the total MACs per frame (Total Πs), respectively. It is evident that the SAM 

requires 30 and 48 times more processing capacity than the SSC and the SSC-R, respectively. 
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Table 4.3  Relative Complexities of the Classifiers 

Model Computational Cost Model Πs/PK Total Πs Time (s) 

SAM P×K×{Π[3N]+Π[8C]+Π[44]} 740 694M 53.4 

B-Distance P×K×{Π[2(N+1)]+Π[2(C+1)]+Π[172]} 630 591M 45.4 

MLC P×K×{Π[2N]}+Π[P(N+1)]+Π[2(C+1)] 463 434M 33.4 

SSC P×K×{Π[2C]+Π[3]}+P×{Π[N]+Π[2C]+Π[3]} 25 23M 1.8 

SSC-R P×1×{Π[N]+Π[2C]+Π[3]} 16 15M 1.1 

 

The last column of Table 4.3 lists the execution time for each method for a processor that can allocate 13 

million multiply-accumulate cycles per second (MMACS) of capacity. The latest generation of mobile 

computers has approximately 400 MMACS of total processing capacity (Cole 2014). Hence, the SSC will 

consume 3% of that capacity, whereas the SAM would require 98% of it to classify scenes at the same 

rate. The SSC and the SSC-R processing speeds shown will support image acquisition rates greater than 

0.5 square-kilometers per second. The AVIRIS Twin-Otter can capture hyperspectral images at a 

maximum rate of approximately 0.4 square-kilometers per second (Coulter, Hauff and Kerby 2007). 

Therefore, UAS platforms capable of similar image acquisition rates can perform real-time classification 

of hyperspectral images using the SSC and SSC-R and only 3% of the processing capacity of state-of-the-

art mobile computing platforms. 

4.4.3 Considerations for Transfer to Practice 
 

The first step in transfer to practice requires the regulatory approval for a suitable UAS platform and its 

hyperspectral camera payload. Subsequently, practitioners must implement the SSC classifier on the 

existing single-board computer of the UAS, or design the algorithms to execute on a separate computing 

module dedicated to image classification tasks. The precomputed SSC feature space of the library 

endmembers must include at least their pair of extracted features {AVN, SDN}. The dedicated computing 

module or memory space of the single onboard computer may store the compressed endmember library of 

the SSC feature space. The classification tasks must communicate the results of real-time classification to 

the control module that implements operating and navigational response rules. Alternatively, the 

classification tasks may transmit classification results for real-time display to the remote pilot who is 

controlling the UAS. Therefore, the UAS may adjust its navigation autonomously or under remote pilot 

control to approach potential targets for more detailed scrutiny and verification. 

4.5 Section Conclusions 
 

Remote sensing using small and agile UASs has the capacity to scan large ground areas rapidly. The 

ability to adapt flight altitudes and speeds continuously enables real-time searches by trading off area 

coverage for higher image resolution while flying. Remote pilots or onboard algorithms can navigate to 

potential targets discovered within large swaths by swooping down or zooming in to obtain images at 

higher spatial resolution for further scrutiny. Such a resolution agile system will enable verifications of 

hazardous material spills in real time to reduce or eliminate false positives. Hyperspectral imaging adds 

high spectral resolution to enhance the sensitivity of target detections. However, hyperspectral imaging 

comes at the price of large data cubes per image frame. The high processing capacity needed to classify 

hyperspectral images poses significant challenges when using low-power mobile computing platforms. 

This limitation often precludes their use aboard small and agile unmanned aircraft systems (UASs).  

This research developed a method of rapid hyperspectral image classification that enables real-time 

navigational guidance based on target materials detected in the scene. The approach is a hybrid 

supervised-unsupervised technique that extracts simple statistical features of the spectra for comparison 

with target endmembers. The statistical features are a wavelength-normalized average albedo (AVN) and 

a wavelength normalized standard deviation (SDN). Together, the pair of extracted features establishes a 
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simple two-dimensional (2D) feature space. This enables the simple spectral classifier (SSC) to perform a 

Euclidian distance or quadrant comparison between each hyper-pixel and target endmember. The simple 

features facilitate pre-compression of the spectral library of target materials to result in several-fold 

reduction of onboard computer memory requirements. 

Separability analysis demonstrates that the SSC provides approximately 16% separation among library 

endmembers that composes a majority of ground cover materials, including hydrocarbons. Prevailing 

algorithms such as the spectral angle mapper (SAM) provide a modest improvement in separability of 

7.2% for materials in tight clusters of the SSC feature space. However, the SSC is less capable of 

separating materials with similar signatures. 

This research developed a method to benchmark the computational speed of classifiers on computer 

architectures that manufacturers optimize for mobile image processing. The analysis reveals that the SAM 

requires at least 30 times more processing capacity than the SSC to perform image classifications at the 

same rate. The case study used optical specifications for a system that has capabilities similar to the 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) aboard a Twin-Otter aircraft. The results 

indicate that the SSC will require a processing capacity of 13 million multiply-accumulate cycles per 

second (MMACS) to classify hyperspectral images at a rate that exceeds the image capture capacity of the 

case study system. This requirement represents only 3% of the processing capacity available from state-

of-the-art mobile computing platforms, including smartphones. UASs utilize most of the available 

computing capacity for navigational controls and communications. The SAM will require 98% of the 

available processing capacity to provide hyperspectral image classifications at the same rate of the SSC. 

Hence, the reduced complexity of the SSC will enable longer flight endurance by trading off excess 

capacity for lower power consumption. 

The results of this research motivate the need for future studies to characterize the trade-off in sensitivity 

and selectivity of schemes for rapid hyperspectral image classification. In particular, the researchers will 

conduct field studies to establish a performance baseline using the SAM to assess classification accuracy 

as a function of spatial resolution. The ability to use agile UASs and the steady emergence of higher 

performance hyperspectral sensors will continue to enhance the sensitivity of detectors. Therefore, the 

authors will investigate the relationship between the achievable spatial-spectral resolutions and the 

sensitivity of spill detection in terms of the concentration levels detectable. 
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5. CONCLUSIONS 
 

Rapid condition monitoring and performance evaluations of the vast and vulnerable transportation 

infrastructure has been elusive. The framework and models developed in this research will enable the next 

generation of transportation professionals to develop and deploy affordable and scalable solutions using 

evolving remote sensing technologies. This research developed an affordable framework to capture and 

classify hyperspectral images for transportation systems planning, analysis, and performance assessments. 

The rapid size and cost reduction of both unmanned aircraft systems and hyperspectral image sensors 

enables solution scaling by conducting multiple parallel missions to achieve broad area coverage at 

affordable prices. Simulations of the rapid hyperspectral image classification method of the remote 

sensing framework demonstrated that a resolution agile and real-time detection system is possible with 

small unmanned aircrafts. Such a capability will enable many new applications in transportation planning 

and performance evaluations. 

  



38 

 

6. REFERENCES 
 

AAR. 2014. Freight Railroad Capacity and Investment. Background Paper, Washington, D.C.: 

Association of American Railroads (AAR). 

Abid, M.E., T. Austin, D. Fox, and S.S. Hussain. 2014. Drones, UAVs, and RPAs: An Analysis of a 

Modern Technology. Student Project Report, Worcester, Massachusetts: Worcester Polytechnic 

Institute. 

Armstrong, John H. 1990. The Railroad: What it is, What it Does. The Introduction to Railroading. 

Omaha, Nebraska: Simmons-Boardman Publishing Corporation. 

Bajcsy, Peter, and Peter Groves. 2004. “Methodology for Hyperspectral Band Selection. ” 

Photogrammetric Engineering & Remote Sensing (American Society Photogrammetry & Remote 

Sensing) 70 (7): 793-802. doi:None. 

Baldridge, A. M., S.J. Hook, C.I. Grove, and G. Rivera. 2009. “The ASTER Spectral Library Version 

2.0.” Remote Sensing of Environment (Elsevier) 113: 711-715. 

Barry, Pamela. 2001. EO-1/Hyperion Science Data User’s Guide: Level 1_B. HYP.TO.01.077, Redondo 

Beach, CA: TRW Space, Defense & Information Systems, 60. 

Berger, Ivan. 2014. “Drone Control.” The Institute, October 13. 

Bhaskaran, Sunil, and Bisun Datt. 2000. “Applications of Hyperspectral Remote Sensing in Urban 

Regions.” Proceedings of the 21st Asian Conference on Remote Sensing. Taipei, Taiwan: Asian 

Association on Remote Sensing. 620. 

Borengasser, Marcus, William S. Hungate, and Russell Watkins. 2010. Hyperspectral Remote Sensing: 

Principles and Applications. Boca Raton, Florida: CRC Press. 

Bowen, B., K. Vlasek, and C. Webb. 2004. “An Assessment of Remote Sensing Applications in 

Transportation.” 45th Annual Transportation Research Forum. Fargo, ND: Transportation 

Research Forum. 64-96. 

Brecher, A., V. Noronha, and M. Herold. 2003. “UAV2003 - A Roadmap for Deploying Unmanned 

Aerial Vehicles (UAVs) in Transportation.” Volpe Center and NCRST Infrastructure Specialist 

Workshop (Santa Barbara, California). Cambridge, Massachusetts: The Volpe Center. 17. 

Bridgelall, Raj. 2014. “A participatory sensing approach to characterize ride quality.” Proceedings of 

SPIE Volume 9061, Sensors and Smart Structures Technologies for Civil, Mechanical, and 

Aerospace Systems. Bellingham, Washington: International Society for Optics and Photonics 

(SPIE). doi:10.1117/12.2046854. 

Bridgelall, Raj. 2014. “Connected Vehicle Approach for Pavement Roughness Evaluation.” Journal of 

Infrastructure Systems (American Society of Civil Engineers) 20 (1): 04013001 (1-6). 

doi:10.1061/(ASCE)IS.1943-555X.0000167. 

—. 2013. “RAILCOTS -- Rolling Stock Automatic In-Situ Line-Quality, Car Operations and Tracking 

System.” Sensors Expo & Conference. Chicago, IL: Questex. 

—. 2014. “Remote Sensing of Oilfield Logistics with Unmanned Aircraft Systems.” Sensors Expo and 

Conference. Rosemont, IL. 

Bridgelall, Raj, James Bruce Rafert, and Denver Tolliver. 2015. “Hyperspectral Imaging Utility for 

Transportation Systems.” SPIE Smart Structures/NDE 2015: Sensors and Smart Structures 

Technologies for Civil, Mechanical, and Aerospace Systems. San Diego, California: SPIE. In 

Press. 



39 

 

BTS. 2014. National Transportation Statistics. U.S. Department of Transportation, Research and 

Innovative Technology Administration, Washington, D.C.: Bureau of Transportation Statistics 

(BTS). http://www.rita.dot.gov/publications/national_transportation_statistics. 

Cambridge Systematics, Inc. 2011. Determining Highway Maintenance Costs. NCHRP Report 688, 

Washington, D.C.: Transportation Research Board (TRB). 

Cheng, Yao-Ting. 2000. TMS320C6000 Integer Division. Application Report SPRA707, Richardson, TX: 

Texas Instruments, Inc. 

Clark, R.N., G.A. Swayze, I. Leifer, K.E Livo, R. Kokaly, T. Hoefen, S. Lundeen, et al. 2010. A Method 

for Quantitative Mapping of Thick Oil Spills Using Imaging Spectroscopy. Open-File Report 

2010-1167, U.S. Department of the Interior, Reston, Virginia: U.S. Geological Survey, 54. 

Clark, Roger N., K. E. Livo, and R. F. Kokaly. 1998. “Geometric Correction of AVIRIS Imagery using 

On-Board Navigation and Engineering Data.” Summaries of the Seventh Annual JPL Airborne 

Earth Science Workshop. Pasedena, California: Jet Propulsion Laboratory (JPL), National 

Aeronautics and Space Administration (NASA). 57-65. 

Cloutis, E.A. 1989. “Spectral Reflectance Properties of Hydrocarbons: Remote-Sensing Implications.” 

Science (American Society for the Advancement of Science) 245 (4914): 165-168. 

Cole, Bernard. 2014. “STMicro, ARM Do a Double Whammy with New Cortex-M7 Core.” 

Embedded.com, September 24. Accessed April 25, 2015. www.embedded.com. 

Colomina, I., and P. Molina. 2014. “Unmanned Aerial Systems for Photogrammetry and Remote Sensing: 

A Review.” ISPRS Journal of Photogrammetry and Remote Sensing (Elsevier B.V.) 92: 79-97. 

doi:doi:10.1016/j.isprsjprs.2014.02.013. 

Coulter, D., P. L. Hauff, and W. L. Kerby. 2007. “Airborne Hyperspectral Remote Sensing.” Proceedings 

of the 5th Decennial International Conference on Mineral Exploration. Toronto, Canada: 

Decennial Mineral Exploration Conferences. 375-378. 

Craft, Ralph. 2004. Crashes Involving Trucks Carrying Hazardous Materials. FMCSA-RI-04-024, United 

States Department of Transportation, Washington, D.C.: Federal Motor Carrier Safety 

Administration (FMCSA), 8. 

Damm, A., P. Hostert, and S. Schiefer. 2005. “Investigating Urban Railway Corridors with Geometric 

High Resolution Satellite Data.” Urban Remote Sensing 5. 

Dobson, Richard J., Timothy Colling, Colin Brooks, Chris Roussi, Melanie Kueber Watkins, and David 

Dean. 2014. “Collecting Decision Support System Data Through Remote Sensing of Unpaved 

Roads.” Transportation Research Record: Journal of the Transportation Research Board 

(Transportation Research Board) (2433): 108-115. 

Du, Qian, and James E. Fowler. 2008. “Low-complexity Principal Component Analysis for Hyperspectral 

Image Compression.” International Journal of High Performance Computing Applications (Sage 

Publications) 22 (4): 438-448. doi:10.1177/1094342007088380. 

Electricore, Inc. 2007. Consolidated Research and Development for Pipeline Safety. PHMSA Contract 

DTPH56-05-T-004, Valencia, California: Electricore, Inc., 47. 

FAA. 2014. Press Release – U.S. Transportation Secretary Foxx Announces FAA Exemptions for 

Commercial UAS Movie and TV Production. September 25. Accessed October 12, 2014. 

www.faa.gov/news/press_releases. 

Federal Aviation Administration. 2016. Summary of Small Unmanned Aircraft Rule (Part 107). FAA 

News, Washington, D.C.: Federal Aviation Administration. 

http://www.faa.gov/uas/media/Part_107_Summary.pdf. 



40 

 

GAO. 2014. Oil and Gas Transportation: Department of Transportation is Taking Action to Address Rail 

Safety, But Additional Actions are Needed to Improve Pipeline Safety. GAO-14-667, Washington, 

D.C.: Government Accountability Office (GAO). 

Gao, Hongmin, Lizhong Xu, Chenming Li, Aiye Shi, Fengchen Huang, and Zhenli Ma. 2013. “A New 

Feature Selection Method for Hyperspectral Image Classification Based on Simulated Annealing 

Genetic Algorithm and Choquet Fuzzy Integral.” Mathematical Problems in Engineering 

(Hindawi Publishing Corporation). 

Gilder, George F. 2005. The Silicon Eye. New York, New York: WW Norton & Company. 

Goetz, Alexander F.H. 2009. “Three Decades Of Hyperspectral Remote Sensing of the Earth: A Personal 

View.” Remote Sensing of Environment (Elsevier) 113: S5-S16. 

Gomez, Richard B. 2002. “Hyperspectral Imaging: A Useful Technology for Transportation Analysis.” 

Optical Engineering 41 (9): 2137-2143. 

HCM. 2000. Highway Capacity Manual (HCM), 4rd Edition. Washington, D.C.: Transportation Research 

Board (TRB). 

Heiden, U., K. Segl, S. Rossner, and H. Kaufmann. 2007. “Determination of Robust Spectral Features for 

Identification of Urban Surface Materials in Hyperspectral Remote Sensing Data.” Remote 

Sensing of Environment (Elsevier Inc.) 111 (4): 537-552. 

Herold, M., D. Roberts, V. Noronha, and O. Smadi. 2008. “Imaging Spectrometry and Asphalt Road 

Surveys.” Transportation Research Part C: Emerging Technologies (Elsevier Inc.) 16 (2): 153-

166. doi:10.1016/j.trc.2007.07.001. 

Herold, Martin, M. Gardner, Val Noronha, and D. Roberts. 2003. “Spectrometry and Hyperspectral 

Remote Sensing of Urban Road Infrastructure.” Edited by Don Flournoy. Online Journal of 

Space Communications (Society for Satellite Professionals International) (3). 

Homayouni, S., and M. Roux. 2004. “Hyperspectral Image Analysis for Material Mapping Using Spectral 

Matching.” ISPRS Congress Proceedings.  

Jengo, Christopher M., David Hughes, Joseph D. LaVeigne, and Ivan Curtis. 2005. “Pothole Detection 

and Road Condition Assessment using Hyperspectral Imagery.” Proceedings of the American 

Society for Photogrammetry & Remote Sensing (ASPRS) 2005 Annual Conference. Bethesda, 

Maryland: American Society Photogrammetry & Remote Sensing. 7-11. 

Jensen, Austin M., Yang Quan Chen, Mac McKee, Thomas Hardy, and Steven L. Barfuss. 2009. 

“AggieAir - A Low-Cost Autonomous Multispectral Remote Sensing Platform: New 

Developments and Applications.” IEEE International Geoscience and Remote Sensing 

Symposium. Hoboken, NJ: Institute of Electrical and Electronics Engineers. IV-995. 

Kiefner & Associates, Inc. 2012. Leak Detection Study - DTPH56-11-D-000001. Washington, D.C.: 

PHMSA. 

Lambrechts, Andy, Klaas Tack, and Francesco Pessolano. 2011. “Multispectral/Hyperspectral Imaging-

CMOS Takes Hyperspectral Imaging Beyond the Laboratory.” Laser Focus World (Pennwell 

Corporation) 47 (5): 94. 

Lambrechts, Andy, Pilar Gonzalez, Bert Geelen, Philippe Soussan, Klaas Tack, and Murali Jayapala. 

2014. “A CMOS-Compatible, Integrated Approach to Hyper- and Multispectral Imaging.” 

Electron Devices Meeting (IEDM), 2014 IEEE International. Piscataway, New Jersey: Institute of 

Electrical and Electronic Engineers (IEEE). 10.5.1 - 10.5.4. 

Landgrebe, David. 2002. “Hyperspectral Image Data Analysis.” Signal Processing Magazine (Institute of 

Electrical and Electronic Engineers) 19 (1): 17-28. doi:10.1109/79.974718. 



41 

 

Mah, Steven, Jennifer Aitken, Karen Schuckman, and Charles O’Hara. 2002. “CASI/Lidar Sensor Fusion 

for Wetland Classification.“ 15th William T. Pecora Memorial Remote Sensing Symposium/Land 

Satellite Information IV Conference and Exhibition. Denver, Colorado: International Society for 

Photogrammetry and Remote Sensing. 

Mather, Paul, and Brandt Tso. 2003. Classification Methods for Remotely Sensed Data. Boca Raton, 

Florida: CRC Press (Taylor & Francis). 

McIntee, Erin Maureen. 2008. Forensic Analysis of Automobile Paints by Atomic and Molecular 

Spectroscopic Methods and Statistical Data Analyses. Doctoral Dissertation, Orlando, Florida: 

University of Central Florida, 102. 

Meer, Freek D. Van der, Harald van der Werff, Frank JA van Ruitenbeek, Chris A. Hecker, Wim H. 

Bakker, Marleen F. Noomen, Mark van der Meijde, John M. Carranza, J. Smeth, and Tsehaie 

Woldai. 2012. “Multi- and hyperspectral geologic remote sensing: A review.” International 

Journal of Applied Earth Observation and Geoinformation (Elsevier) 14 (1): 112-128. 

Mei, Alessandro, Rosamaria Salvatori, Nicola Fiore, Alessia Allegrini, and Antonio D'Andrea. 2014. 

“Integration of Field and Laboratory Spectral Data with Multi-Resolution Remote Sensed 

Imagery for Asphalt Surface Differentiation.” Remote Sensing (Multidisciplinary Digital 

Publishing Institute) 6 (4): 2765-2781. 

Mohammadi, M., M. Hahn, and J. Engels. 2011. “Road Classification and Condition Investigation Using 

Hyperspectral Imagery.” Applied Geoinformatics for Society and Environment (AGSE 2011). 

Nairobi, Kenya: Jomo Kenyatta University of Agriculture and Technology. 

Muller, Jean-Michel. 2006. Elementary Functions: Algorithms and Implementation. Berlin, Heidelberg: 

Springer Science & Business Media. 

Muslimov, É. R. 2014. “A Monolithic Spectrograph with a Transmissive Holographic Diffraction 

Grating.” Edited by A.S. Tibilov. Journal of Optical Technology (Vavilov State Optical Institute) 

81 (3): 154-158. 

NAPA; EAPA. 2009. The Asphalt Paving Industry: A Global Perspective. Global Series 101, Brussels: 

National Asphalt Pavement Association (NAPA) and the European Asphalt Pavement 

Association (EAPA). 

NIST. June. Forensic Database Trace Evidence Table. National Institute of Standards and Technology 

(NIST). 4 2013. Accessed May 27, 2015. http://www.nist.gov/oles/forensics/forensic-database-

trace-evidence-table.cfm. 

Palenik, C.S., S. Palenik, E. Groves, and J.rb. 2014. Raman Spectroscopy of Automotive and Architectural 

Paints: In situ Pigment Identification and Evidentiary Significance. Study Sponsored by the U.S. 

Department of Justice, Washington, D.C.: Microtrace, LLC. 

Pearlman, J., S. Carman, C. Segal, P. Jarecke, P. Barry, and W. Browne. 2001. Overview of the Hyperion 

Imaging Spectrometer for the NASA EO-1 Mission. Washington, D.C.: National Air and Space 

Administration (NASA). 

Penn, B.S. 2002. “Using Hyperspectral Imagery to Map Roads and Determine Surface Material Types.” 

15th William T. Pecora Memorial Remote Sensing Symposium/Land Satellite Information IV 

Conference and Exhibition. Denver, Colorado: International Society for Photogrammetry and 

Remote Sensing. 

Prats-M., J.M., A. De Juan, and A. Ferrer. 2011. “Multivariate Image Analysis: A Review with 

Applications.” Chemometrics and Intelligent Laboratory Systems (Elsevier Inc.) 107 (1): 1-23. 



42 

 

Proto, M., M.Bsi, R. Bernini, L. Bigagli, M. Bost, F. Bourquin, and L. Cottineau. 2010. “Transport 

Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project.” 

Sensors (European Commission) 10 (12). 

Puri, A. 2005. A Survey of Unmanned Aerial Vehicles (UAV) for Traffic Surveillance. Project Report, 

Department of Computer Science and Engineering, Tampa, Florida: University of South Florida, 

29. 

Rafert, B.J. 2014. “Before Hyperspectral Ruled the World.” Hyperspectral Imaging and Applications 

Conference. Glasgow, U.K.: University of Strathclyde. 

Rani, S. 2014. “Monitoring Land Use/Land Cover Response to Urban Growth of the city of Jalandhar 

using Remote Sensing Data.” International Journal of Advanced Research 2 (6): 1122-1129. 

Resende, M.R., L.L.Bariani Bernucci, and José Alberto Quintanilha. 2014. “Monitoring the Condition of 

Roads Pavement Surfaces: Proposal of Methodology Using Hyperspectral Images.” Journal of 

Transport Literature (Brazilian Transport Planning Society) 8 (2): 201-220. 

Richards, J.A. 1999. Remote Sensing Digital Image Analysis. Berlin: Springer-Verlag. 

Roess, R.P., E. S. Prassas, and W.R. McShane. 2011. Traffic Engineering. 4th. Upper Saddle River, New 

Jersey: Pearson Higher Education, Inc. 

Salem, F. and M. Kafatos. 2001. “Hyperspectral Image Analysis for Oil Spill Mitigation.” The 22nd 

Asian Conference on Remote Sensing. Singapore: Center for Remote Imaging, Sensing, and 

Processing (CRISP), National University of Singapore. 9. 

Smejkalová, E. and P. Bujok. 2012. “Remote Sensing Methods In The Identification of Oil 

Contaminations.” GeoScience Engineering 58 (1): 24-33. 

Sohn, Y, and N.S. Rebello. 2002. “Supervised and Unsupervised Spectral Angle Classifiers.” 

Photogrammetric Engineering & Remote Sensing ( American Society Photogrammetry & Remote 

Sensing) 68 (12): 1271-1280. 

Sugumaran, R., J. Gerjevic, and M. Voss. 2007. “Transportation Infrastructure Extraction Using 

Hyperspectral Remote Sensing.” Remote Sensing of Impervious Surfaces 163-178. 

Suzuki, E. M. and M. Carrabba. 2001. “In Situ Identification and Analysis of Automotive Paint Pigments 

Using Line Segment Excitation Raman Spectroscopy: I. Inorganic Topcoat Pigments.” Journal of 

Forensic Sciences 46 (5): 1053-1069. 

Tarabalka, Y., J.A. Benediktsson, and J. Chanussot. 2009. “Spectral–Spatial Classification of 

Hyperspectral Imagery Based on Partitional Clustering Techniques.” IEEE Transactions on 

Geoscience and Remote Sensing 47 (8): 2973-2987. doi:10.1109/TGRS.2009.2016214. 

Thomas, G. B. and R. L. Finney. 1995. Calculus and Analytic Geometry. 9th. Boston: Addison Wesley. 

TRB. 2003. Remote Sensing for Transportation: Products and Results – Foundations for the Future. 

Report of a Conference, The National Academies, Washington, D.C.: Transportation Research 

Board (TRB), 98. 

USDOT. 2011. The State of the National Pipeline Infrastructure. Washington, D.C.: United States 

Department of Transportation. 

—. 2015. “DOT Agencies Take Coordinated Actions to Increase the Safe Transportation of Energy 

Products.” USDOT Bulletins, April 17. 

Van der Werff, Harald, M. Van der Meijde, F. Jansma, F. Van der Meer, and G. Jan Groothuis. 2008. “A 

Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline 

Leakage.” Sensors (Multidisciplinary Digital Publishing Institute) 8 (6): 3733-3743. 



43 

 

Warren, S., T. Puestow, M. Richard, and B. Jefferies. 2014. Oil Spill Detection and Modeling in the 

Hudson and Davis Straits. R-13-087-1096, St. John’s, Newfoundland: LookNorth Center of 

Excellence for Commercialization and Research, 174. 

Yerasi, A., W. Emery. 2014. “Sensing Highway Surface Conditions with High-Resolution Satellite 

Imagery.” TRB Committee ABJ50 on Information Systems and Technology. Washington, D.C.: 

University of Colorado at Boulder and DigitalGlobe. P14-6196. 

Zhang, C. 2013. Monitoring the Condition of Unpaved Roads with Remote Sensing and Other 

Technology. Research in Progress, Transportation Research Board (TRB), Brookings, SD: South 

Dakota State University. 

Zietsman, J., T. Ramani, J. Potter, V. Reeder, and J. DeFlorio. 2011. A Guidebook for Sustainability 

Performance Measurement for Transportation Agencies. NCHRP Report 708, Washington, D.C.: 

Transportation Research Board, 203. 

 

 

 


