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EXECUTIVE SUMMARY 

Providing acute medical care outside of the hospital, Emergency Medical Services (EMS) is crucial in 

rural environments where hospitals are not close by and are difficult to access. Establishing EMS 

performance measures is critical in improving a rural community’s access to these services and 

eliminating systemic inequalities; however, an absence of quantitative performance analysis leads to 

challenges in developing attainable objectives and service metrics. Hence, the main objectives in this 

study are as follows:  

1) to establish more specific, data-driven, and rural EMS performance-based measures 

2) to increase the utilization of rural EMS resources through station planning and location 

optimization 

3) to identify key variables contributing to response time, specifically, en route time  

This study used the National EMS Information System (NEMSIS) South Dakota data to exemplify two 

approaches to establishing data-driven performance measures for each rural EMS provider. The 

measures—timely service and service coverage—are both dependent on mobility and the accessibility of 

the transportation network in which a suggested 8-minute response time zone is calculated for every 

provider. Service coverage is measured by the coverage ratio, which is the number of emergency calls 

within the 8-minute zone over the total number of emergency calls responded. Timely service is gauged 

by the percentage of emergency calls that were actually responded to in less than 8 minutes within the 8-

minute zone. The results of performance measures help to identify the specific areas for improvements 

and needed resource and training. 

If the service provided by the current EMS provider is not sufficient, the stations can either be relocated 

or augmented to increase the service coverage and quality. Maximizing ambulance coverage area and 

minimizing en route time are two different goals for strategically locating EMS stations. Maximizing 

ambulance coverage can be treated as the maximal covering location problem (MCLP) that maximizes the 

demand served within a specified time or distance for a given number of stations. Minimizing en route 

time is the location set covering problem (LSCP) that aims to minimize the number of facilities when all 

demands are met. The two objectives influence each other in such a way that reducing the average en 

route time for uncovered demand areas may decrease the total coverage ratio. The balance can be 

achieved through optimizing a bi-objective covering location model that considers not only the coverage 

rate but also the en route time equity. Case studies were performed for Todd County, a less populous 

county with relatively high demand, and Minnehaha County, a populous county with moderate demand to 

demonstrate the varying optimal solutions under different constraints.  

The factors contributing to en route time were thoroughly reviewed and 13 key variables were identified, 

including six variables that are specific to 911 calls (e.g., case type, response, mode, location type) and 

seven variables that characterize the service provider (e.g., professional/volunteer, unit hour utilization, 

road connectivity). Among several regression models developed and evaluated, the Geographically 

Weighted Regression (GWR) model was found to produce the best statistical goodness-of-fit and provide 

additional insights into the particular spatial patterns of coefficient estimates that can be used to explore 

the influence of unobserved heterogeneity among EMS providers. 

Several directions for future research were recommended. Linking EMS data with patient’s outcome is of 

strong interest because there is no direct evidence to prove that a shorter total EMS response time leads to 

a less severe consequence. A lack of quality data can be a main factor affecting analysis results, 

performance measures, and goal setting. Actionable strategies to improve EMS data quality are in great 

and urgent need. Lastly, although the GWR model has substantially improved the prediction accuracy, its 

overall goodness-of-fit is still low. Other spatial models such as spatial filtering may be more effective in 

accounting for spatial heterogeneity. 

  



 

  

TABLE OF CONTENTS 

1. BACKGROUND ..................................................................................................................... 1 

2. LITERATURE REVIEW ...................................................................................................... 3 

2.1 Facts and Statistics of Rural EMS ................................................................................................... 3 
2.2 EMS Data ......................................................................................................................................... 4 
2.3 EMS Research .................................................................................................................................. 5 

3. METHODOLOGY ................................................................................................................. 7 

3.1 Point Pattern Analysis ...................................................................................................................... 7 
3.1.1 K function .............................................................................................................................. 7 
3.1.2 Cross K function .................................................................................................................... 7 

3.2 Genetic Algorithm Process .............................................................................................................. 8 
3.3 Regression Models ........................................................................................................................... 9 

3.3.1 Multiple Linear Regression Model ........................................................................................ 9 
3.3.2 Geographically Weighted Regression .................................................................................. 10 

4. ANALYSIS AND DISCUSSION ......................................................................................... 12 

4.1 Geospatial Analysis of EMS Stations ............................................................................................ 12 
4.1.1 911 Call Clusters .................................................................................................................. 12 
4.1.2 Co-location Analysis of EMS Stations and 911 Call Locations .......................................... 15 
4.1.3 EMS Station Spatial Coverage ............................................................................................. 15 
4.1.4 Performance Indexes for EMS Stations ............................................................................... 16 

4.2 Optimization of EMS Locations .................................................................................................... 19 
4.2.1 Optimization Targets ............................................................................................................ 19 
4.2.2 Methodologies ...................................................................................................................... 19 
4.2.3 Case Study ............................................................................................................................ 21 
4.2.4 Conclusions .......................................................................................................................... 31 

4.3 Regression Analysis ....................................................................................................................... 31 
4.3.1 Scope of Regression Analysis .............................................................................................. 31 
4.3.2 Variable Preparation............................................................................................................. 32 
4.3.3 Model Comparison and Selection ........................................................................................ 36 
4.3.4 Coefficent Estimates of Multiple Linear Regression ........................................................... 37 
4.3.5 Geographically Weighted Regression .................................................................................. 37 
4.3.6 Mixed Geographically Weighted Regression ...................................................................... 39 
4.3.7 Summary .............................................................................................................................. 42 

5. CONCLUSIONS AND RECOMMENDATIONS .............................................................. 44 

5.1 Conclusions .................................................................................................................................... 44 
5.2 Recommendations for Future Work ............................................................................................... 45 

REFERENCES ............................................................................................................................ 46 

  



 

  

LIST OF ABBREVIATIONS 
 

CODES   Crash Outcomes Data Evaluation System 

EMS    Emergency Medical Service 

FARS    Fatality Analysis Reporting System  

FHWA    Federal Highway Administration 

GIS      Geographic Information System 

GWR    Geographically Weighted Regression 

ITS        Intelligent Transportation System 

LISA     local indicator of spatial association 

MLR    Multiple Linear regression 

NEMSIS  National EMS Information System 

NFPA    National fire Protection Association 

NHTSA    National Highway Traffic Safety Administration 

SDDOT    South Dakota Department of Transportation 

VMT          Vehicle Mile Traveled 
 

 

  

 

 

 

 

 

  



 

  

LIST OF FIGURES 
 
Figure 3.1 Flow Chart for Genetic Algorithm ......................................................................................... 9 

Figure 4.1  K Function expressed as L(r)-r for all 911 calls ................................................................... 13 

Figure 4.2 Identifying the Cell Size for Getis Ord G* Analysis ........................................................... 13 

Figure 4.3 Screenshot of “Create Fishnet” Tool in ArcGIS .................................................................. 14 

Figure 4.4 Clustering Analysis Using Getis-Ord G* ............................................................................. 14 

Figure 4.5 Cross K Function and L Function for Incident Location and EMS Station ......................... 15 

Figure 4.6 EMS Coverage Map in 2013 ................................................................................................ 16 

Figure 4.7 Illustration of Two Performance Indexes ............................................................................. 17 

Figure 4.8 Performance Index for each EMS station ............................................................................ 18 

Figure 4.9 Todd County with Candidate Stations and Demand Zones ................................................. 22 

Figure 4.10 Screenshot of Generating Time Matrix in ArcGIS (Todd County) ...................................... 23 

Figure 4.11 Basic Configuration for Genetic Algorithm in R ................................................................. 23 

Figure 4.12 Figure Fitness Function by Generation (p=1) ...................................................................... 24 

Figure 4.13 Fitness Function Value Under Optimized Station Location ................................................ 25 

Figure 4.14 Coverage Ratio Under Optimized Station Location ............................................................ 25 

Figure 4.15 Average ERTime for Uncovered Zones Under Optimized Station Location....................... 26 

Figure 4.16 Minnehaha County with Candidate Stations and Demand Zones ........................................ 27 

Figure 4.17 Figure Fitness Function by Generation (p=4) ...................................................................... 28 

Figure 4.18 Fitness Function Value Under Optimized Station Location ................................................ 29 

Figure 4.19 Coverage Rate Under Optimized Station Location .............................................................. 29 

Figure 4.20 Average ERTime for Uncovered Zones under Optimized Station Location ....................... 30 

Figure 4.21 911 Cases With Corresponding EMS Stations For Regression Analysis ............................ 32 

Figure 4.22 Calculation of Accessibility and Mobility ........................................................................... 34 

Figure 4.23 Parameter Estimate Map for UHU ....................................................................................... 40 

Figure 4.24 Local t value Map for UHU ................................................................................................. 41 

 

 

 

 

 

 

 

 

 

 



 

  

LIST OF TABLES 
 
Table 2.1  Average EMS Response Times for Fatal Crashes ................................................................. 4 

Table 4.1  Optimal Solutions for Todd County ..................................................................................... 24 

Table 4.2  Optimal Solutions for Minnehaha County ........................................................................... 28 

Table 4.3  Current Station Location Vs Optimized Location ................................................................ 30 

Table 4.4  Geocoding Accuracy Level for Google Map API ................................................................ 31 

Table 4.5  Variable Description ............................................................................................................ 34 

Table 4.6  Calculation of Accessibility and Mobility ........................................................................... 35 

Table 4.7  Descriptive Statistics of Dependent and Independent Variables.......................................... 35 

Table 4.8  Correlation Matrix ................................................................................................................ 36 

Table 4.9  Model Comparison ............................................................................................................... 37 

Table 4.10  Coefficient Estimates for MLR ............................................................................................ 37 

Table 4.11  Moran’s I Test on Residuals ................................................................................................ 38 

Table 4.12  GWR ANOVA Table ........................................................................................................... 38 

Table 4.13  Geographical Variability Tests of Local Coefficients .......................................................... 38 

Table 4.14  Global Coefficient Estimates ............................................................................................... 39 

Table 4.15  Local Coefficient Estimates ................................................................................................. 39 

Table 4.16  Significant Contributing Factors Affecting En Route Time for Each Station...................... 43 

 

 



1 

 

1. BACKGROUND 
 
Almost 40,000 people die on the nation's highways each year, and about 70% of those fatalities happen on 

rural roads. Fatalities from motor vehicle crashes that occur in rural areas have been a major consideration 

when evaluating rural highway safety. The NHTSA found that the number of fatalities from rural vehicle 

crashes in the U.S. in 2010 was 17,915, compared with 14,530 from urban vehicle crashes [1]. According 

to 2010 highway statistics, 66% of the VMT on public roads took place in urban areas (1,982,400 VMT in 

millions), and 34% (984,148 VMT in millions) occurred in rural areas [2]. The results show that twice the 

number of vehicle crash fatalities occur in rural areas than urban areas (1.82 vs. 0.73 fatalities per 100 

VMT in millions) given the same amount of VMT.   

 

When a crash results in traumatic injury, the victim’s chances of survival depend significantly on the 

amount of time it takes to receive emergency care and the level of expertise of those providing the care. 

Rural EMS is a system that includes personnel, vehicles, equipment, and facilities delivering medical care 

to those who need immediate care but are too far from a hospital. EMS is considered a vital expansion of 

emergency room services [3], as it provides prehospital care from the time a 911 call is placed until the 

patient can be transferred to a hospital. EMS has long been considered one of the four cornerstones of a 

successful transportation safety management system, or the “Four Es”: EMS, engineering, education, and 

enforcement [4]. These systems are charged with covering substantially larger areas than their urban 

counterparts, yet they are underfunded and understaffed.  

 

The rural transportation network connects local residents to employment, health care, social activities, and 

business opportunities; thus, a functional and reliable rural transportation system is critical to the 

economic growth, public health, traffic safety, and social welfare of rural communities. Long travel 

distances are common in South Dakota [5], a prominent rural state, as the population is sparsely 

distributed. The task of delivering people, goods, and services becomes more difficult as distances 

increase, especially for time-sensitive services such as EMS. According to the NHTSA, “Delay in 

delivering emergency medical services is one of the factors contributing to the disproportionately high 

fatality rate for rural crash victims” [6]. According to a survey of rural experts, access to EMS has been 

considered a top ranking rural health concern [7]. 

 

An EMS system was built in South Dakota in 1972 as a result of a trend in the development of local EMS 

in the U.S [8]. The system includes more than 100 ambulance services and four helicopter services. The 

service in South Dakota is regulated by the Department of Public Safety, but there is no requirement that 

a community or county have an ambulance service; there is also no documented plan for the provision of 

EMS in South Dakota. According to a recently conducted case study by Becknell, there has been no 

sustaining state or federal funding for these services, meaning the local communities are left responsible 

for the maintenance of these services [9]. A decline in volunteerism, an aging population, and increasing 

demands have added to the issue for small communities struggling to survive [9]. 

 

Improved EMS will have direct impacts on the traffic safety and public health of rural communities. EMS 

can be enhanced by a better planned, designed, and operated roadway network that connects hospitals 

with communities in need. In order to provide safe, timely, and quality services, it is necessary to obtain a 

realistic estimate of the medical demand and the capacity of current transportation infrastructure 

pertaining to the services. The gaps between service providers, patients, and the transportation network 

connecting the two, need to be identified and closed to better support EMS. 

Phase I of this project was to conduct a needs assessment for rural EMS in South Dakota and to identify 

issues with respect to delivering quality services to its residents. Three major objectives included:  

1) assess the EMS service needs from the rural communities, 2) evaluate the efficacy of rural EMS in 
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support of swift and safe EMS operations, and 3) identify existing issues with the SD EMS providers or 

first responders in relation to road conditions and traffic controls.  

In Phase I, EMS data were reviewed from both spatial and temporal perspectives. Spatial analysis was 

focused on the visual presentation of EMS demand and service performance on a county level. Spatial 

clusters were identified for areas sharing similar properties and performance using local indicators for 

spatial autocorrelation (LISA). Temporal analysis was performed to break down the service demand and 

performance patterns by month of year, day of week, and time of day. Descriptive statistics and a two-

tailed t test were applied for describing and comparing variables of interest: several time- and distance-

dependent variables such as response time, en route time, on-scene time, and transporting time, as well as 

the distance to and from the incident scene. Noticeable differences were found for area type, location, and 

the use of light and sirens.  

Three main objectives were developed for Phase II:  

1) Establish more specific, data-driven, and rural EMS performance-based measures 

2) Increase the utilization of rural EMS resources through station planning and location optimization 

3) Identify key variables contributing to the time intervals during an EMS process 

It is anticipated that using state-of-the-art methodologies to analyze EMS “big data” can reveal new 

patterns for service demand, disclose the relationships between service performance and contributing 

factors, and assist in developing evaluation metrics and informing decision-making.  
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2. LITERATURE REVIEW 
 
EMS has been extensively researched due to increasing awareness of the vital importance it plays in 

public health. In order to provide an overview of current EMS practices and studies, this literature review 

includes facts and statistics for rural EMS, available EMS data, and related EMS research.  

 
2.1 Facts and Statistics of Rural EMS 
 

This section provides facts and statistics on the status, practices, issues, and needs of current rural EMS.  

The NCHRP 500 report “Volume 15: A Guide for Enhancing Rural Emergency Medical Services” served 

as a guideline for enhancing rural EMS. The report identified possible issues related to rural EMS and 

suggested strategies and methods to enhance service performance [101010￼]￼. Four main objectives for 

enhancing EMS in rural areas were proposed: “integrate services to enhance emergency medical 

capabilities, provide or improve management and decision-making tools, provide better education 

opportunities for rural EMS, and reduce time from injury to appropriate definitive care.” The four 

objectives yielded 24 strategies. Due to varying levels of sophistication and development among EMS 

agencies in rural areas across the country, state EMS directors, local system managers, policy makers, and 

state and local highway agencies should determine which objectives and strategies are most appropriate 

for their site based on their existing services and resources.  

 

This NCHRP report is instrumental to understanding the issues, gaps, and needs in service, as well as 

providing an objective evaluation of EMS activities and guiding effective interventions in rural areas. 

“Provide or improve management and decision-making tools” and “reduce time from injury to 

appropriate definite care” are the two objectives that are most relevant to our study. In particular, one 

strategy under the second objective is, “Identify, provide, and mandate efficient and effective methods for 

collection of necessary EMS data.”  This is of vital importance, as data issues can be a major obstacle in 

evaluating EMS [11], which has been found elsewhere, as well as in Phase I of this study.  

The disparities are widespread among rural EMS providers, including geographic barriers, lack of 

professional, paraprofessional, and financial resources, aging or inadequate equipment, absence of 

specialized EMS care and local medical facilities, the sporadic nature of rural crashes, and a workforce 

that is predominately composed of volunteers [3]. These disparities contribute to the service differentials 

between urban and rural EMS that can be measured through a number of indices. 

 

As a result of the disparities rural EMS systems face, the response times in rural areas are longer than in 

urban areas. In 2004, NHTSA reported that the national average for overall EMS response time (time 

from notification to definitive care) for fatal crashes is 36 minutes in urban areas and 53 minutes in rural 

areas [12]. More than 36% of fatal crashes that occurred in rural areas had response times that exceeded 

60 minutes, while only 10% of fatal crashes in urban areas exceeded 60 minutes.  The 2011 report 

statistics were even worse: the national average for EMS response time for fatal crashes was 37.22 

minutes in urban areas and 54.49 minutes in rural areas [13].  Table 2.1 provides a comparison of South 

Dakota and national statistics. South Dakota performed slightly better (3.13 minutes or 9% shorter) in 

urban areas.  Overall response time for fatal crashes in urban areas was shorter in South Dakota when 

compared with the national average, but was similar or slightly longer than the national average with 

regard to crashes in rural areas.  Specifically, the notification time in rural South Dakota was 2 minutes 

(32.4%) shorter than the national average, but the en route time to the crash scene was 2 minutes (16.1%) 

longer than the national average.  
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Table 2.1  Average EMS Response Times for Fatal Crashes 

 

Urban (minutes) Rural (minutes) 

SD1 
National 

Average2 
SD3 

National 

Average4 

Time of crash to EMS notification 5.00 3.47 4.71 6.17 

EMS notification to EMS arrival at 

the crash scene 
6.40 7.19 14.49 12.39 

EMS Arrival at Crash Scene to 

Hospital Arrival 
26.18 27.39 40.07 38.65 

Time of Crash to Hospital Arrival 34.09 37.22 54.57 54.49 

1: Based on 15 fatal crashes 

2: Based on 13,578 fatal crashes 

3: Based on 86 fatal crashes 

4: Based on 16,053 fatal crashes 

*Source: NHTSA Traffic Safety Facts 2011 

The NCHRP report, “Synthesis 451: Emergency Medical Services Response to Moto Vehicle Crashes in 

Rural Areas,” focuses on traffic crashes and explores EMS responses to rural crashes from both the EMS 

provider and the transportation system staff perspectives [14]. The report presents the current state of 

practices for a broad cross-section of EMS system characteristics, identifies factors that affect the timely 

provision of effective medical care in rural areas, and examines broader issues such as personnel, data 

records, and interactions with other agencies. Information was organized in the following categories: 

 Dispatch, including crash detection and reporting, road condition reporting, dispatching functions, 

and communication systems 

 Trauma care, including equipment and preparation, on-scene and transport issues, air medical 

transport, telemedicine, tribal EMS, and care protocols and procedures 

 EMS management, including staff recruiting, retentions and training, interagency cooperation and 

coordination, and planning and innovation 

 Data inclusion with retrospective and real-time data linkages and data metrics 

 
2.2 EMS Data  
 

Data on EMS demand and certain time-related variables such as responding and transporting time are 

critical to analyzing EMS performance. EMS systems are not organized under the same structure; some 

are under the control of the fire department, some are controlled by the municipality or county, some are 

private or hospital-run, and others are a combination. EMS stations also range from urban to rural/remote, 

volunteer to paid, municipal to private, air and ground, and large to very small. These differences create 

challenges for the capture of statewide data. A number of innovative developments in recent years, such 

as the National EMS Information System (NEMSIS) and Crash Outcome Data Evaluation System 

(CODES) platforms, have attempted to solve the issue of EMS system data capture [15,16]. NEMSIS is 

the national repository that will potentially be used to store EMS data from every state. CODES provides 

a system to link EMS data to patient outcome data. When the scope is limited to fatal crashes, the Fatality 

Analysis Reporting System (FARS) can be considered as another dataset to analyze EMS performance 

[17]. Data from FARS are more complete and specific than NEMSIS data because they include 

information on the crash, vehicles, and persons involved, meaning an outcome analysis (e.g. logistic 

analysis) can be performed [18]. 
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Although 75% of EMS survey respondents in the NCHRP report indicated that data were collected about 

crash details, responses, and injury severity, only three indicated any linkage to hospital records and just 

one linked to driver’s license data [14]. Almost no cost or compensation data are linked to response or 

crash records. A study of the existing efforts to collect real-time patient data and link that information to 

the emergency room preparation and impact on patient outcomes would be valuable.  

 

Frameworks such as the NEMESIS database exist for linking records between different data sets. Efforts 

to link data to other data sets have proven only partially successful, as unique identifiers that can help to 

relate records between different sources do not exist. Statistical matching techniques have been attempted 

but are only partially able to match records. Idaho has implemented a program to collect crash scene and 

patient data during the response and transmit them to hospital staff. The approach allows for a direct 

connection between data collected at the scene and patient outcome data, as the information is made a part 

of the patient care record [14]. A study conducted by Newgard resulted in a satisfactory linkage rate 

between NEMSIS data and hospital data using probabilistic linkage [19]. 

 
2.3 EMS Research 
 

A literature review was performed mainly from the transportation perspective, not from a medical 

standpoint. Research with regard to service demand, service performance, and transportation safety are 

the three areas of interest and are explored below.  

 

Service demand contains current demand evaluation and future demand prediction. Demand can be 

evaluated using 911 call volume or 911 call volume per capita, respectively. 911 calls are aggregated by 

geographical unit, such as by county or EMS station [20]. The temporal aspect is also considered so that 

call demand can be summarized by time of day, day of week, and month of year. Statistical methods can 

be used to predict service demand for the entire area for one year [21]. 911 call forecasting models have 

been developed to support dynamic ambulance deployment for resource optimization, as the number of 

calls can be precisely estimated by time and by location[22]. Channouf developed time-series models to 

predict daily and hourly call volumes to EMS in a major city in Canada [22].  Various socioeconomic, 

demographic, and other characteristics in the defined area often served as predictor variables to forecast 

call demand [21]. Different models were introduced to avoid model issues of previous studies, such as 

autocorrelation and multicollinearity [23, 24]. 

 

Service Performance includes but is not limited to service performance measures, dispatch of EMS 

vehicles, allocation of service facilities, ITS technologies, and transport policies and protocols. In future 

sections, this report will discuss several studies with regard to service performance [13], and will also 

explore comprehensive methodologies used for the allocation of service facilities. 

 

A variety of measures were proposed to evaluate service performance, such as time- or distance-related 

variables, outcome-based variables, and other indexes. NHTSA developed 35 EMS performance 

measures for the local system, which include a time-based variable (Mean Emergency Patient Response 

Interval) and an outcome-based variable (EMS Cardiac Arrest Survival Rate) to Emergency Department 

Discharge. The local system could choose either variable depending on the site’s unique characteristics 

[13]. Researchers from Europe developed 14 indicators to measure road safety performance associated 

with trauma management. The indicators include, “availability of EMS stations; availability and 

composition of EMS medical staff; availability of and composition of EMS transportation units; 

characteristics of the EMS response time; and availability of trauma beds in permanent medical facilities” 

[25]. 
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Among all performance measures, response time is considered a major performance index to evaluate 

EMS performance [26]. Although patient outcome depends on many factors such as severity of injury and 

preexisting conditions, the time required for an EMS unit to arrive at the scene (response time) and the 

time required for a patient to receive definitive care (Overall response time) play a significant role in the 

survival rate.  The Centers for Disease Control and Prevention reports a 25% reduction in mortality risk 

when trauma victims receive definitive care at a level I trauma center [27]. Crashes in rural areas usually 

occur far away from level I trauma centers, and timely transportation to those centers depends on the 

availability of swift EMS.  The explicit relationship between clinically significant improvements in 

patient outcome and a reduction in time between EMS and definitive care has not been fully established, 

but the general consensus is that the shorter the amount of time to definitive care, the better the patient 

outcome.  Therefore, it is crucial to bring critical patients to definitive care immediately, specifically 

within 60 minutes (the golden hour or golden time) of a traumatic injury being sustained.  

 

Benchmarks exist for response time and other time-related variables, but none of them have proven to be 

accurate [28]. A response time of 8 minutes has been considered a criterion, especially for life-

strengthening cases, but no scientific research shows the correctness of this number [28]. NFPA 1710 

states, “Advanced life support response time: Eight minutes (480 seconds) or less for the arrival of an 

advance life support unit at an emergency medical incident, where the service is provided by the fire 

department” [29]. In the NFPA report, response time refers to en route time. Considering that en route 

time is spent during transport, which connects more closely with the road network, the 8-minute 

benchmark for en route time was selected as the major performance measure for this study. 

 

A few studies have focused on improving service performance by reducing response time. Do used a 

quantile regression analysis to identify factors related to response time by dividing factors into patient-

level and system-level [30]. Do found that patient factors had little influence on response time. Rather, he 

found that the addition of each call in the last hour increased response time [30]. Meng used a mixed 

logistic model to explore the uncertainty of accident notification time and response time and predict the 

risk of death in work zones [31]. In these studies, GIS has been widely used to analyze response time 

associated with the road network [32]. 
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3. METHODOLOGY 
 

This study utilizes several methodologies, including a point pattern analysis (K function and cross K 

function), a genetic algorithm process for solving the maximal covering location problem (MCLP), and 

linear regression and geographically weighted regression models. 

 
3.1 Point Pattern Analysis  
 

A point pattern analysis was conducted to assess if 911 calls cluster together. If the call concentration 

existed, the cluster analysis technique was employed to identify where possible clusters occur; next, a 

visual assessment, or co-location pattern, helped identify whether the clusters existed across multiple 

stations.  

 

3.1.1 K function 
 

Ripley’s K function is a spatial statistical method used to analyze whether the points appear to be 

clustered, dispersed, or randomly distributed in a point pattern analysis area [33]. It denotes the expected 

number of points that would fall into a circle of radius r around a randomly selected point. The null 

hypothesis is that all points are randomly distributed and the corresponding K function is 𝜋𝑟2. The K 

function and corresponding L function are shown below: 

 

                                                   (1) 

 

                                                                                                              (2) 

 

Where, 

λ = Density (number per unit area) of points; 

E ( ) = expected value; 

K(r) = K function; 

L(r) = L function; 

 

If L(r) – r >0, which means the K function is larger than 𝜋𝑟2, the points show a clustered pattern. If L(r) – 

r <0, then the points show a dispersed pattern. The expected value can be plotted with upper and lower 

5% bounds, which indicates a 95% confidence interval using the Monte Carlo simulation. If the L(r) –r is 

above the upper bounds, the pattern can be treated as significantly clustered. If the L(r) –r is below the 

lower bounds, the pattern can be treated as significantly dispersed. If the L(r) –r is within the bounds, the 

points can be treated as randomly distributed. 

 
3.1.2 Cross K function 
 

When the objects belong to two kinds of points, such as 911 calls and EMS stations, the co-location 

pattern should be investigated. “Co-location pattern” is an ecological term indicating which kind of 

spatial features frequently locate together [34]. A co-location pattern can be detected and measured using 

spatial statistics such as the Ripley’s Cross-K function [34].  Khan et al. used a network-constrained cross 

K-function to analyze the relationship between ice-related crashes and bridges, finding that ice-related 

crashes clustered around the bridges [35].  
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The cross K function is used to analyze the co-location patterns between two kinds of points; for example, 

with A (a1, a2, … , ai)  and B (b1, b2, … , bj), the cross-K function measures whether the two kinds of 

points are clustered, dispersed, or randomly distributed [33]. The null hypothesis is that all of the points in 

A are randomly distributed following a binomial point process, regardless of location of B. The cross K 

function and corresponding L function are shown below: 

 

                      (3)  

 

                                                                                                       (4)  

 

Where,             

                                             

λ𝑎 = Density (number per unit area) of points A; 

E ( ) = expected value of A following binomial point process for each point in B; 

K𝑏𝑎(r) = K function of A relative to B, for the binomial point process; 

L𝑏𝑎(r) = L function of A relative to B, for the binomial point process; 

 

Similar to the K function, the expected value can be plotted with upper and lower 5% bounds, which 

indicates a 95% confidence interval using the Monte Carlo simulation. If the L(r) –r is above the upper 

bounds, the pattern can be treated as significantly clustered. If the L(r) –r is below the lower bounds, the 

pattern can be treated as significantly dispersed. If the L(r) –r is within the bounds, the points can be 

treated as randomly distributed. 

 
3.2 Genetic Algorithm Process 
 

The genetic algorithm adapts Darwin’s natural evolution theory to the optimization algorithm.  It has been 

used to solve different problems including facility location. Similar to natural evolution, the essence of 

the algorithm is to improve the offspring using reproduction mechanisms (crossover and mutation) and to 

keep those with higher fitness functions. The algorithm is a bottom-up approach, which starts with a set of 

solutions and results in one optimal solution. 

 

The steps for the genetic algorithm are shown in Figure 3.1 [36]. 

 

Step 1: Create the initial population for the solutions (G set of individuals) 

 G set of initial solutions will be created to activate the process. 

Step 2: Evaluate the fitness function of each individual in the population 

 The fitness function for each solution will be calculated. A higher fitness function value indicates 

 being closer to the optimal solution. The solution with the highest value is the optimal one. 

Step 3: Repeat (generate offspring) 

 

Offspring will be generated by following four steps: selection of parent from individuals in population, 

performing genetic operators (cross-over and mutation) to generate new individuals, adding new 

individuals into the population, and removing individuals with low fitness function. These steps will be 

repeated until termination criteria are satisfied. 
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Figure 3.1  Flow Chart for Genetic Algorithm 

 
3.3 Regression Models 
 
3.3.1 Multiple Linear Regression Model 
 

The linear regression model (MLR) is the simplest regression model for identifying a statistically 

significant relationship [5]. The time-related performance variable is treated as the dependent variable, 

and all other variables are treated as independent variables. The assumption for this model is that the 

residuals are independent, normally distributed, have a mean of zero, and have constant variance. The 

equation is written as: 

                                                                                                           (5) 

 

where 𝑦, 𝑥𝑘,  indicates the dependent variable, kth independent variable, and the normal error, 

respectively; and coefficients 𝛽𝑘 are the global parameters.  
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3.3.2 Geographically Weighted Regression 
 

MLR may not be appropriate for use with spatial data due to its limitation in capturing spatial 

heterogeneity [5]. The influence of the independent variable may vary across space, or some variables 

may have larger impacts on certain locations and smaller impacts on others. Thus, varying parameters, as 

opposed to fixed parameters, may be more appropriate for describing this phenomenon. The 

Geographically Weighted Regression (GWR) should be used as an alternative to handling spatial 

heterogeneity [5].  

 

Zhao used the GWR model to estimate annual average daily traffic, and found that the GWR model 

performed better than the GLM model [37]. Du used the GWR model to capture the relationship between 

transport accessibility and land value [38], and Li used the Geographically Weighted Poisson Regression 

for county-level crash modeling in California [39]. 

 

GWR uses local instead of global parameters to estimate different relationships between dependent and 

independent variables for each geographic location. The GWR model can be written as: 

                                                                                       (6) 

 

where 𝑦𝑖, 𝑥𝑘,𝑖, 𝜀𝑖 indicate dependent variable, kth independent variable and the normal error at location i, 

respectively; (𝑢𝑖, 𝑣𝑖) is the coordinate of the ith location; and coefficients 𝛽𝑘(𝑢𝑖, 𝑣𝑖) are the local 

parameters at the location[5]. Based on the concept of GWR models, the local parameters 𝛽𝑘(𝑢𝑖, 𝑣𝑖) (k: 0, 

1,…, p) are estimated for each location i; thus n*(P+1) parameters are estimated for n observations 

The parameters for each location are estimated as follows: 

 

                                                                    (7) 

  

where 𝑊(𝑢𝑖, 𝑣𝑖) is the n*n spatial weight matrix, which can be expressed as follows: 

 

                                                                                                    (8) 

 

Where 𝑤𝑖𝑗 denotes the weight given to each location j in the model for location i [5]. 

 

The local parameters for each location in the GWR model can be estimated based on observations from 

nearby locations. The parameters at one location are affected more by observations close to that location, 

as opposed to observations made farther away. The influence factor around i is called weighting 

function 𝑤𝑖𝑗. Two commonly used weighting functions, Gaussian and bi-square, are listed below: 

Gaussian:                    (9)  
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Bi-square:                                            (10) 

 

Where dij is the distance from location i to location j, h and hi are the bandwidth for these two functions 

[5].  

 

Bandwidth for the Gaussian function is constant, which means the magnitude of the function is the same 

for each location [5]. Bandwidth for the bi-square function hi is defined as the nth nearest neighbor from 

location i, and can vary among locations [5]. Bi-square’s magnitude has the ability to vary according to 

the density of data; thus, this adaptive function is often used when data are not distributed randomly or 

evenly. The Corrected Akaike Information Criterion (AICc) is often used to select the optimal bandwidth 

and the best model. The model with the lowest AICc is the best performer [5]. 

 

When comparing different models using goodness-of-fit, R square and AICc are treated as the most 

commonly used tools: 

 

                                                                        (11)  

 

Where, D ( ) is the deviance of parameters; K ( ) is the effective number of parameters; h is the bandwidth 

and p is the number of points. 
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4. ANALYSIS AND DISCUSSION 
 

After the Phase I assessment of the needs of rural EMS systems, researchers decided this study should 

focus on the following: a geospatial analysis of EMS station locations, optimization of EMS locations, 

and a regression analysis of EMS service performance. Geospatial analysis uses en route travel time to 

study the spatial aspect of EMS stations. Two performance indices were developed for each EMS station. 

EMS station locations can be recommended based on the results of optimization in order to achieve the 

shortest en route time. Several regression models have been developed and evaluated; the best regression 

model is used to identify statistically significant determinants to the travel time.  

 

Three-year EMS data (2011-2013) was available. Phase II used the EMS ambulance dataset used in Phase 

I, as well as EMS station data and roadway data. EMS station data were provided on the South Dakota 

Emergency Medical Services web site, which includes the name, location, and professional status of the 

EMS station, as well as the number of ambulances. The EMS station data vary by year. In 2011, 2012, 

and 2013, there were 113, 125, and 109 EMS ambulance stations, respectively. The data were not 

aggregated for analysis, as the EMS stations vary by year; therefore, the analysis in Phase II was based on 

the 36,198 emergency calls that occurred in the latest year, 2013. 

 

SDDOT provided roadway data that include both interstate highways and local roads. Speed limit 

information in this dataset can be used to perform a network-based analysis. The en route travel speed, if 

available in the EMS dataset, was used in place for the posted speed limit. The blank speed limit for road 

segments without posted speed limit was set as 35 mph.  

 

4.1 Geospatial Analysis of EMS Stations 
 

The geospatial analysis aims to evaluate EMS station locations at the state level from the spatial 

perspective, and also to provide two performance indices at the station level.  

 
4.1.1 911 Call Clusters 
 

The most straightforward method of evaluating the preparedness for an EMS location is to observe 

whether it overlaps with or is close to the concentration of 911 calls. The geospatial statistics were used to 

examine whether there were any 911 call clusters and, if so, where the clusters exist. The K function was 

used to measure the global pattern of clusters, and the Getis Ord G* was used to identify clusters at the 

local level.  

 

The point patterns of all 911 calls were examined with the K function in the statistical software R. Figure 

4.1 shows that the observed curve is located far above the 5% upper bound of the theoretical curve; this is 

a strong indication that the clustering pattern is statistically significant at the 95% confidence interval. 

The corresponding distance r for the summit of the curve suggests that the 911 calls display the strongest 

clustering pattern 3.5 miles away from the global view or the state level.  
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Figure 4.1  K Function expressed as L(r)-r for all 911 calls 

 

Next, the Getis Ord G* analysis was used to identify the location of each cluster. First, the map was 

divided into grid cells using the “Create Fishnet” tool under the data management toolbox in the ArcGIS 

software package. The K function informed the choice to use a 5-by-5-mile cell size; on a global level, 

this size contains the most points clustered. Figure 4.3 shows the input for the grid-creating process in 

ArcGIS. 

 

 

Figure 4.2  Identifying the Cell Size for Getis Ord G* Analysis 
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Figure 4.3  Screenshot of “Create Fishnet” Tool in ArcGIS 

 

The number of 911 calls was counted in each cell, and the cell attribute is the number of calls. The Getis 

Ord G* analysis was performed on the calls per cell. Figure 4.4 shows the identified clusters where the 

light color (yellow) areas are clustered calls at the 90% confidence interval (G*=1.65). From the map, 

most EMS stations were visually observed to be located in the center of the cluster, which indicates the 

current EMS stations are positioned properly within the distance proximity of 911 calls. 

 

 
Figure 4.4  Clustering Analysis Using Getis-Ord G* 
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4.1.2 Co-location Analysis of EMS Stations and 911 Call Locations 
 

The approval of the visual assessment can be further supported by the cross-K function. Figure 4.5 shows 

the results of the cross-K function, in which the observed curve is located above the 5% upper bound of 

the theoretical curve when the distance r is shorter than 25 miles. The finding concludes there is a strong 

colocation pattern between incidents located within 25 miles of an EMS station. When the distance is 

larger than 25 miles, however, the spatial association between the EMS station and 911 calls is weak. 

Since Figure  shows that most concentrations of 911 calls are within 25 miles of an EMS station, the 

current EMS stations seem to be positioned according to where the majority of 911 calls occur.   

 
Figure 4.5  Cross K Function and L Function for Incident Location and EMS Station 

 

4.1.3 EMS Station Spatial Coverage 
 

The quantitative assessment provides the measure of service coverage area for each EMS station, or the 

square miles that can be served by EMS within an acceptable time interval. According to literature 

review, this study used en route time with an 8-minute benchmark [29]. Coverage area was generated 

using the road network and network analyst toolbox in ArcGIS. Figure 4.6 shows that only a small 

portion of the state was covered by EMS within the 8-minute travel time. Several counties like Shannon 

County, for example, have a sparsely distributed population and thus have more points uncovered than 

covered by EMS. This observation prompted the realization that optimization of EMS locations should be 

based on en route time. More details on optimization of EMS locations are included in Section 4.2. 
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Figure 4.6  EMS Coverage Map in 2013 

 

Coverage ratio, or the number of 911 calls that took place within the 8-minute coverage area for all EMS 

stations over the total call volume, was calculated as 60% based on the 2013 EMS data. The relatively 

low coverage ratio is most likely due to sparsely distributed demand, which is not uncommon in rural 

areas. 

 
4.1.4 Performance Indexes for EMS Stations 
 

Performance index I represents the service coverage ratio, and performance index II represents service 

swiftness for each EMS station. Equations 12 and 13 and Figure 4.7, Illustration of Two Performance 

Indexes, show both indexes. 

 

                                                                                         (12)  

 

This index indicates the number of call cases within the 8-minute coverage over the number of total calls 

responded to by an EMS station.  

 

                                                                                         (13)  

 

This index indicates the percentage of the cases with the actual ER time no more than 8 minutes within 

the 8-minute coverage for each station.  

    /Performance Index I B A

  /Performance Index II C B
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Figure 4.7  Illustration of Two Performance Indexes 

 

Figure 4.8 offers an in-depth look at the EMS station performance based on the performance indexes. 

Among 13,041 cases with complete information, only EMS stations with more than 10 cases in the 

cleaned dataset were analyzed and included in the map. Figure 4.8(a) shows that about half the stations 

have a Performance Index I of 0.75 or higher. The index values were randomly distributed across the state 

without obvious patterns. Figure 4.8(b) shows that almost three-quarters of the stations have a 

Performance Index II of 0.85 or higher, which means most of the stations responded within 8 minutes of 

their presumed 8-minute coverage areas. Stations with a high performance index concentrated around the 

two interstate highways (I-29 and I-90), as these areas have a higher population density. 

 

One caveat for this network-based analysis is that the 8-minute travel time coverage area is calculated by 

the estimated travel speed. The travel speed for some highway segments was unknown, and was thus set 

to be the average en route speed of 35 mph. 

 

Because travel distance is the main factor affecting the en route time, optimizing EMS station locations to 

improve service coverage (Performance Index I) is the best way to improve service performance. It is 

likely that other factors aside from distance contribute to the variation of en route time. A regression 

analysis can identify the statistically significant factors related to en route time (e.g., weather, roadway 

conditions, urgency of the incident), and therefore help find a solution to improving Performance Index II. 

The following two sections discuss the optimization and regression analyses. 
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(a) Performance Index I 

 
(b) Performance Index II 

Figure 4.8  Performance Index for each EMS station 
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4.2 Optimization of EMS Locations 
 

Maximizing ambulance coverage area and minimizing en route time are two basic methods of optimizing 

EMS station locations. The former is treated as the maximal covering location problem (MCLP), in which 

ambulances are located at existing stations on the network to maximize the demand that can be served in a 

specified time or distance [40]. The latter, the location set covering problem (LSCP), aims to minimize 

the number of facilities when all demand points are covered [40]. The LSCP includes p-center and p-

median problems, where the p-median problem minimizes demand-weighted travel distance and the p-

center problem minimizes the maximum distance between demand zones and their nearest ambulance 

station [40]. 

 

In this study, the coverage area with the size of 8-minute travel distance was used. Coverage rate, or the 

ratio of 911 calls covered to the total 911 calls, was used to evaluate the EMS facility location both for the 

entire state and for each station. To be consistent with these criteria, the MCLP model was used. 

Several papers consider the ambulance location problem as a multiple-objective function. Daskin et al. 

condensed various covering models with objectives such as multiple, excess, backup, and expected into 

one multi-objective model, allowing them to balance between the number of facilities and the extra 

coverage [41]. Although MCLP can maximize the service coverage, other aspects should be considered 

when working with rural areas. Rural communities have less access to EMS stations due to dispersed 

population and farther distance from EMS stations. Patient survivability rates are directly related to 

response time [42], so it is necessary to minimize the average distance from an uncovered zone to the 

closest station. This is actually a transformation of p-median problems considering only uncovered 

demand zones. Considering this objective as the service equity problem, the bi-objective problem was 

formulated. The MCLP model was selected to achieve the first objective of maximizing the coverage rate. 

The bi-objective model considering service equity will be proposed in the methodology section. 

Metaheuristic was considered as the most effective solution to the proposed optimization problem. 

Several metaheuristic solutions, including the genetic algorithm, simulated annealing, ant colony 

optimization, and tabu search are suitable for the location optimization problem; but the genetic algorithm 

has been proven the most popular and effective solution [43]. Thus, the genetic algorithm was selected to 

solve the proposed model. 

 
4.2.1 Optimization Targets 
 

The purpose of optimizing EMS station locations is to increase the 8-minute coverage areas in rural areas. 

It is also necessary to consider service equity for demand areas that are under-covered or uncovered. 

Hence, the two objectives are as follows: 

1) Objective 1 (Coverage Ratio): maximize the number of calls covered by Z1 

2) Objective 2 (Service Equity): minimize average en route time for uncovered demand Z2 

Two targets were identified for the optimization process: target one includes only the first objective, and 

target two combines both objectives in an attempt to maximize the coverage rate as well as minimize the 

average en route time for uncovered demand points.  

 
4.2.2 Methodologies 
 

The findings from the rural EMS needs assessment informed the decision to not apply the high demand 

and busy situation effects to EMS stations in South Dakota; the original covering location model, 

regardless of the busyness effect, was considered. Two models were developed to optimize the EMS 

station location in accordance with the first and second targets, respectively: 
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1. A single-objective covering location model, which considers only the coverage ratio (maximize the 

expected number of calls that were responded to in a pre-specified time/distance frame over the total 

number of calls) 

2. A bi-objective covering location model, which considers not only the coverage rate but also the 

equity (minimize the average en route time between uncovered calls and their closest available 

stations) 

The optimization formulation is explained below. Let Z1 and Z2 represent the two objectives. Let the first 

constraint be the definition of yi, which is a binary outcome (i.e., yi equals one if node i is covered by one 

or more available facilities, and zero otherwise) and the second constraint to be the total number of 

available facilities. 

Target 1: Objective 1 Max                                                   (14) 

Target 2: Objective 1 and 2 Max                                                         (15) 

   and Min                                                 (16) 

Subject to: 

                                                         (17) 

                                                           (18) 

    

    

Where: 

 ,     The index and set of demand points, 

,      The index and set of candidate facility locations, 

    911 demand at point i, 

     The shortest en route time from demand point i to facility at point j, 

    The time standard within which coverage is expected (T =8), 

      the point j that are within a time of T to point i, 

     The number of facilities to be built, 

    A binary variable that equals one when a facility is built at point j and zero otherwise, and 

    A binary variable that equals one if node i is covered by one or more facilities and zero otherwise. 
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The genetic algorithm in the R software was used to solve both models. To solve the first model, 

solutions were obtained after converting equations to the r codes. The responding fitness function was the 

same as the first objective, which is:       (19)                                                           

The second model, a multiple-objective optimization problem, adopted the multi-criteria evaluation 

techniques [44]. One of the techniques, the weighted sum method, converts multiple objectives (fitness 

functions) into a single objective (fitness function) by adding all weights for each objective (functions). 

Experts should determine whether weights represent the priority of each objective. If there is no special 

preference, equal weight is chosen for the fitness function. In this study, equal weight was chosen for both 

objectives, namely w1 = w2 = 0.5. As the genetic algorithm tries to maximize the fitness function, the 

corresponding fitness function of the second (minimization) objective should be the inverse, which is: 

 

                                                                                       (20) 

 

When combining the two fitness functions into one, each function should be normalized due to the 

differing measurement scales. The combined fitness function is: 

 

                                       (21) 

 In order to maximize the combined fitness function, four values are needed: F1max, F1min, F2max and F2min. 

The four values can be obtained by using the genetic algorithm to identify solutions that maximize fitness 

functions F1, , F2 and   separately. 

 
4.2.3 Case Study 
 

The case study area can be a city, a county, or an entire state. One city may be suitable for studies on 

populous urban areas, but not for a rural state. EMS demand for one city in South Dakota is too low to be 

optimized, but the entire state is too large because large disparities such as service protocol, resources, 

and budget exist for different parts of the state; therefore, a county-level analysis was performed. Todd 

County and Minnehaha County were chosen for this study because one represents a low-populated area 

and the other represent a relatively high-populated area. Among the areas with low-population density, 

Todd County had one of the highest EMS demands and a longer-than-average en route time, yet only one 

EMS station location. Among the areas with high population density, Minnehaha County has multiple 

EMS stations and a shorter-than-average en route time. 

  

According to the “National EMS Assessment,” about 40% of EMS agencies are fire departments [45]. An 

EMS can be stationed at a hospital, a police department, an independent government agency, or a 

nonprofit or for-profit corporation. Candidate EMS stations can be any of three types: 1) existing EMS 

station(s); 2) a fire station, hospital, or police station; 3) a randomly selected location. The randomly 

selected locations were based mainly on the demand zone and road network to cover more ground. It is 

better to select locations after discussing them with county EMS officials. Because optimization is a time-

consuming process, the total number of candidate EMS stations was set to be five and 10 for Todd 

County and Minnehaha County, respectively. 
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Data used for optimizing candidate EMS station locations in the candidate counties were prepared using 

ArcGIS. The “Create Fishnet” tool was first used to create grid cells as demand zone. A one-by-one-mile 

cell was chosen to accurately reflect the location of each 911 call. After the grids were generated, 911 

calls were aggregated by each grid cell and the number of calls in each cell was set as the cell attribute. 

The central coordinates for each demand zone were then identified, and the cost matrices (specifically, the 

time matrix) from the candidate stations to the central points were calculated using the network analyst 

toolbox in ArcGIS. The optimization process uses the time matrix and call volume in each demand zone 

to obtain the solution for the selected number of facilities. 

 

In this analysis, all 911 calls within the selected counties were included in the analysis, regardless of 

whether or not they were actually responded to by the associated EMS stations.  

 

Case Study 1: Todd County 

 

Figure 4.9 shows candidate stations and demand zones in Todd County. The existing station was referred 

to as Station 1, and it was based on the fire station. The candidate station locations were selected as: 1) the 

existing station (Station 1); 2) a hospital location (Station 2); and 3) a randomly selected location (Station 

3, Station 4, Station 5). For the purpose of illustration, the randomly selected locations were based on 

intersections close to the obvious incident clusters.  

 

 
Figure 4.9  Todd County with Candidate Stations and Demand Zones 

 

Due to street network discontinuities in the GIS shapefile, some values in the time matrix cannot be 

generated using the ArcGIS tool, as shown in Figure 4.10. The messy lines indicate the expected time 

from candidate stations to the central point of each demand zone. Among 4,374 calls recorded in Todd 

County in 2013, 149 were lost after generating the time matrix. More than 99% of the calls remained, 

supporting the validity of the results for this case study. 
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Figure 4.10  Screenshot of Generating Time Matrix in ArcGIS (Todd County) 

 
a) Optimal Solutions 

 

The genetic algorithm in the R software was used to generate the optimal solutions for the single 

objective and multiple objectives individually. Due to the limited source and moderate demand in Todd 

County, the number of facilities to be located was set as 1, 2, and 3 (p=1, 2, 3), respectively. 

Figure 4.11 shows the basic configuration for the genetic algorithm in the R software, which was set 

based on common practice. 

  

 
Figure 4.11  Basic Configuration for Genetic Algorithm in R 

 

Before performing the multi-objective optimization, F1max, F1min, F2max and F2min were calculated using the 

single objective optimization. The results were shown below. 
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The optimization process for multiple objectives was conducted using the combined fitness function. The 

optimal locations by the number of facilities were shown in Table 4.1. When there is only one EMS 

station, the optimal solutions for both single and multiple objectives are the same as those for the existing 

station (Station 1); this indicates that the current station is located in the best possible location. When two 

EMS stations are allowed, Station 5 remains in both target areas because only Station 5 can cover zones 

with high demand in the northwestern area. Station 3 increases the coverage ratio because it can cover the 

high-demand areas in the northeastern direction; thus, it was chosen for the coverage objective. Station 1 

was selected for multiple objectives because it can shorten the en route time to zones in the southwestern 

area and therefore shorten the average en route time for uncovered zones; however, it also decreases the 

coverage ratio. When three EMS stations can be built, Station 1 and Station 5 appear in both target 

categories, and the explanation for Station 3 and Station 2 are the same as two station scenarios. 

  

Table 4.1  Optimal Solutions for Todd County 

   Optimized Location 
Number of Facilities 

1 2 3 

Target 
Single Objective 1 3,5 1,3,5 

Multiple Objectives 1 1,5 1,2,5 

 

Fitness function by generation (p=1) for single objective and multiple objectives is shown in Figure 4.12. 

The best value of the fitness function (the green curve) reaches its peak and remains stable after several 

generations. When the best value of the fitness function does not remain stable within the chosen 2,000 

generations, the number of generations should be increased until a constant value is observed. During this 

analysis, the best fitness function values remained steady within 2,000 generations, which suggests that 

the basic settings were appropriate. Figure  shows that the best fitness value is just below 0.7 for single 

objective and just below 0.8 for multiple objectives. 

 

 
(a)   Single Objective    (b) Multiple Objective 

Figure 4.12  Figure Fitness Function by Generation (p=1) 
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b)  Single Objective vs. Multiple Objectives 

Figure 4.13 shows the fitness function trend for different numbers of facilities (p). Both fitness functions 

increase as p increases, and keep almost constant after p=2 (F1 ≈ 0.7 and F3 ≈ 0.8); this suggests that p=2 

may be a good choice if increases for both coverage ratio and equity are expected. 

 

 
Figure 4.13  Fitness Function Value Under Optimized Station Location 

 

Figure 4.14 shows the effect of the added equity objective on the coverage ratio for different numbers of 

facilities compared with the single coverage objective. When p=1, there is no effect on the first objective 

(coverage ratio) for the added equity objective. A negative effect was observed for p =2 and 3 (-1.61 and -

1.30, which is -2.28% and -1.84% in percentage), and the effect shows a decline trend. 

 

 

 
Figure 4.14  Coverage Ratio under Optimized Station Location 
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By contrast, Figure 4.15 shows the effect of the equity objective on the average en route time (uncovered 

zones) for the different numbers of facilities compared with the single coverage objective. When p 

increases from two to three, the negative effect of the equity objective on average en route time decreases 

(5.02 to 1.90, which is 9.92% to 3.99% in percentage). The reduction is more considerable than that of the 

coverage ratio (9.92% to 3.99% vs 2.28% to 1.84%), indicating that the slightly reduced equity objective 

in the coverage ratio exchanges for a sharply decreased en route time for uncovered zones. If both an 

expected coverage ratio and an expected average en route time (uncovered zones) are provided, the 

number of facilities can be determined. 

 
Figure 4.15  Average ERTime for Uncovered Zones Under Optimized Station Location 

 

Case Study 2: Minnehaha County 

 

Candidate stations and demand zones in Minnehaha County are shown in Figure 4.16. The existing 

stations, all of which were based on fire stations, were labeled from Station 1 to Station 4. The candidate 

station locations were selected as: 1) the existing stations (Station 1, Station 2, Station 3, and Station 4); 

2) hospital locations (Station 5, Station 6, and Station 7), a police station (Station 8); and 3) randomly 

selected locations (Station 9 and Station 10). The randomly selected locations were chosen the same way 

as those in Todd County. When generating time matrix, more than 99% of the calls remained, supporting 

the validity of the results for this case study. 
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Figure 4.16  Minnehaha County with Candidate Stations and Demand Zones 

 

a) Optimal Solutions 

The genetic algorithm in the R software was used to generate the optimal solutions for a single objective 

and multiple objectives individually. Due to the limited source and moderate demand in Minnehaha 

County, the number of facilities to be located was set as 4, 5, 6, and 7 (p=4, 5, 6, 7), respectively. 

The genetic algorithm in the R software was set based on common practice. Before performing the multi-

objective optimization, F1max, F1min, F2max, and F2min were calculated using the single objective 

optimization, and the results were shown below: 

 0.8466,   when j=10; 

 0.0081,    when j=1; 

 0.0927,   when j=10; 

 0.0314,    when j=1. 

The combined fitness function was  

 

 

 

Table 4.2 shows the results of the optimization process for multiple objectives, which was conducted 

using the combined fitness function. The fitness functions by generation (p=4) for a single objective and 

multiple objectives are shown in Figure 4.17.  

 

  

1maxF 

1minF 

2maxF 

2minF 

1 2
3 1 2

0.0081 0.0314
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Table 4.2  Optimal Solutions for Minnehaha County 

Optimized Location 
Number of Facilities 

4 5 6 7 

Target 
Single Objective 4,6,8,10 3,5,6,8,10 2,4,6,8,9,10 1,2,5,6,8,9,10 

Multiple Objectives 5,6,7,8 1,5,6,7,8 1,2,5,6,8,10 1,2,3,5,6,8,10 

 

  (a) Single Objective                                       (b) Multiple Objective 

 
Figure 4.17  Figure Fitness Function by Generation (p=4) 

 

 

b) Single Objective vs. Multiple Objectives 

Figure 4.18 shows the fitness function trend for the different numbers of facilities (p). Both fitness 

functions increase as p increases. 
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Figure 4.18  Fitness Function Value Under Optimized Station Location 

 

Figure 4.19 shows the effect of the added equity objective on coverage rate for different numbers of 

facilities compared with the single coverage objective. The added equity objective had a negative effect 

on the coverage rate; when p=4, the coverage rate was decreased by 10.90. When p increases from 4 to 5, 

the negative effect decreases significantly (10.90 to 0.88, or 14.50% to 1.12%), but when p increases from 

5 to 7, the negative effect increases gradually (0.88 to 1.51 to 3.83, or 1.12% to 1.89% to 4.65%). 

 

 
Figure 4.19 Coverage Rate Under Optimized Station Location 
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By contrast, Figure 4.20 shows the effect of the added equity objective on average en route time 

(uncovered zones) for different numbers of facilities when compared with the single coverage objective. 

An obvious negative effect was observed when p= 4 (-0.48, or 3.72%), and the negative effect is close to 

zero when p varies from 5 to 7. Figure 4.21 and Figure 4.22 show that when p becomes large enough, the 

added equity objective reduces the coverage rate in exchange for a very slight decrease on average en 

route time for uncovered zones (more than 1% vs zero). 

 

 
Figure 4.20  Average ERTime for Uncovered Zones Under Optimized Station Location 

c) Current Station Location vs. Optimized Location  

 

Table 4.3 shows the coverage ratio and average en route time for uncovered zones between the current 

station locations and optimized locations based on the current number of locations. Such comparison is 

unavailable for Todd County because its optimized location is the same as the current location. The table 

shows significant improvements with regard to both coverage objective and equity objective, which 

suggests that current station locations are neither qualified nor located in the most effective places. The 

comparison between the single-objective and multi-objective solutions shows that the added equity 

objective reduces the coverage rate from 75.18% to 64.28% in exchange for a very slight decrease (i.e., 

0.47 minutes) in average en route time for uncovered zones. 

 

Table 4.3  Current Station Location Vs Optimized Location  

 Coverage Rate 

(%) 

ERTime for Uncovered Zones 

(min) 

 

Facilities 

Existing  43.39 21.20 1,2,3,4 

Single Objective 75.18 12.89 4,6,8,10 

Multiple Objectives 64.28 12.42 5,6,7,8 
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4.2.4 Conclusions 
 

The strategies for optimizing EMS station locations have been explored for two selected counties: Todd 

County (high demand and few stations) and Minnehaha County (moderate demand and multiple stations). 

Single objective (coverage ratio) and multiple objectives (coverage ratio and service equity) were 

evaluated for different numbers of facilities. The optimal solutions were obtained using the genetic 

algorithm in the R software. A comparison of optimal and existing locations was conducted. 

In general, the added equity objective has a negative effect on the coverage ratio, but it reduces the 

average en route time for uncovered demand zones. The effect on coverage ratio and on equity decreases 

with the number of facilities. Further analysis of the optimal EMS locations for Minnehaha County 

reveals that stations are located closer to demand cluster centers when targeting a single objective, and 

they are located between clusters and zones far away from them when targeting multiple objectives. 

The added equity objective had a very limited impact on the coverage ratio, but it significantly reduced en 

route time for the uncovered areas in Todd County. The situation was reversed for Minnehaha County, 

where the added equity objective decreased the coverage rate significantly in exchange for a slightly 

reduced en route time for the uncovered demand zones. The variation may be due to the counties’ 

different proportions of demand and supply; Todd County has high demand but few facilities, while 

Minnehaha County has more facilities but a moderate demand.  

 

4.3 Regression Analysis  
 

Although most stations had a high Performance Index II (percentage of the cases with the actual ER Time 

no more than 8 minutes within the 8-minute coverage for each station), some had a value of less than 0.6, 

meaning more than 40% of the cases within the 8-minute coverage area had an en route time of more than 

8 minutes. A regression analysis identified the statistically significant explanatory variables for en route 

time using the 911 calls within the coverage area to explore the underlying causes of longer en route time.  

 
4.3.1 Scope of Regression Analysis 
 

The analysis focused only on cases within the 8-minute coverage area for each station. The relevant 

information included the accurate location coordinates of 911 calls and en route time. Location coordinate 

information was retrieved from “Google Maps API.” Geocoding accuracy (shown in Table 4.4) is 

provided for each point generated by this application. Data used for the regression analysis included only 

the points with an accuracy level of “ROOFTOP,” the highest accuracy level mapped by Google Map 

API. 

 

Table 4.4  Geocoding Accuracy Level for Google Map API 

Accuracy Definition Count for 2013 

APPROXIMATE Location information that are 

characterized as approximate  

52.03% 

GEOMETRIC_CENTER Geometric centers of a location such as 

a polyline  or polygon 

10.14% 

RANGE_INTERPOLATED An approximation  interpolated 

between two precise points  

24.81% 

ROOFTOP Location information accurate down to 

street address precision 

13.02% 
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Although only 13% of the total 911 calls have the accurate location information, the total number is still 

sufficient for any statistical analysis. After verifying the 911 calls and their receiving agencies, 1,586 

cases with their 18 corresponding EMS stations were processed for the regression analysis. The 

distribution of these 911 calls and EMS stations is mapped in Figure 4.21.  

 
Figure 4.21  911 Cases with Corresponding EMS Stations For Regression Analysis 

4.3.2 Variable Preparation 
 

The en route time can be affected by a number of factors, including the call’s level of urgency, the EMS 

station features, weather, highway and traffic conditions, etc.  An independent variable can be categorized 

as either a case-specific variable or a station-specific variable. Each 911 call record has more than 50 

attributes, some of which are useful for evaluating the service performance while others are not. Hence, 

data reduction is necessary to help screen the most relevant attributes before fitting the data with a 

regression model. 

 

After a careful review of all EMS attributes, the caller’s complaint, light and siren usage, dispatch time, 

and location type were considered as the case-specific input variables. The caller’s complaint may be a 

significant factor affecting en route time. The shortest en route time was associated with patients who 

suffered past strokes, had breathing problems, or were suffering from cardiac arrest. A new variable 

called “case type” was created to represent the severity of a 911 case. The light and siren attribute refers 

to whether the ambulance driver turned on the light and siren when responding to an individual case. The 

service needs assessment shows that the use of light and siren is highly associated with travel speed, and 

can also be considered a surrogate measure for urgency. Dispatch time includes the time of day and day 

of week for each dispatch. Month of year for each dispatch was reclassified as either a winter month 

(November to April) or non-winter month, a surrogate variable for the weather data. The location type 

notes whether the incident is in a public area. 
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An EMS station can be staffed with professional emergency medical technicians or volunteers, and all 

stations are equipped with a different number of personnel, vehicles, and medical equipment. The location 

of an EMS station and the streets and highways in its proximity affect the response time; hence, 

accessibility, mobility, staff, vehicles, and workload are treated as station-specific input variables. Road 

density and connectivity are accessibility indicators, and average speed is a mobility indicator. The 

connectivity index can be calculated by dividing the number of links by the number of nodes [46]. Both 

roadway accessibility and mobility indexes were calculated with ArcGIS using the 8-minute travel 

distance buffer for the corresponding EMS station. Station workload, which shows whether or not an 

EMS station is busy, can affect EMS performance to some extent. Two types of workload variables were 

introduced: annual call volume and unit hour utilization (UHU) [47]. Annual call volume is the same with 

the service demand. UHU indicates the amount of time one ambulance unit is occupied over the total 

amount of time (365* 24 hours=8,760 hours a year). As a common practice, a UHU between 35% and 

45% is most efficient. EMS stations with a UHU below 35% are considered not busy [47]. The equation 

is shown below: 

 

                                                                                                   (22) 

Where, 

D is the yearly demand for each station,  

TotalTime is the average total time in the hour for each station and, 

n is the number of ambulances for each station. 

Other socioeconomic variables such as population and area type were not considered because they are 

highly correlated with the service demand variables. Each variable is described in Table 4.5. The 

accessibility and mobility indicator for each station are formulated from Equation 23 to 25: 

 

Road Density = Sum (length) / Covered Area                                                           (23)  

 

Road Connectivity = (# of links) / (# of nodes)       (24) 

 

Road Speed = Sum (Speed * Length) / Sum (length)      (25) 

 

Roadway length and number of links and nodes can be measured from the South Dakota highway links 

and nodes map in ArcGIS by clipping an 8-minute polygon for each EMS station. 
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Table 4.5  Variable Description 

  Category Variable Description 

Dependent Variable Time ERTime En-route time 

Independent 

Variable 

Case-

Specific 

Case Type Case Type Severity (1) or not (0) 

Light &Siren Response Mode Light/Siren on (1)  or not (0) 

Dispatch Time 

Time of Day 
If the vehicle was dispatched in the 

day (1) or night (0) 

Day of Week 
If the vehicle was dispatched in the 

weekday (1) or weekend (0) 

Month of Year 

If the vehicle was dispatched in the 

snow season (1: Nov. - Apr.) or 

Non-snow season (0: May - Oct.) 

Location Type Location 
If the incident is in the public area 

(1) or not (0) 

Station-

Specific 

Accessibility 
Road Density Sum(Road Length)/Covered Area  

Road Connectivity # of Links/ # of Intersections 

Mobility Road Speed 
Sum(Link Length * Link 

Speed)/Sum(Link Length) 

Staff Professional 
If the staff in the EMS station are 

professional (1) 

Vehicle Vehicle # of Vehicles in the EMS Station 

Workload 
EMS Demand 911 Call Volume 

UHU Unit Hour Unitization  

 

 

Figure 4.22 shows an example of a clipped area for an EMS station. The list of EMS stations and 

variables is presented in Table 4.6. 

 

 
Figure 4.22  Calculation of Accessibility and Mobility 
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Table 4.6  Calculation of Accessibility and Mobility 
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1 153.91 4454.76 2018 1371 37.08 4.15 1.47 28.94 

6 38.20 1322.42 454 290 33.82 1.13 1.57 34.61 

10 94.39 3051.27 1467 1079 25.87 3.65 1.36 32.33 

12 18.81 537.40 624 504 8.33 2.26 1.24 28.57 

15 27.55 955.54 444 304 17.05 1.62 1.46 34.68 

21 52.69 1783.70 735 565 15.29 3.45 1.30 33.85 

25 41.84 1453.66 474 316 26.35 1.59 1.50 34.75 

45 6.04 216.08 106 98 1.73 3.50 1.08 35.75 

46 22.78 762.54 559 442 5.28 4.31 1.26 33.47 

49 26.17 917.78 393 249 19.25 1.36 1.58 35.08 

62 5.62 169.46 254 227 2.74 2.05 1.12 30.18 

63 19.55 676.69 490 340 34.59 0.57 1.44 34.61 

72 49.96 1714.25 759 564 24.35 2.05 1.35 34.31 

77 18.63 626.89 494 391 4.08 4.56 1.26 33.65 

94 65.18 2169.29 832 645 8.30 7.85 1.29 33.28 

97 52.33 1687.70 754 584 6.83 7.66 1.29 32.25 

105 102.50 3254.64 1790 1256 20.38 5.03 1.43 31.75 

109 212.66 7319.07 1096 787 10.54 20.18 1.39 34.42 

Table 4.7 shows the descriptive statistics of variables. The percentages for “1” or “0” are quite substantial 

for some binary variables such as Case Type, Day of Week, and Professional, which indicates that the 

data may not represent the characteristics for these variables due to the disproportionate data distribution. 

 

Table 4.7  Descriptive Statistics of Dependent and Independent Variables 

Variable Mean Min Max S.D. 

ERTime (min) 3.67 1.00 25.00 2.39 

Case Type  0 (12.67%)1  

Response Mode  0 (27.80%)1  

Time of Day  0 (56.05%)1  

Day of Week  0 (71.69%)1  

Month of Year  0 (55.73%)1  

Location  0 (21.12%)1  

Road Density 6.05 0.57 20.18 6.19 

Road Connectivity 1.39 1.08 1.58 0.09 

Road Speed 32.48 28.57 35.75 2.34 

Professional  0 (72.57%)1  

Vehicle 4.77 1.00 7.00 1.88 

EMS Demand 1104.85 133.00 2115.00 685.89 

UHU 0.02 0.00 0.04 0.01 
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4.3.3 Model Comparison and Selection 
 

In total, there were six case-specific variables and seven station-specific variables. A correlation analysis 

was performed for all independent variables. Table 4.8 shows that a correlation exists in the following 

four pairs: Professional and Vehicle, Professional and Demand, Vehicle and Demand, and Demand and 

UHU. 

 

Table 4.8  Correlation Matrix 

  Professional Vehicle Demand UHU 

Professional 1.00    

Vehicle  0.81 1.00   

Demand 0.65 0.50 1.00  

UHU -0.02 -0.25 0.61 1.00 

 

Two models were developed in order to avoid the correlation effect; one model included the Profession 

and UHU variables, and the other included the Vehicle and UHU variables. 

 

Model 1: Case Type + Lights & Siren + Time of Day + Day of Week +Month of Year+ Location + Road 

Density + Road Connectivity + Speed + Professional +UHU 

 

Model 2: Case Type + Lights & Siren + Time of Day + Day of Week +Month of Year+ Location + Road 

Density + Road Connectivity + Speed +Vehicle +UHU 

 

MLR and GWR were applied to both models. The choice of weight function is of vital importance for the 

GWR model; hence, both the Gaussian and bi-square functions were evaluated for the weight function. 

The Gaussian function is not appropriate for unevenly distributed data because it provides a fixed 

bandwidth that may lead to a different number of calibrated data points associated with each station. Due 

to the unevenly distributed data in this case, an adaptive function was used to ensure the local models 

were calibrated on the same amount of data points. Thus, six models were developed: Model 1_MLR, 

Model 1_Gaussian, Model 1_Bi Square, Model 2_MLR, Model 2_Gaussian, and Model 2_Bi Square. 

AICc or R2 was calculated to select the model with the best goodness-of-fit. GWR 4.0, a statistical 

software package specially developed for GWR, was used to develop the GWR models [48]. 

 

According to the results in Table 4.9, the GWR model with the bi-square function performs better than 

with the Gaussian function (i.e., lower AICc and larger R2). Also, GWR models were better than MLR 

models overall. Model 1_Bi Square has a slightly lower AICc than Model 2_Bi Square. While comparing 

Model 1 with Model 2, it was found that it is better to include Professional and UHU variables, as the 

calculation of UHU is associated with Vehicle. Model 1 was recommended as the best model as it showed 

visible improvements after using a GWR in which R2 changes from 0.05 to 0.22. 
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Table 4.9  Model Comparison 

 Goodness-of-fit (GOF) 

 AICc R2 

Model 1_MLR 7204.64 0.05 

Model 1_Gaussian 7021.98 0.17 

Model 1_Bi Square 6967.42 0.22 

Model 2_GLM 7191.99 0.06 

Model 2_Gaussian 7065.12 0.15 

Model 2_Bi Square 6972.26 0.22 

 

4.3.4 Coefficent Estimates of Multiple Linear Regression 
 

Table 4.10 shows the coefficient estimates for MLR. Case Type, Time of Day, Day of Week, and Month 

of Year were not statistically significant. A disproportionate data distribution might contribute to the 

insignificance of Case Type and Day of Week. The positive sign for Response Mode indicates that when 

the light and siren were on, the ERTime increased. The negative sign for Location indicates that incidents 

happening in a public areas had a reduced ERTime. When road accessibility (Road Density and Road 

connectivity) increased, ERTime decreased. Also, road speed played a positive effect on ERTime. The 

coefficient for Professional may not be accurate as most cases (72%) were responded to by a station 

staffed with professionals. UHU, an indicator for station workload, had a positive effect on ERTime. 

 

Table 4.10  Coefficient Estimates for MLR 

Parameters Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.31 1.82 0.72 0.472055  

Case Type 0.13 0.18 0.70 0.487287  

Response Mode 0.57 0.14 3.94 8.43E-05 *** 

Time of Day -0.02 0.12 -0.15 0.882641  

Day of Week 0.06 0.13 0.46 0.648899  

Month of Year 0.06 0.12 0.55 0.58421  

Location -0.30 0.14 -2.07 0.038452 * 

Road Density -0.03 0.01 -2.77 0.005706 ** 

Road Connectivity -2.33 0.68 -3.41 0.000663 *** 

Road Speed 0.13 0.05 2.60 0.009352 ** 

Professional 0.54 0.17 3.25 0.001168 ** 

UHU 43.86 9.18 4.78 1.96E-06 *** 
Significant Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
4.3.5 Geographically Weighted Regression 
 

GWR modeling is more appropriate than MLR modeling because it can improve the prediction accuracy 

and efficiency when spatial correlation exists in the data. The spatial cluster pattern of residuals can be 

tested by Moran’s I statistics. In Table 4.11, the Moran’s I results suggest significant spatial 

autocorrelation in the data. After applying GWR, spatial autocorrelation no longer existed in the model 

residual. This exercise proves that GWR is a more proper method to account for spatial autocorrelation in 

the EMS data. 
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Table 4.11  Moran’s I Test on Residuals 

Global Moran's I Summary MLR GWR 

Moran's I Index 0.05311 -0.00293 

z-score: 21.90237 -0.93640 

p-value: <0.00001 0.34907 

 

Moreover, a GWR ANOVA test in Table 4.12 shows that the GWR model is a significant improvement 

over the global model (large F value). 

 

Table 4.12  GWR ANOVA Table 

Source SS DF MS F 

Global Residuals 8580.122 1574   

GWR Improvement 1499.441 38.809 38.636  

GWR Residuals 7080.681 1535.191 4.612 8.376809 

A geographical variability test of local coefficients was performed using a model comparison to test 

whether coefficients vary across the space. When testing the geographical variability of the kth 

coefficient, a comparison is carried out between the fitted GWR model and a switched model, which is 

identical to the fitted GWR except that the kth coefficient is a fixed value. If the original GWR model 

performs better than the switched model, the kth coefficient varies over the space.  

Results are shown in Table 4.13. The “DIFF of Criterion” denotes the difference of criterion (AICc) 

between the original GWR and the switched models; if the difference is positive (usually bigger than 

two), the corresponding variable can be treated as a global variable. For example, Time of Day and Month 

of Year are identified as global variables. 

 

Table 4.13  Geographical Variability Tests of Local Coefficients 

Variable F DOF for F test DIFF of Criterion 

Intercept 75.81 0.40 1541.55 -30.05 

Case Type 5.74 3.61 1541.55 -13.56 

Response Mode 0.90 3.46 1541.55 4.13 

Time of Day 1.27 3.74 1541.55 3.02 

Day of Week 1.82 3.76 1541.55 0.92 

Month of Year 0.71 3.68 1541.55 5.11 

Location 3.53 3.21 1541.55 -4.81 

Road Density 1.41 1.05 1541.55 0.71 

Road Connectivity 429.93 0.97 1541.55 -375.98 

Road Speed 9.59 0.16 1541.55 -1.25 

Professional 26.07 0.87 1541.55 -21.20 

UHU 3.04 0.97 1541.55 -0.98 
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4.3.6 Mixed Geographically Weighted Regression   
 

Unlike GWR, a Mixed GWR is a local model in which all independent variables are initially set as local 

variables. After an iterative process, some independent variables became global variables and some 

remained local. An iterative golden section search of the AICc function revealed that the 367 nearest 

neighbors yielded the optimal AICc score, and hence, the 367 nearest neighbors were considered as the 

bandwidth. A mixed GWR was performed using GWR 4.0, and bi square adaptive weight function was 

selected to maintain consistency with previous GWR settings. Table 4.14 shows the global coefficient 

estimates, none of which are statistically significant.  

 

Table 4.14  Global Coefficient Estimates 

Variable Estimate Std. Error t value 

Intercept 3.82 2.84 1.34 

Time of Day 0.07 0.11 0.64 

Day of Week 0.07 0.12 0.58 

Month of Year 0.05 0.11 0.42 

Road Density -0.09 0.06 -1.55 

 

Table 4.15 shows the local coefficient estimates, which are categorized as minimum, lower quartile, 

median, upper quartile, and maximum. The sign of the estimated parameters varies over space for all local 

variables except for Response Mode. The range between minimum value and maximum value were large 

when compared with the parameter estimate value.  

 

Table 4.15  Local Coefficient Estimates 

Variable Min 
Lower 

Quartile 
Median 

Upper 

Quartile 
Max 

Case Type -1.84 -0.48 0.02 0.57 1.02 

Response Mode 0.03 0.42 0.66 0.86 1.18 

Location -1.35 -0.83 -0.61 0.31 0.52 

Road Connectivity -77.28 -0.97 1.00 13.46 27.97 

Road Speed -1.31 -0.52 -0.02 0.04 1.42 

Professional -0.80 0.52 0.87 1.17 24.07 

UHU -294.52 -142.71 11.08 88.82 2890 

 

Here, UHU is chosen as the example to illustrate how GWR results should be applied. Figure 4.23 and 

Figure 4.24 show the parameter estimate map for UHU and the local t value map for UHU, respectively. 

An overall pattern was identified from the parameter estimate map. The effect of UHU ranges from -

294.52 to 2890, which is much higher than the estimated value of 42.86 generated by the MLR. Figure 

4.23 shows that a strong negative effect exists mainly in the southeastern part of the state. When 

observing the t value map in Figure 4.24, most of these points are insignificant, which reveals that a 

variable that is significant at a global level may not be significant at a local level. All of the variables have 

been reviewed using both the parameter estimate map and the local t value map (shown in Appendix). 

 

GWR’s strength is in its ability to offer an in-depth view of the effects and statistical significance of each 

variable. A variable may be statistically significant at some stations, but not at others, and some variables 

may have a consistent performance across the space while others do not. Inconsistent results may be due 

to unobserved confounding factors that can be further studied in future research. Table 4.16 shows each 
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station and its corresponding significant variables that affect service performance. The Local R2 provides 

the estimate of the percentage that en route time can be explained by the corresponding variable. 

 

GWR outperformed MLR in Model Comparison and Selection in terms of statistical goodness-of-fit. An 

inspection of the statistically significant variables produced by each regression model can shed additional 

insights into the influence of these factors on en route time. Response Mode, Location, Highway Density, 

Connectivity, Speed, Professional, and UHU are statistically significant variables for MLR. A positive 

Response Mode coefficient indicates that en route time increases when the light and siren are on; the 

increase may be caused by traffic delays. A negative sign for Location indicates that incidents happening 

in public areas correspond to a reduced en route time. En route time decreases when road accessibility 

(Highway Density and Highway Connectivity) increases. Workload UHU has a positive effect on en route 

time; however, Speed and Professional have a positive effect on en route time, which is counterintuitive.  

 
Figure 4.23  Parameter Estimate Map for UHU 
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Figure 4.24  Local t value Map for UHU 

 

In GWR, the Highway Density variable is not statistically significant, but the Case Type variable is; more 

importantly, the statistical significance of all seven variables varies across stations. The local significance 

shows a negative sign for western stations and a positive sign for eastern stations. The negative effect 

meets the expectation of urgent and severe cases corresponding to a shorter en route time, but the positive 

effect can be the result of other unknown local factors that require further investigation.  

Response Mode is locally significant for all western stations; this result is consistent with MLR results, 

meaning increased en route time is associated with light and siren situations. The Location variable is 

locally significant for some eastern stations with a negative sign, suggesting that incidents happening in 

public areas are associated with shorter en route times. 

 

A negative effect is observed for MLR with regard to Highway Density and Highway Connectivity; 

however, for GWR, Highway Density is insignificant while Highway Connectivity is positive for some 

stations and negative for others. MLR results with regard to Speed are perplexing, as a higher speed is 

associated with longer en route time. GWR results show that a higher speed can shorten en route time.  

Similarly, UHU is positive for MLR and it varies for GWR. The disparities among stations in terms of 

coefficient estimates suggest a need to review more detailed information before attempting to reach any 

definitive conclusions, especially for the stations with questionable performance. Considering the 

significant factors – model performance and spatial autocorrelation – in the EMS dataset, the GWR model 

is considered more revealing and more appropriate for evaluating EMS station service performance. 
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4.3.7 Summary  
 

A regression analysis was performed on en route time using 911 cases within each EMS station’s 8-

minute coverage area. A careful review of all possible factors related to en route time was conducted, and 

13 variables (six case-specific variables and seven station-specific) were prepared. Models were 

compared using R2 and AICc, and the GWR model was selected as the best performer. Moran’s I test 

identified that a spatial autocorrelation existed in the residuals for MLR. On the other hand, GWR 

accounts for spatial heterogeneity, and its model residual was free of the spatial autocorrelation. A 

statistical test further revealed that the spatial variability did not apply to some variables. Lastly, a mixed 

GWR was applied for the data because it included both global parameters and local parameters for 

different variables, taking the spatial variability into account. Statistically significant factors affecting the 

ERTime were observed, and parameters for different EMS stations were estimated to provide a guide for 

local agencies looking to reduce en route time
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Table 4.16   Significant Contributing Factors Affecting En Route Time for Each Station 
EMS Station Case Type Response Mode Location Highway Connectivity Speed Professional UHU Local R2 

Aberdeen Ambulance Service N/A N/A -0.83 N/A N/A N/A N/A 0.02 

Watertown Fire Dept. & Ambulance Service N/A N/A N/A N/A N/A N/A N/A 0.07 

Brookings Ambulance Service N/A N/A N/A 27.97 -1.31 0.93 219.14 0.03 

Dell Rapids Community Ambulance Service N/A N/A -0.64 -8.75 0.19 2.33 404.52 0.21 

Humboldt Fire& Ambulance Service -1.84 N/A N/A 19.78 -0.98 5.26 262.27 0.30 

Med Star Paramedic Ambulance N/A N/A -1.35 N/A N/A N/A -142.71 0.13 

Lennox Area Ambulance -0.99 N/A -0.84 27.75 -1.12 3.07 -134.28 0.35 

Inwood Ambulance Service N/A N/A -0.92 N/A N/A 1.40 N/A 0.26 

Beresford Community Ambulance Service N/A N/A N/A N/A N/A N/A N/A 0.17 

Yankton County EMS N/A 0.86 N/A N/A N/A N/A N/A 0.07 

Clay County Ambulance Service N/A 0.83 -0.61 N/A N/A 1.17 N/A 0.18 

Missouri Valley Ambulance Service N/A N/A N/A -77.28 1.42 24.07 2890.00 0.35 

Butte County Ambulance Service 1.02 1.15 N/A N/A N/A 0.87 88.47 0.20 

Spearfish Emergency Ambulance Service 1.00 1.16 N/A N/A N/A 0.87 88.71 0.20 

Lead - Deadwood Regional Hospital 

Ambulance 

1.00 1.16 N/A N/A N/A 0.87 88.86 0.20 

Sturgis Fire Dept. 1.00 1.16 N/A N/A N/A 0.87 88.82 0.20 

Hill City Ambulance Service 0.97 1.17 N/A N/A N/A 0.87 89.47 0.20 

Hot Springs Volunteer Ambulance Service 0.94 1.18 N/A N/A N/A 0.86 90.14 0.20 
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5. CONCLUSIONS AND RECOMMENDATIONS 
 
5.1 Conclusions 

 

This study established data-driven performance metrics for EMS by accomplishing three tasks: geospatial 

analysis, optimization of EMS station locations, and EMS service performance analysis and evaluation. 

The data used in this study include EMS ambulance data, station data, and highway network information. 

Although three-year EMS data (2011-2013) were collected and analyzed, results are based on the 2013 

EMS data for brevity and consistency. 

 

Geospatial statistics (such as Getis Ord G*) helped discover the clustering of 911 calls. Many EMS 

stations are located within the proximity of 911 call clusters. The spatial association of 911 calls and EMS 

stations was confirmed visually and by the Ripley’s cross-K function. This finding should not be a 

surprise because both 911 calls and EMS stations are more likely to be in populous areas; however, the 

co-location of the 911 calls and EMS stations does not always guarantee a timely and swift service. To 

evaluate the positioning and service quality of each EMS station, two performance indexes were 

developed: Performance Index I measured the 8-minute coverage ratio of each EMS station, and 

Performance Index II provided the percentage of the cases with an actual ERTime within 8 minutes and 

the total percentage of cases within the 8-minute coverage area. A well-positioned station with well-

trained staff should be able to respond to more 911 calls within 8-minutes and/or should have a higher 

percentage of successes if a 911 call is located within the estimated 8-minute coverage area.  

 

If the service provided by the current EMS stations is not sufficient, the stations can either be relocated or 

augmented to increase the service coverage and quality. All stations should be strategically located to 

maximize their coverage. The options for optimizing EMS station location were explored, and two 

counties were selected: Todd County (high demand with few stations) and Minnehaha County (moderate 

demand with multiple stations). Two targets were set up for increasing coverage ratio and service quality. 

Optimal solutions were obtained by running the genetic algorithm in the R software. Extensive 

comparisons have been performed between optimal locations and existing locations under different 

scenarios (i.e., relocating or adding more service stations). With the help of accurate information, the 

optimization tool can help the EMS agencies to strategically plan new stations or relocate existing stations 

to provide better services with limited resources.  

 

A regression analysis was performed on en route time based on the 911 calls within the 8-minute 

coverage area for each EMS station. In previous analyses, a total of 13 input variables were identified, 

including six case-specific and seven station-specific variables. Models with different assumptions and 

combinations of variables were developed and compared. The results show that GWR significantly 

increased the model performance compared with MLR. The statistical test also revealed that the GWR 

model outperformed the MLR model. The comparison showed that some variables may be spatially 

invariant. Consequently, a mixed GWR was applied, and coefficient estimates of significant variables 

were obtained for each station. The mixed GWR model not only identifies statistically significant factors 

that accelerate or delay the EMS service at the station level, but it provides a more accurate prediction of 

en route time.  
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5.2 Recommendations for Future Work 
 

Several recommendations for future research were uncovered in this study. Linking EMS data with 

patient’s outcome is of strong interest because there is no direct evidence to prove that a shorter total 

EMS response time leads to a less severe consequence. However, such a valuable evaluation cannot be 

performed with the EMS information at its current capacity and accuracy but can be linked to the hospital 

data, which is difficult to obtain. Thus, the availability of perfectly matched hospital data is essential for 

the patient outcome analysis associated with an EMS response. 

 

A lack of quality data can be a main factor affecting analysis results. Rural states like South Dakota have 

a very low annual EMS call volume, making it difficult for researchers to recognize meaningful trends in 

the data. A small dataset can be further deteriorated by missing or low-quality data. For example, the 

2013 dataset had 36,198 emergency calls, yet valid information was provided for only 13,041 (36%) of 

the responses. Hence, it is strongly recommended to improve the EMS data quality in future data 

collection. More advanced methodologies should be developed to minimize the impact of poor or missing 

data. 

 

Lastly, although the GWR model has substantially improved the model prediction accuracy, its overall 

goodness-of-fit is quite low. Without other supporting information to explain the parameter estimates, the 

location-dependent estimates of the significant parameters are less enlightening. Researchers should 

explore other models, such as spatial filtering, that may account for spatial heterogeneity. 
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