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ABSTRACT 
 
Concrete has been used in dams, bridges, and highway pavements in which freeze-thaw process 

and cyclic loading are considered as important factors affecting its mechanical behavior during 

its service life. Damage caused by frost expansion is a primary concern when designing concrete 

structures in cold weather regions. It is known that the onset of damage within concrete can be 

accelerated when a freeze-thaw cycle occurs while a structure is subjected to an external loading. 

Also, concrete under fatigue loading gradually loses its strength with an increase in the number 

of load cycles regardless of the loading path (uniaxial or biaxial) and fails under loading 

significantly less than its strength. The strength reduction and more compliant behavior in 

concrete are due to widespread micro-cracks that form during freeze-thaw cycles as well as 

fatigue loading. Under such processes, the mechanical properties such as strength, stiffness, and 

ultimate strain are affected. In this report, changes in the mechanical properties for concrete and 

under fatigue loading and freeze-thaw cycles are investigated. Modern theories of damage 

mechanics with rate independent approach are extended to cover fatigue loading and freeze-thaw 

cycles. Different softening functions are proposed to predict the mechanical properties of 

concrete as the number of cyclic loading as well as freeze-thaw cycles increases. The results of 

the model are compared to the experimental data available in the literature that show a good 

correlation. 
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EXECUTIVE SUMMARY 
 

Concrete has been used in various structures due to its unique features such as high compressive strength, 

good resistance to aggressive and moist environments compared to other construction materials, and 

enhancement in strength and deformation capacity under confining stresses. This report presents 

constitutive modeling of concrete after application of fatigue loading as well as freeze-thaw processes. 

Concrete under fatigue loading gradually loses its strength with an increase in the number of load cycles 

regardless of the loading path (uniaxial or biaxial) and fails under a loading level significantly less than its 

strength. In addition, it is widely accepted that concrete shows more flexible behavior under freeze-thaw 

process as well as fatigue loading due to widespread micro-cracks that accumulate during both conditions. 

The presence and the formation of micro-defects deteriorate concrete and affects its mechanical behavior 

such as strength, stiffness, and ultimate strains. In this research report, a rate independent model is 

presented to cover concrete response to fatigue loading and freeze-thaw cycles. Different softening 

functions are proposed to predict the mechanical properties of concrete as the number of cyclic loading as 

well as freeze-thaw cycles increases. The results of the model are compared to the experimental data 

available in the literature which show a good correlation. 

 

.
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1. INTRODUCTION 
 

Concrete is a composite material, which has been widely used as a construction material in many 

types of infrastructures in the past few decades because it possesses various useful properties. 

Some of the properties that make concrete a preferable material compared with other materials in 

construction are as follows: ease of production, economically appropriate, formability to any 

shape, relatively high compressive strength, and resistance to extreme environmental conditions 

such as moisture.  Concrete is used as the primary material in structures such as dams, bridges, 

airports/highway pavements, and power plants. Concrete in these structures is generally 

subjected to different loads such as axial, bending, and torsional loadings, which affect its 

mechanical behavior and its strength capacity. Therefore, behavior of concrete and changes in its 

mechanical properties due to the application of various types of loadings are important factors 

that could have significant impacts on the design of structures. Researchers have attempted to 

understand the complex behavior of concrete by developing new models. Although various 

models have been proposed thus far, there is still no comprehensive model that could predict the 

behavior of concrete thoroughly. 

 

Concrete has some unique mechanical properties compared with other construction materials 

such as metal. Concrete is almost 10 times stronger under compressive loading than under tensile 

loading. Its strength and stiffness are dependent on the stress state that concrete is subjected to. 

One could say that concrete’s strength and deformational capacities under biaxial compressive 

loading are enhanced compared with uniaxial loading. In general, it has been shown 

experimentally that strength and ductility of concrete increase under confining pressure.  

 

Structural analysis of bridge decks and pavements show that bi-axial stress states are the 

dominant form of load paths in such structures. Based on such analysis and information, many 

experimental research efforts have been done on the mechanical behavior of concrete under 

monotonic and fatigue uniaxial, biaxial, and some triaxial loading and subsequently many 

theoretical models have been proposed.  

 

Moreover, many bridges and pavements are constructed in regions with extreme cold climates, 

like North Dakota, where the freeze and thaw process becomes an important factor in influencing 

the mechanical behavior of concrete. Voids and microcracks are intrinsic parts of the concrete 

that let the water and moisture enter the concrete. In warm seasons, water and moisture infiltrate 

the material and fill up the voids and microcracks and, during cold seasons, the entrapped water 

freezes. The result of this process is the generation of internal hydraulic pressure, which induces 

tensile stresses inside the concrete microstructure. Since concrete has a low tensile strength; it 

cracks and additional microcracks and voids are formed letting more water to infiltrate. 

Repeating these cycles over a period of time would cause damage to increase and the strength of 

the concrete gradually to decrease to the point where sudden failure due to applied service loads 

would occur. 

 

Since fatigue loading and freeze-thaw processes are important factors in the design life of 

concrete in bridges and pavements, the need for a model that could predict the behavior of 

concrete under these conditions has become more paramount. 
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This research attempts to develop a rigorous mathematical model based on a class of continuum 

damage mechanics. In this approach, concrete is a composite material composed of cement paste 

phase and aggregates. Since it is a non-homogeneous material, its mechanical properties are 

direction dependent. Concrete under loading shows a nonlinear behavior due to two different 

microstructural changes. These changes are due to formation of microcracks and occurrence of 

plastic flow. Microcracks nucleate and propagate upon the application of loads on concrete. 

Microcracks result in an irreversible process in concrete named damage. Damage is an 

anisotropic process that depends on the direction in which loads are being applied. The plastic 

flow, which is not studied in this research, happens when a significant confining pressure state is 

present. The plastic flow is the dislocation process of aggregates field that occurs along slip 

planes under internal shear stresses during loading. When the dislocation happens, the number of 

bonds that are destroyed are the same as the number of bonds that are created. Therefore, in this 

case no damage occurs to the concrete and consequently no strength and stiffness reduction will 

occur (Reberg, 2013). 

 

The next section will discuss the mechanical behavior of concrete under different loading paths 

and freeze-thaw processes. In Section 3, the thermodynamics and damage mechanics concepts 

will be explained. In Section 4, the literature review will be provided. In Section 5, the new 

model is proposed in order to predict the stress-strain behavior of concrete under freeze-thaw 

cycles accurately. The model will be capable of predicting the reduction in modulus of elasticity 

and increase in the ultimate strain, strain at which failure occurs, as the number of cycles of 

freeze and thaw (CFT) increases.  In Section 6, a new model for concrete under fatigue loading 

will be developed by incorporating a new factor into the softening function in order to take the 

effect of mean stress into consideration. Conclusion and future work will be presented in Section 

7, followed by a list of references.  
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2. REVIEW OF MECHANICAL BEHAVIOR OF CONCRETE 

 
2.1 Introduction 
 

To model the behavior of concrete under loading, a thorough understanding of damage 

processes, which lead to changes in the mechanical properties of the material, is needed. The 

complexity of concrete characterization has amplified the need for experimental studies. In this 

section, the effects of monotonic and cyclic multiaxial loading, as well as the freeze-thaw 

process on the mechanical behavior of concrete, are presented. In order to do so, a literature 

review has been done on multiaxial experimental tests on concrete for monotonic and fatigue 

loading followed by an investigation on the influence of CFT on concrete properties. The results 

have been used to develop two anisotropic models, which could capture the behavior of concrete 

under fatigue loading with various mean stresses as well as the freeze and thaw process. 

 

The complex behavior of concrete is attributed to its microstructure, which is composed of 

different phases. The linear or nonlinear behavior of concrete depends on the amplitude of 

applied loading. Basically, an increase in amplitude of loading would lead to further nonlinearity 

of concrete behavior. From experimental investigations, it is observed that at stress levels of 

about 15% to 30% of the uniaxial compressive strength, the occurrence of microcracking results 

in nonlinear inelastic response (Karnawat, 1997). 

 

However, microcracks are also the intrinsic features of concrete. It means that prior to any 

external loading, microcracks exist within the concrete. These microcracks could be found in the 

cement paste and/or at cement matrix/aggregate interface as well (Dhir and Sangha, 1974; Mehta 

and Monteiro, 2006). By applying loading on concrete, the pre-existing microcracks start to 

propagate to the cement paste and the ones that already exist in the cement paste would 

propagate until they reach surrounding aggregates. In addition, new microcracks may nucleate 

and propagate in the concrete as well. This process continues by increasing the amplitude of 

loading until a point at which microcracks form a macro scale crack. At this point, the cracks 

may coalesce and form major cracks, which finally results in material failure. 

 

There are a number of key experimental tests used throughout this research study to calibrate the 

theoretical model or used to compare with model results. These are summarized here, and 

include any relevant discussion or observation. 

 

2.2 Behavior of Concrete Under Monotonic Loading 
 
2.2.1 Monotonic Uniaxial Tension 
 

A schematic stress-strain curve for uniaxial tension is shown in Figure 2.1.The stress-strain curve 

obtained from this experiment is similar to the one obtained from uniaxial compression. The 

peak stress is designated by ft, which is known as the tensile strength of concrete. Concrete 

possesses a relatively low tensile strength compared with its compressive strength. Its 

compressive strength is almost 10 to 20 times greater than its tensile strength. This could be 

attributed to the different processes of nucleation and propagation of microcracks under tension 

versus compression. In tension, microcracks nucleate and propagate in the perpendicular 
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direction to the loading and result in splitting the specimen in relatively short intervals, as seen in 

Figure 2.2. By increasing microcracking, the available load-carrying area decreases, which 

results in an increased stress concentration close to the tip of the cracks. As a result, the cracks 

coalesce together and lead to material failure. 

 

For stress amplitude less than 60% of tensile strength, the nucleation and propagation of 

microcracks are quite small and the stress-strain behavior of concrete is approximately linear. 

But as the stress amplitude reaches 75% of the ultimate strength, the microcracks propagation 

becomes significant, resulting in a nonlinear stress-strain behavior. As more microcracks form 

upon further loading of the concrete, the strain increases. It could be noticed that the stiffness of 

material E decreases with increasing the strain, demonstrating the effect of microcracks and 

damage on the modulus of elasticity (Evans and Marathe, 1968). Upon unloading the concrete, 

there is always irreversible deformation present, which is called inelastic damage. This inelastic 

strain is due to irrecoverable damage occurred in concrete (Gopalaratnam and Shah, 1985; 

Reinhardt et al., 1986).  

 

Uniaxial tensile strength, ft, ultimate (failure) tensile strain, εu, Young’s modulus, E0, and 

Poisson’s ratio, ν, are some of the mechanical material properties that could be obtained from 

uniaxial tension experiment. 

 

Figure 2.1  Schematic stress-strain curve for uniaxial tension 
 

 

Figure 2.2  Microcracks nucleation pattern under uniaxial tension 
 

2.2.2 Monotonic Uniaxial Compression 
 

Monotonic uniaxial compression test is the most common test carried out on concrete specimens. 

This test could be carried out either on cylindrical or cubic specimens. Figure 2.3 shows a 

schematic stress-strain curve for uniaxial compression. The peak stress point on the curve is 

denoted as fc, which represents the compressive strength of concrete. In general, the test could be 
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run at an imposed stress rate or an imposed displacement rate with the latter allowing the post-

peak regime of the response to be obtained (Torrenti et al., 2010). The stress-strain curve 

obtained from the uniaxial compression test can be considered to be composed of several 

regions. At early stages of loading, at which stress does not exceed 30% of compressive strength, 

concrete displays a linear relation between stress and strain, indicating that microcracks are 

unaffected by loading. In other words, the pre-existing microcracks normally do not propagate 

and new microcracks do not form at this stage. At stress levels between 30% and 50%, concrete 

shows nonlinearity in its stress-strain behavior. In this range, the stress at the interface of 

aggregates and the cement paste reaches the interfacial bond strength between them and results 

in formation of new cracks at the interface. Microcracks do not, however, propagate into the 

matrix paste since matrix paste has a higher fracture toughness. The third stage occurs when the 

stress level is between 50% and 75% of compressive strength. At this stage, cracks appear and 

propagate into the mortar matrix. Stress redistribution occurs and as a result the stiffness of 

material is reduced and the material becomes more compliant. In the fourth stage, at which the 

stress level is greater than 75% of compressive strength, the cracks continue to nucleate and 

propagate at a greater rate. These cracks start to coalesce and form bigger cracks and 

consequently reduce the load-bearer section of the material. Finally, at a specific point concrete 

loses all its strength and fractures abruptly. 

 

The last part of stress-strain curve is the descending branch of the behavior following the peak 

point and is called strain softening. This part depends on various factors such as loading rate, 

stiffness characteristics of the loading machine, size of the test specimen, localization of the 

microcracks, etc. (Karnawat, 1997). Many researchers have claimed that the softening part is 

structural dependent rather than material dependent (Van Mier, 1984; Pijaudier-Cabot and 

Bazant, 1987; Schreyer, 1995). For concrete, the ultimate strain (strain at which failure occurs) 

under compressive loading is greater than the one under tensile loading. This could be attributed 

to the microcracks formation type (damage), which is different for each of the loadings. 

Modeling of the softening behavior of concrete that considers localization is beyond the scope of 

this research and will not be considered. 

 

Figure 2.3  Schematic stress-strain curve for uniaxial compression 
 
Microcracks formed during the processes of compressive loading alter the mechanical properties of 

concrete such as Young’s modulus, E0, and Poisson, ν. Many researchers have investigated the type of 
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crack formation due to uniaxial compression and concluded that the microcracks are formed parallel to 

the direction of the applied load. This type of crack formation is referred to as mode-II type cracks 

(Wastiels, 1979; Ashby and Amp, 1986; Horii and Nemat-Nasser, 1986). At the crack interfaces, shear 

stresses cause shear sliding and crack separation, Figure 2.4. 

 

Figure 2.4  Microcracks nucleation pattern under uniaxial compression 

When the stress level exceeds the point at which microcracks appear in concrete and damage occurs, 

permanent deformation will be generated. The permanent deformation, also referred to as inelastic strain, 

is due to misfit of crack faces or development of a crack tip process zone (Krajcinovic, 1985). Also, it is 

observed that the slope of the unloading curve is not the same as the initial slope of stress-stain curve, 

which represents the initial modulus of elasticity and is due to the degradation occurred because of 

nucleation and propagation of microcracks into the concrete.  

 

2.2.3 Monotonic Biaxial Compression 
 

Biaxial stress state represents the condition at which concrete is under loading in two orthogonal 

directions. To design structures such as pavements, bridges, shells, and plates, a study of biaxial 

stress on concrete is required. It has been reported by several researchers that concrete shows 

enhancement in both stress and strain behavior under biaxial compression. The strength 

enhancement of concrete under biaxial compression depends on the biaxial stress ratio 
𝜎1

𝜎2
. Figure 

2.5 shows the compressive strength of concrete under different load paths presented by (Lee et 

al., 2004). One can see that the maximum strength of concrete under compressive loading is at 

the stress ratio of 0.5. It could be seen from the experimental data that the strength of concrete 

under this load ratio increases about 20% to 30% of its uniaxial compressive strength. 

 

Concrete under biaxial compression also shows more ductile behavior than uniaxial compression 

due to the more confining effects of pressure. Under uniaxial compression, microcracks form 

more or less parallel to the direction of loading and the crack opening occurs in the perpendicular 

direction to loading. Under biaxial compressive state, with the addition of a confining load in an 

orthogonal direction, crack opening is inhibited such that it requires larger loads to cause a crack 

to form. As a result, concrete under biaxial compression displays more strength and ductile 

behavior than during uniaxial compression. Figure 2.6 shows the stress-strain behavior of 

concrete under various biaxial stress ratio as well as uniaxial provided by Shang and Song 

(2006). In this figure, the horizontal axis represents the strain and the vertical axis represents the 

normalized stress with respect to uniaxial strength of concrete. The symbol ξ is the stress ratio 
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(ratio of vertical stress to horizontal stress). This figure confirms the features discussed before 

about the behavior of concrete under multiaxial loading. It can be observed that the strength and 

deformational capacity of concrete increases by increasing stress ratio as confining pressure is 

provided. 

 

Figure 2.5  Biaxial strength envelope of concrete (Lee et al., 2004) 
 

2.2.4 Monotonic Biaxial Tension 
 

Microcracks propagation in biaxial tension is not inhibited as it is in compression. Therefore, 

microcracks propagate rapidly and form major cracks leading to a sudden rupture. Concrete 

behaves in the same way as in uniaxial tension and its ultimate strength is almost the same as its 

uniaxial tensile strength. It has been reported that the failure behavior of concrete under biaxial 

tension is the same as its behavior under uniaxial tension. In other words, a failure plane 

perpendicular to the direction of the largest tensile stress is formed (Kupfer et al., 1969). 

Krajcinovic (1985) argues that, however, the crack propagation is even more unstable in the 

biaxial tension loading than uniaxial loading. 

 

2.2.5 Monotonic Biaxial Tension-Compression 
 

Concrete under biaxial tension-compression shows less compressive strength than under uniaxial 

compression. Concrete behavior under this type of load state is a transition from behavior under 

uniaxial compression to behavior under uniaxial tension. When the magnitude of tensile loading 

decreases, the concrete stress-strain behavior is more like its behavior under uniaxial 

compression. By increasing the tensile stress level, cracks occurring in the perpendicular 

direction of loading influence the behavior of the material. 
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Figure 2.6  Stress-strain curves of concrete under uniaxial and biaxial loading, data by 

 Shang and Song (2006) 
 

2.3 Behavior of Concrete Under Fatigue Loading 
 

Fatigue is a process of deterioration of a material under repeated loading. This deterioration is 

generally due to nucleating and propagating of microcracks, which progress with the number of 

applied loading cycles. This irreversible process changes the mechanical properties of the 

material and leads to the failure at a level of loading much lower than the material static strength. 

 

Figure 2.7 shows the schematic stress-strain curve of concrete under fatigue loading as well as 

monotonic loading. As shown in the figure, fc is the static strength of concrete, εu is the 

monotonic failure strain, σmax is the maximum fluctuating stress of cyclic loading and also is the 

stress at which failure will occur after a specific number of cycles, σmin is the minimum 

fluctuating stress, which is zero in this case, Δσ is the stress range (σmax- σmin), εmin is the strain 

corresponding to the minimum fluctuating stress, εmax is the strain corresponding to the 

maximum fluctuating stress, and εf
u is the cyclic failure strain. It is observed that irreversible 

strain will be accumulated after each cycle due to the occurrence of microcracks during the 

fatigue process. Therefore, the material becomes more compliant under fatigue loading and as a 

result, failure strain becomes greater than the failure strain under monotonic loading as shown in 

Figure 2.7.  
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Figure 2.7  Schematic representation of stress-strain diagram of concrete under fatigue and 

 monotonic loading 
 

Generally, microcracks formed during the process of fatigue have the same nature as the ones 

formed under static loading. However, microcracks are more numerous and more widely spread 

under the cyclic loading than under the static loading. Fatigue microcracks occur around the 

aggregates and in the mortar matrix. Similar to the case of static loading, the favored direction of 

microcracks formation under compression is parallel to the direction of loading, and for the case 

of tensile loading it is perpendicular to the loading direction. 

 

 
Figure 2.8  Damage accumulated versus fatigue life ratio 

 

Fatigue microcracking is a progressive irreversible phenomenon that deteriorates the inner 

structure of the material. Damage that occurs during the fatigue process in concrete is known to 

consist of three stages. Figure 2.8 is a schematic representation of damage occurring during the 

cyclic loading. In this figure, vertical axis, shown as D, represents the damage in the material that 

occurred during the process of fatigue loading and horizontal axis, shown as 𝑛 𝑁𝑓⁄ , represents the 

ratio of number of cycles of loading to number of cycles to failure. It shows the existence of 

three phases in the process of the fatigue of concrete: 1) the initial phase, during which damage 
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occurs in the concrete at a higher rate as pre-existing cracks in the interface zone propagate until 

they reach a stable phase. This phase covers about 5% to 10% of the whole fatigue life of 

concrete. 2) the second phase, during which the rate of damage is stabilized corresponding 

roughly to the plateau part of the graph shown in Figure 2.8. It is thought that at this phase the 

stronger mortar phase arrests the rapid propagation of the interface cracks. This part covers up to 

80% to 90% of the whole fatigue life of concrete. 3) the final phase, during which the rate of 

damage is progressively accelerated due to the propagation of unstable cracks and finally leads to 

failure. This part constitutes almost 5% to 10% of concrete fatigue life. The same behavior for 

strain is reported by Song et al. (2005), which is shown in Figure 2.9. 

 

 
Figure 2.9  Strain versus fatigue life ratio, data by Song et al. (2005) 

 

One of the most common ways to represent the fatigue data of concrete is S-n curves. In this type 

of curve, y-axis represents the strength of the material and x-axis represents the number of load 

cycles. Consequently, each data point on the curve denotes the fatigue life of the material under a 

specific stress level. Concrete under cyclic loading loses its strength gradually with an increase 

in the number of load cycles no matter if the loading is uniaxial or multiaxial. During the cyclic 

loading, microcracks nucleate and grow to a stage at which they coalesce and form major cracks 

that reduce the carrying load section tremendously. At this point, the strength of the material has 

decreased and becomes equal to the amplitude of the cyclic loading, which will cause a sudden 

rupture in the material.  It has been argued that at any given cycle, the fatigue strength of 

concrete under biaxial compression is greater than that under uniaxial compression (Su and Hsu, 

1988; Lu et al., 2007). This is the result of the confinement provided in the biaxial loading state. 

This confinement restricts the nucleation and propagation of microcracks by applying load in the 

perpendicular direction. Figures 2.10 – 2.12 show S-n curves for various load paths presented by 

Yin and Hsu (1995). Fatigue tests are generally very scattered. In the case of concrete, the 

fatigue life for a given stress level may vary in the ratio of 1 to 100. Therefore, the fatigue 

strength is not defined by one single average value. A correct representation must include a 

notion of probability (Holmen, 1982; Siemes, 1982; Yang, 1994).  
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Figure 2.10  S-n curve of plain and fiber concrete under uniaxial compression, data by 

 (Yin and Hsu, 1995) 

 

 
Figure 2.11  S-n curve of plain and fiber concrete under biaxial compression with stress ratio of 

 0.5, data by Yin and Hsu (1995) 

 

In addition to strength reduction, cyclic loading affects the modulus of elasticity and deformation 

capacity of concrete as well. Awad (1971) and Gao and Hsu (1998) have investigated the effects 

of fatigue loading on ultimate strain of concrete (strain at which failure occurs) and concluded 

that this strain increases under the cyclic state compared with the one under monotonic state. 

Figure 2.13 shows the increase in failure strain by increasing the number of cycles to failure. 

Each data point on the graph represents a specific fatigue loading with different amplitude. The 

data on the graph, from left to right, correspond to the monotonic and fatigue loading with the 

maximum fluctuating stresses of 0.95, 0.9, 0.85, and 0.5, respectively. Awad (1971) has 

concluded that ultimate strain and irreversible strain, accumulated after each cycle prior to 

failure, depend on the number of cycles that load is being applied.   
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Figure 2.12  S-n curve of plain and fiber concrete under equal biaxial compression, data by  

 Yin and Hsu (1995) 

 

 
Figure 2.13  Failure strain versus number of cycles to failure, data by Awad (1971) 

 

In addition to maximum stress, Aas-Jakobsen and Lenschow (1973) and Hsu (1981) have shown 

that stress range also has significant effects on the fatigue life of concrete. In order to show the 

stress range influence on fatigue life, the term stress ratio R is used. R is the ratio of minimum 

fluctuating stress to maximum fluctuating stress. The range of R is between 0, corresponding to 

minimum fluctuating stress of zero, to 1, corresponding to sustained loading at which the 

maximum and minimum fluctuating stresses are the same. Figure 2.14 schematically shows the 

effect of R on the fatigue life in the S-N diagram. It has been shown that by keeping the 

maximum stress unchanged and decreasing the stress range (increasing R), the number of cycles 

to failure will increase. Therefore, maximum stress and stress range are the factors that affect the 

ultimate and irreversible strain. These results have been investigated by Awad (1971) and their 

validation has been shown. 
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Gao and Hsu (1998) have argued that the fatigue strain of concrete comprises three parts: 

irreversible strain caused by cyclic creep under the action of average stress; irreversible strain 

caused by fatigue cracks; and fatigue strain range. Also, Gao and Hsu (1998) have reported that 

the modulus of elasticity of concrete degrades during the fatigue process due to damage 

accumulation as a result of microcracking. 

 

Figure 2.14  Schematic representation of S-N curves for various values of R 

 

The fatigue behavior of concrete depends on the characteristics of the material, the type and level 

of loading, the frequency and shape of the cycle, and the environmental conditions. In fact, the 

fatigue strength of concrete depends on the same parameters that affect its static strength such as 

nature and type of the aggregates, aggregate mixture grading, proportion of cement, water to 

cement ratio, porosity, and method of casting and curing (Raithby and Galloway, 1974; Klcriber, 

1982; Petkovic et al., 1990; Kim and Kim, 1996; Ahmed et al., 1999). In addition to the material 

parameters, concrete fatigue strength also depends on the loading specifications such as 

amplitude of stress, mean stress, stress range, load path (biaxial stress ratio), and loading 

frequency (Antrim and Mclaughlin, 1959; Assimacopoulos et al., 1959; Karsan and Jirsa, 1969; 

Tepfers and Kutti, 1979; Hsu, 1981; Qiao and Yang, 2006). The effects of first three will be 

discussed when the model is demonstrated. The description of the fatigue loading contains two 

time-related parameters, namely the frequency and the shape of the cycle. The influence of these 

two factors are moderate in the case of low-level cyclic loading at which the maximum stress 

level is less than 80% of the static strength. 

 

In the case of concrete, for higher level of loading, the process of damage is governed by the 

duration of process more than its cyclic nature. It has not been established yet whether concrete 

exhibits fatigue limit. 

 

The S-N curves introduced previously are established just for the case of identical loading 

cycles. In reality, fatigue loading consists of cycles of loading with various amplitudes and stress 

ranges. To predict the fatigue life of concrete due to variable cyclic loading, two solutions have 

been proposed; rule of linear accumulation and rule of non-linear accumulation. These methods 

consist of quantifying the evolution of fatigue process by means of a rule of damage 

accumulation. The most common method used for the linear cumulative damage is Palmgren-
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Miner (Miner, 1945). Figure 2.15 is an illustration of the linear Palmgren-Miner law for the 

amount of damage accumulated in the concrete due to fatigue loading. In these figures, S 

represents the strength of the material, 𝑁𝐹 is the number of cycles of loading to failure, D is the 

damage occurred in the material due to cyclic loading, and δ is the ratio of number of cyclic 

loading to the number of cycles of loading to failure. 

 

An efficient model, which could capture the behavior of concrete, is needed because fatigue 

loading has a significant influence on concrete serviceability, and that concrete failure under this 

loading condition is an abrupt phenomena with serious consequences. 

 

2.4 Freeze-Thaw Process 
 

In recent years, studying the freeze-thaw processes on concrete has developed considerably due 

to its significant effects on mechanical properties of concrete such as stiffness, deformation 

capacity, and strength. Concrete is a porous material that can absorb water and moisture into its 

intrinsic pores and previously formed shrinkage cracks. Therefore, concrete is a material 

susceptible to freeze-thaw processes and its mechanical properties deteriorate during this 

process. The amount of water absorbed by concrete depends on different parameters such as 

concrete mixture proportions, degree of saturation, presence of chemical admixtures, physical 

characteristics of the cement and aggregates, and its air contents. Basically, the freeze-thaw 

process can be thought of as a complex form of fatigue loading. The damage occuring due to 

freeze-thaw process into the concrete could be accelerated in the presence of significant external 

loading (Miao et al., 2002). 

  

Damage occurred in the concrete during the process of freeze-thaw could be categorized into 

three types explained in the following sections. 

 

 
Figure 2.15  Illustration of the linear Palmgren-Miner law 
 

2.4.1 Types of Freeze-Thaw Damages in the Concrete 
 
2.4.1.1 D-cracking 
 

D-cracking is a form of concrete deterioration due to the freeze-thaw process associated with the 

use of coarse aggregates that disintegrate when they become saturated. Typically, D-cracking 

occurs around joints and edges of pavement where concrete is exposed to wet and dry cycles at 

both the top surface and sides of slab. In addition, curling and warping would induce stress 
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concentration at corners and edges of the concrete slab, making this region of slab more 

susceptible to D-cracking. Figure 2.16 shows the D-cracking in concrete pavement due to 

freezing-thawing. 
 

 
Figure 2.16  D-cracking in concrete pavement (picture from www.civildigital.com) 
 

2.4.1.2 Crumbling 
 
Crumbling or scaling is a type of concrete deterioration occuring because of the freeze-thaw 
process. It appears as a separation of a thin layer of the top surface from the body of concrete. 
The separated thin brittle layer then crumbles under traffic and leaves underneath aggregates 
exposed. Parts of concrete exposed to ponds of water and salt solution or continuous wetting 
are susceptible to this type of damage. Figure 2.17 illustrates various examples of crumbling in 
concrete sidewalks. 
 

 
Figure 2.17  Crumbling in concrete (picture from www.greenpiece1.com) 
 

2.4.1.3 Internal Cracking 
 

Hydraulic pressure and ice accretion are two mechanisms that cause internal damage in concrete 

(Detwiler et al., 1989). As mentioned earlier, water and moisture exist in concrete’s voids and 

pores. As temperature drops below 0° C, water in capillary pores freezes and expands almost 8% 

to 9% of its water phase volume. If the required space due to expansion is more than the space 

provided by the pores and voids of concrete, the excess volume of frozen water induces 

hydraulic pressure on the cement paste. The magnitude of this hydraulic pressure depends on the 

permeability of the cement paste, the degree of saturation, the distance to the nearest unfilled 

void, and the rate of freezing. If the induced pressure exceeds the tensile strength of the cement 

paste at any point, it will cause local cracking at that point. Afterward, during the thawing 

portion of this process, more water enters the cracks; by repeating this cycle, deterioration in 

concrete progresses. This process typically does not occur at relatively low freezing rates. 
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In the case of low freezing rate, the hydraulic pressure is not great enough to damage the cement 

paste, but still, pressure may be produced because of ice accumulation in the capillary pores. 

According to Cordon (1966), water in the gel pores freezes at almost -78° C. This is due to the 

small radius of gel pores that form strong surface tension forces applied on the surface of the 

water. Therefore, when the temperature drops below 0 °C, the water in the gel pores remains in a 

liquid state but becomes supercooled. Since it has a higher free energy than the ice in the 

capillaries, it moves from gel pores into the capillaries where it is more likely to freeze (Detwiler 

et al., 1989). As a result, the volume of concrete in the form of gel pores decreases and the 

volume of the capillaries increases due to expansion of water. During the thawing process, some 

of the water returns to the gel pores, but the original state of the material will not be obtained as 

this process is not reversible. 

 

2.4.2 Making Durable Concrete to Freeze-Thaw Process 
 

Thus far, it has been pointed out that concrete is susceptible to cycles of freeze-thaw. Its 

mechanical properties deteriorate gradually as the number of freeze-thaw cycles increases. In 

order to improve the concrete resistance to freeze-thaw cycles, different approaches could be 

utilized, and which will be discussed in the following section (Detwiler et al., 1989). 

 

2.4.2.1 Air Entrainment 
 

There are two kinds of air bubbles in concrete: entrapped and entrained. Entrapped air bubbles 

are unintentionally generated into the cement paste during the process of mechanical mixing, 

whereas entrained air bubbles are intentionally incorporated by adding chemical admixtures.  

 

The factor that has the most influence on the durability of concrete in the freezing and thawing 

process is providing a system of well-distributed entrained air voids in concrete. It is believed 

that entrained air voids reduce the hydraulic pressure by providing free space for frozen water to 

flow through. Induced hydraulic pressure due to the freeze-thaw process increases with distance 

from a void. The magnitude of hydraulic pressure is less than the tensile strength of cement paste 

in the specific radius of air voids. The enclosed zone by this radius could be assumed the 

protection zone for the cement paste. Therefore, in order to reach this protection zone all over the 

cement paste, a system of well-distributed air voids is needed. As result, during freezing time, ice 

can accumulate in the air voids without building up excessive pressure. The maximum 

acceptable air-void spacing factor recommended by ACI is 200 µm. 

 

2.4.2.2 Water-Cement Ratio 
 

Decreasing the water-cement ratio has a significant influence on the freeze-thaw durability of 

concrete. A low water-to-cement ratio makes a cement paste with higher tensile strength that can 

better withstand the pressure imposed by hydraulic pressure. Furthermore, a lower water-cement 

ratio will cause less initial freezable water in the concrete voids. Finally, a lower water-cement 

ratio decreases the permeability of concrete, which is an advantage in moist environments where 

water will enter the concrete. Therefore, the lower the permeability, the longer it takes to reach 

the critical level of degree of saturation. 
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2.4.2.3 Aggregates 
 

Like cement paste, aggregates absorb water and may be subject to hydraulic pressure. 

Aggregates that absorb enough water and reach the critical degree of saturation may expand due 

to frozen water expansion. Unlike cement paste, aggregates possess high tensile strength; 

therefore, they may not fracture, but their expansion will cause distress in the surrounding paste, 

which results in cement paste deterioration. 

 

2.4.2.4 Curing 
 

Another factor that affects the concrete durability is curing. The greater the degree of hydration, 

the less freezable water in concrete pore structures and the higher the tensile strength of cement 

paste. Adequate time for curing will let the pore structures in concrete to be well spread out. In 

addition, if the concrete sufficiently dries out during the process of curing, it will be less 

susceptible to freeze-thaw damage. 

 

2.4.3 Freeze-Thaw Durability Estimation Test 
 

The most common test used to estimate the durability of concrete under freeze-thaw cycles is 

ASTM C 666, “Resistance of Concrete to Rapid Freezing and Thawing.” This test could be done 

through two different procedures to determine the effects of variations in both properties and 

conditioning of concrete in resistance to freezing and thawing cycles. In procedure A, 

rectangular prisms of concrete are frozen and thawed in water; in procedure B, specimens are 

frozen in air and thawed in water. In each cycle of freeze-thaw, the specimens will be cooled 

from 40° to 4° F and then warmed to 4° F within two to five hours. In the end, relative dynamic 

of modulus of elasticity and durability factor will be calculated. In addition, two other tests, 

ASTM C 671, “Critical Dilation of Concrete Specimens Subjected to Freezing” and ASTM C 

682, “Evaluation of Frost Resistance of Coarse Aggregates in Air-Entrained Concrete by Critical 

Dilation Procedure,” are being used to determine the durability of concrete. None of the tests 

mentioned are intended to provide a quantitative measure of the length of the service of concrete. 

 

2.4.4 Mechanical Changes in Concrete due to Freeze-Thaw Processes 
 

In order to quantitatively investigate the effects of freeze-thaw processes on mechanical 

properties of concrete, several research studies (Hasan et al., 2004; Shang and Song, 2006; Hasan 

et al., 2008; Shang et al., 2008; Duan et al., 2011; Liu and Wang, 2012) have been done on 

concrete. These studies have reported similar results obtained from experiments run on concrete 

under freeze-thaw. Shang and Song (2006) investigated the stiffness, strength, and deformation 

performance of concrete after 25, 50, and 75 freeze-thaw cycles subjected to biaxial 

compression. 

 

Experimental data reported by Shang and Song (2006) show that concrete loses its strength by 

applying freeze-thaw cycles. Figure 2.18 illustrates the effects of freeze-thaw cycles on the 

strength of concrete under various load paths. Loading in direction 3, 𝜎3 is the primary loading 

direction while 𝜎2 is the lateral loading. As Figure 2.18 shows, the strength of concrete, 

regardless of the load path, decreases due to microcracks formed during the freeze-thaw process. 
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Likewise, it can be inferred from experimental data that the rate of decrease in strength is not the 

same for different load paths and is path dependent. The highest rate is for uniaxial loading while 

the lowest is for biaxial with a stress ratio of 0.75. Similar results were reported for concrete 

under triaxial loading state by Shang et al. (2008). Shang and Song (2006) emphasized that 

confining loads reduce the damage caused by freeze-thaw cycles. They also claimed that the 

effect of freezing and thawing cycles on plain concrete does not change the failure mode under 

biaxial compression. It means that damage mode occurred in the form of crack opening and shear 

sliding under compressive loading will remain unchanged after cycles of freeze and thaw are 

applied. 

 

 
Figure 2.18  Strength versus number of CFT for various load paths, data by 

Shang and Song (2006) 

 

A similar conclusion could be drawn for deformation characteristics of concrete under freeze-

thaw cycles by studying the experimental data reported by Shang and Song (2006). The 

influence of freeze-thaw cycles on the principal 𝜀3 under biaxial compression for various load 

paths is shown in Figure 2.19 by Shang and Song (2006). It could be seen from Figure 2.19 that 

the principal strains 𝜀3 under biaxial compression with the same stress ratio increases as the 

freeze-thaw cycles are applied. This could be attributed to the formation of microcracks during 

the process of freeze-thaw, which result in the concrete being more compliant and having a 

higher strain failure. One can note that the principal strain under biaxial loading state is greater 

than that under uniaxial loading for the same number of freeze-thaw cycles. This shows that 

concrete behaves more ductile under biaxial compressive loading than uniaxial loading due to 

the occurrence of crack opening in the perpendicular direction for uniaxial compressive loading. 

In the case of biaxial loading, crack opening in the perpendicular direction to loading is inhibited 

by the opposing compressive load in the corresponding direction. It also should be noted that the 

rate of increase in ultimate strain due to freeze-thaw cycles depends on the load path applied on 

the concrete. This rate is higher for biaxial loading than uniaxial. 
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Figure 2.19  Ultimate strain versus number of CFT, data by Shang and Song (2006) 
 

 
Figure 2.20  Young’s modulus versus number of CFT, data by Liu and Wang (2012) 

 

According to the data published by Shang and Song (2006) and Liu and Wang (2012), modulus 

of elasticity of concrete decreases as the cycles of freeze-thaw increase. Figure 2.20 illustrates 

the experimental data obtained by Liu and Wang (2012) for changes of modulus of elasticity by 

applying freeze-thaw cycles . When freeze-thaw is applied on a concrete specimen, new cracks 

nucleate and propagate into the concrete. By repeating this process, more cracks will be 

generated while the existing cracks becomes larger. As a result, concrete becomes softer and its 

modulus of elasticity decreases. 
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Figure 2.21  Stress-strain curves after freeze-thaw under uniaxial loading, data by  

 Shang and Song (2006) 

 

As a result, it could be noticed that freeze-thaw has a significant influence on strength, 

deformation, and stiffness of the concrete. Based on the experiments done by Shang and Song 

(2006), all these effects could be summarized in the stress-strain curves of the concrete after 

freeze-thaw cycles. Figures 2.21 – 2.23 show the stress-strain curves of concrete under various 

load paths after different number of cycles of freeze-thaw. These figures show that the freeze-

thaw process decreases the strength of the concrete by developing new microcracks into the 

material. Also, it can be observed from the figures that the ultimate strain of the concrete 

increases by applying freeze-thaw cycles. A decrease in strength and increases in flexibility 

depend on the number of cycles of freeze-thaw applied. As the number of freeze-thaw cycles 

increases the strength decreases while ultimate strain increases. 

 

 
Figure 2.22  Stress-strain curves after freeze-thaw under biaxial loading with ratio of 0.5, data 

 by Shang and Song (2006) 



21 

 

 
Figure 2.23  Stress-strain curves after freeze-thaw under biaxial loading with ratio of 1, data by 

 Shang and Song (2006) 
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3. THERMODYNAMICS AND DAMAGE MECHANICS 
 
3.1 Introduction 
 

Thermodynamics is a branch of science used to describe the thermodynamical processes of a 

system such as mechanical, electrical, and chemical in equilibrium and relate properties to the 

changes in the energy of the system. Processes in thermodynamics are reversible and 

irreversible. The reversible processes related to solid mechanics are the ones with perfectly 

elastic deformation. In a reversible process, a single kinematic variable could be used to describe 

the state of a solid material by relating the stresses and strains. However in real cases, the solid 

material will experience inelastic deformation, which is counted as an irreversible process. In 

order to describe the state of the material under such processes, a single variable will not be 

sufficient. Therefore, a set of variables will need to be defined in order for the changes in 

material due to irreversible processes to be captured.  

 

The approach of the thermodynamics of irreversible processes is used in this research. In the 

following, the formulation will be cast within the framework of the internal variable theory of 

thermodynamics (Coleman and Gurtin, 1967; Kestin and Rice, 1969; Lubliner, 1972; 

Krajcinovic and Fonseka, 1981; Truesdell and Baierlein, 1985) and continuous damage 

mechanics is used to describe the damage occurred within concrete during loading. Also, 

concrete is assumed to be rate-independent and a single phase material that could be modeled as 

a continuum. 

 

3.2 Cauchy’s First Law of Motion 
 

The total force acting on a continuum body is assumed to be composed of a body force 𝒇𝑏 and a 

contact force 𝒇𝑐: 
 

𝒇 = 𝒇𝑏 + 𝒇𝑐 (3.1) 

 

Also it is assumed that the body force could be computed by taking the integral of a vector field 

𝒃(𝒓, 𝑡) over its volume: 

 

𝒇𝑏 = ∫𝒃(𝒓, 𝑡)𝜌𝑑𝑉

𝑉

 (3.2) 

 

where, V is the volume of the body, ρ is the density of the material, r is the position vector with 

respect to the origin in Eulerian coordinates, and t is time. 

 

Similarly the contact force is defined by integrating a vector field 𝒕(𝒓, 𝒏) acting on the body 

surface. 

 

𝒇𝑐 = ∫𝒕(𝒓, 𝒏)𝑑𝑠

𝜕𝑅

 (3.3) 
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where, n is the unit normal and ds is the infinitesimal surface of the material. 

 

The total force on the body causes the body to move with an acceleration a, therefore: 

 

𝒇 = ∫𝒂𝜌𝑑𝑉

𝑉

 (3.4) 

 

Thus the relationship mentioned earlier for total force will become: 

 

∫𝒂𝜌𝑑𝑉

𝑉

= ∫𝒃(𝒓, 𝑡)𝜌𝑑𝑉

𝑉

+ ∫𝒕(𝒓, 𝒏)𝑑𝑠

𝜕𝑅

 (3.5) 

 

According to Cauchy’s fundamental theorem, at the boundary surface of the body: 

 

𝒕 = 𝝈. 𝒏 (3.6) 

 

where, 𝝈 is the Cauchy stress tensor. By substituting Equation 3.6 into Equation 3.5 and applying 

the divergence theorem the surface integral becomes as a volume integral: 

 

∫𝒂𝜌𝑑𝑉

𝑉

= ∫𝒃(𝒓, 𝑡)𝜌𝑑𝑉

𝑉

+ ∫𝝈.𝛁𝑑𝑉

𝑉

 (3.7) 

 

where, 𝛁 is the divergence operator. Utilizing the equation above, Cauchy’s first law of motion 

will become: 

 

𝒂𝜌 = 𝒃𝜌 + 𝝈. 𝛁 (3.8) 

 

3.3 Thermodynamic formulation 
 
3.3.1 The First Law of Thermodynamics 
 

The first law of thermodynamics is about the conservation of energy in a system. In solid 

mechanics, the total energy is a summation of mechanical energy and heat energy. The 

mathematical representation of total energy is illustrated as follows: 

 

�̇� = 𝑃𝑖𝑛𝑝𝑢𝑡 + 𝑄𝑖𝑛𝑝𝑢𝑡 (3.9) 

 

In the equation above, 𝑃𝑖𝑛𝑝𝑢𝑡 is the energy input due to mechanical work and 𝑄𝑖𝑛𝑝𝑢𝑡 is the rate of 

change of heat of system. 𝑃𝑖𝑛𝑝𝑢𝑡 could be defined as the following: 

 

𝑃𝑖𝑛𝑝𝑢𝑡 = ∫𝒃𝜌. 𝒗𝑑𝑉 + ∫𝒗. 𝝈. 𝒏𝑑𝑆

𝑆𝑉

 (3.10) 
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where, 𝒗 is the velocity vector. Using divergence theorem, the equation above becomes: 

 

𝑃𝑖𝑛𝑝𝑢𝑡 = ∫𝒃𝜌. 𝒗𝑑𝑉 + ∫(𝒗. 𝝈). 𝛁𝑑𝑉

𝑉𝑉

 (3.11) 

 

𝑄𝑖𝑛𝑝𝑢𝑡 is the sum of the heat rate of internal source of the system and the heat flux through the 

boundary of the system, therefore it could be written as: 

 

𝑄𝑖𝑛𝑝𝑢𝑡 = ∫𝑟

𝑉

𝑑𝑉 − ∫𝒒. 𝒏𝑑𝑆

𝑆

 (3.12) 

 

Using the divergence theorem, Equation 3.12 becomes: 

 

𝑄𝑖𝑛𝑝𝑢𝑡 = ∫𝑟

𝑉

𝑑𝑉 − ∫𝒒. 𝛁𝑑𝑉

𝑉

 (3.13) 

 

Considering Equation 3.11 and by working on the right hand side, it becomes: 

 

 (𝒗. 𝝈). 𝛁 = 𝒗. (𝝈. 𝛁) + 𝑇𝑟((𝒗𝛁). 𝝈) (3.14) 

 

𝑇𝑟((𝒗𝛁). 𝝈) is the trace operation. It reflects the summation of diagonal components of a tensor. 

Utilizing the Cauchy’s law of motion equation the following is obtained: 

 

𝑃𝑖𝑛𝑝𝑢𝑡 = ∫𝜌𝒂. 𝒗𝑑𝑉 + ∫𝑇𝑟((𝒗𝛁). 𝝈)𝑑𝑉

𝑉𝑉

 (3.15) 

𝑃𝑖𝑛𝑝𝑢𝑡 = ∫𝜌�̇�. 𝒗𝑑𝑉

𝑉

+∫𝑇𝑟((𝒗𝛁). 𝝈)𝑑𝑉

𝑉

 (3.16) 

 

By substituting the equations above into Equation 3.9, it will be represented as: 

 

�̇� = ∫𝜌�̇�. 𝒗𝑑𝑉 + ∫𝑇𝑟((𝒗𝛁). 𝝈)𝑑𝑉 + ∫𝑟

𝑉

𝑑𝑉 − ∫𝒒. 𝛁𝑑𝑉

𝑉𝑉𝑉

 (3.17) 

 

Also, the total energy of a system could be written as a summation of total kinetic energy and 

internal energy: 

 

𝐸 = ∫
1

2
𝜌(𝒗. 𝒗)𝑑𝑣

𝑉

+ ∫𝜌𝑢𝑑𝑉

𝑉

 (3.18) 

 

where 𝑢 is the specific internal energy where the word “specific” means per unit mass. By 

differentiating the equation above with respect to time, the rate form of total energy becomes as: 
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�̇� =
𝑑

𝑑𝑡
(∫

1

2
𝜌(𝒗. 𝒗)𝑑𝑣

𝑉

+ ∫𝜌𝑢𝑑𝑉

𝑉

) = ∫𝜌�̇�. 𝒗𝑑𝑉

𝑉

+ ∫𝜌�̇�𝑑𝑉

𝑉

 (3.19) 

 

Combining Equations 3.17 and 3.19, the result will be: 

 

𝜌�̇� = 𝑇𝑟((𝒗𝛁). 𝝈) + 𝜌𝑟 − 𝒒. 𝛁 (3.20) 

 

By decomposing matrix 𝒗𝛁 into symmetric and anti-symmetric matrices, the rate of deformation 

tensor, D, and rate of rotation tensor, W, is obtained as follows: 

 

𝑫 =
1

2
(𝒗𝛁 + (𝒗𝛁)𝑻) (3.21) 

𝑾 =
1

2
(𝒗𝛁 − (𝒗𝛁)𝑻) (3.22) 

 

Since in this project, the deformations induced in concrete due to fatigue loading as well as 

monotonic loading after cycles of freeze-thaw are significantly small; therefore, the rate of 

deformation tensor D is assumed to be equal to the rate of strain tensor. As a result, Equation 

3.20 will become as follows: 

 

𝜌�̇� = 𝝈: �̇� + 𝜌𝑟 − 𝒒. 𝛁 (3.23) 

 

In the equation above ‘:’ represents the tensor contraction operator. One could notice that the rate 

of change of the internal energy per unit volume comprises three parts. 𝝈: �̇� represents the 

mechanical work input in the system, 𝜌𝑟 incorporates the changes in heat due to internal heat 

source, and 𝒒. 𝛁 represents the heat flow through the boundary of the system. 

 

3.3.2 The Second Law of Thermodynamics 
 

The first law of thermodynamics stated that the total energy in a system is constant and energy 

can transform/convert from one form to another without any energy dissipation. However, this is 

not a fact in reality, and energy could dissipate through different irreversible processes like 

friction. Therefore, to capture such irreversible processes, the second law of thermodynamics has 

been used. 

 

The second law of thermodynamics states that the rate of change of entropy in a system must be 

equal to or greater than the rate at which entropy is added by heat flux through the boundaries of 

the system and by the external heat source. Therefore, the Clausius-Duhem inequality is 

represented as follows:  

 
𝑑

𝑑𝑡
∫𝜌𝑠𝑑𝑉

𝑉

≥ ∫
𝜌𝑟

𝜃
𝑑𝑉

𝑉

−∫
𝒒

𝜃
. 𝒏𝑑𝑆

𝑆

 (3.24) 
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In the equation above, “s” represents the entropy and “𝜃” is the absolute temperature. If the 

inequality above becomes equal then it implies a reversible process. By applying the divergence 

theorem on the Clausius-Duhem inequality, it changes to: 

 

∫𝜌�̇�𝑑𝑉

𝑉

≥ ∫
𝜌𝑟

𝜃
𝑑𝑉

𝑉

− ∫
𝒒

𝜃
. 𝛁𝑑𝑉

𝑉

 (3.25) 

𝜌�̇� ≥
𝜌𝑟

𝜃
−
𝒒

𝜃
. 𝛁 (3.26) 

 

By introducing �̇� representing the rate of internal entropy production, the inequality shown above 

changes to the form below. This equation could be interpreted as additional entropy produced in 

a different way than an internal heat source or heat flux through boundaries of the system.  

 

𝜌𝜂 =̇ 𝜌�̇� −
𝜌𝑟

𝜃
+
𝒒

𝜃
. 𝛁 ≥ 0 (3.27) 

 

With some mathematical manipulation, the equation above becomes: 

 

𝜌𝜂 =̇ 𝜌�̇� −
𝜌𝑟

𝜃
+
(𝛁. 𝒒)

𝜃
−
(𝛁θ). 𝒒

𝜃2
≥ 0 (3.28) 

 

Moreover, by incorporating the rate of change in internal energy of the system and some 

modifications, the equation above could be re-written in the format below: 

 

𝜂 =̇ �̇� −
�̇�

𝜃
+
𝝈: �̇�

𝜌𝜃
−
(𝛁θ). 𝒒

𝜌𝜃2
≥ 0 (3.29) 

 

3.3.3 Thermodynamic Potentials and Damage Mechanics 
 

In order to obtain thermodynamic potentials, including Gibbs Free Energy (G), Helmholtz Free 

Energy (A), and Enthalpy (h), Legendre Transformation is used. The relationship between 

thermodynamic potentials is defined as follows: 

 

𝑢 − 𝐴 + 𝑔 − ℎ = 0 (3.30) 

 

Utilizing the Legendre Transformation leads to the following functional forms: 

 

𝐴 = 𝑢(𝑠, 𝝂𝑖) − 𝜃𝑠 (3.31) 

ℎ = 𝑢(𝑠, 𝒖𝑖) − 𝝉𝑖𝝂𝑖 (3.32) 

𝑔 = ℎ(𝑠, 𝝉𝑖) − 𝜃𝑠 (3.33) 

𝐺 = −𝑔 (3.34) 

 

In the equations above, 𝝂𝑖 is a set of internal parameters used to describe the state of a material. 

For small deformation, the relationship between Gibbs Free Energy, Helmholtz Free Energy, and 

internal energy are defined as: 
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𝐴(𝜺, 𝜃) = 𝑈(𝜺, 𝑠) − 𝜃𝑠 (3.35) 

𝐺(𝝈, 𝜃) = 𝝈: 𝜺 − 𝐴(𝑏, 𝜃) (3.36) 

 

where 𝝂𝑖 are interpreted as components of the strain tensor and 𝝉𝑖 are interpreted as the 

components of the Cauchy stress tensor. The following equations can be obtained as: 

 

𝑢 = 𝝈: 𝜺 + 𝜃𝑠 − 𝐺 (3.37) 

�̇� = �̇�: 𝜺 + 𝝈: �̇� + �̇�𝑠 + 𝜃�̇� − �̇� (3.38) 

 

By plugging the equations above into Clausius-Duhem inequality, we will have: 

 

�̇� − �̇�: 𝜺 − �̇�𝑠 −
𝒒. 𝜃𝛁

𝜃
≥ 0 (3.39) 

 

The Gibbs free energy could be written as a function of stress, absolute temperature, and damage 

parameter. 

 

�̇�(𝝈, 𝜃, 𝑘) =
𝜕𝐺

𝜕𝝈
: �̇� +

𝜕𝐺

𝜕𝜃
�̇� +

𝜕𝐺

𝜕𝑘
�̇� (3.40) 

 

Inserting the above equation into Equation 3.39 results in: 

 

(
𝜕𝐺

𝜕𝝈
− 𝜺) : �̇� + (

𝜕𝐺

𝜕𝜃
− 𝑠) �̇� +

𝜕𝐺

𝜕𝑘
�̇� −

𝒒. 𝜃𝛁

𝜃
≥ 0 (3.41) 

 

Since the equation above should hold true for any value of �̇� and �̇�, the following conclusion 

could be drawn: 

 

𝜕𝐺

𝜕𝝈
− 𝜺 = 0 (3.42) 

𝜕𝐺

𝜕𝜃
− 𝑠 = 0 (3.43) 

𝜕𝐺

𝜕𝑘
�̇� −

𝒒. 𝜃𝛁

𝜃
≥ 0 (3.44) 

 

Equation 3.44 is called dissipation inequality and represents the dissipative mechanism. If in a 

system no damage occurs, then the first term in Equation 3.44, which is a representation of 

damage rate, will be zero and the second term should be negative in order to satisfy Equation 

3.44. This complies with the principle of thermodynamics, which argues that heat travels from 

high to low temperature. The following results also could be concluded from Equation 3.42 and 

3.43: 
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𝜕𝐺

𝜕𝝈
= 𝜀 (3.45) 

𝜕𝐺

𝜕𝜃
= 𝑠 (3.46) 

 

Equations above show that by differentiating Gibbs Free Energy with respect to stress and 

absolute temperature, the results will be strain and entropy, respectively. Also, it could be further 

assumed that by taking the second derivative of Gibbs Free Energy with respect to stress and 

absolute temperature, the material compliance C and Specific heat ζ can be obtained, 

respectively. The mathematical representations of the definitions mentioned above with the 

definition of thermal expansion tensor β are shown in the following equations. 

 

𝜕2𝐺

𝜕𝝈2
= 𝑪(𝑘) (3.47) 

𝜕2𝐺

𝜕𝝈𝜕𝜃
= 𝜷(𝑘) (3.48) 

𝜕2𝐺

𝜕𝜃2
= 𝜁(𝑘) (3.49) 

 

In this research work, the effects of temperature on modeling the behavior of concrete under 

loading have been ignored. The general form of the Gibbs Free Energy could be obtained in the 

form below as a function of stress, temperature, and damage: 

 

𝐺(𝝈, 𝑘, 𝜃) =
1

2
𝝈: 𝑪(𝑘): 𝝈 + 𝝈: 𝜺𝑖(𝑘) + 𝝈:𝜷(𝑘)(𝜃 − 𝜃0) − 𝐴

𝑖(𝑘) (3.50) 

 

In the equation above, 𝝈 is the stress tensor, 𝑪(𝑘) is compliance tensor, 𝜺𝑖(𝑘) is the plastic strain 

tensor, which represents the irreversible deformation, 𝜷(𝑘) is the thermal expansion tensor, 𝜃0 is 

the reference temperature, and 𝐴𝑖(𝑘) is Helmholtz Free Energy. By assuming that the effects of 

temperature is negligible in the process of damaging the concrete, the Gibbs Free Energy could 

be written as the following: 

 

𝐺(𝝈, 𝑘, 𝜃) =
1

2
𝝈: 𝑪(𝑘): 𝝈 + 𝝈: 𝜺𝑖(𝑘) − 𝐴𝑖(𝑘) (3.51) 

 

This is the general form of Gibbs Free Energy used by Yazdani (1993) and Wen et al. (2012) in 

order to describe the behavior of concrete under biaxial monotonic and cyclic loading. 
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3.4 Damage Surface and Constitutive Relation 
 

The dissipation inequality, which was a result of second law of thermodynamics, is expressed 

here again based on Gibbs Free Energy as: 

 

𝛹(𝝈, 𝑘)�̇� ≥ 0 (3.52) 

 

Where 

 

𝛹(𝝈, 𝑘) =
𝜕𝐺(𝝈, 𝑘)

𝜕𝑘
 (3.53) 

 

Since the damage occurred during the process of loading into the concrete is an irreversible 

process, no healing can happen in damaged concrete, therefore, it could be assumed that: 

 

�̇� ≥ 0 (3.54) 

 

As a result, the following observation could be drawn using the assumption made above and 

incorporating it into dissipation inequality. 

 

𝑖𝑓 𝛹 < 0     𝑡ℎ𝑒𝑛     �̇� = 0 (3.55) 

𝑖𝑓 𝛹 ≥ 0     𝑡ℎ𝑒𝑛     �̇� ≥ 0 (3.56) 

 

Equations 3.55 and 3.56 represent the necessary condition for the onset of damage, but not 

sufficient. One could say that 𝛹 < 0 is associated with a condition at which material has an 

elastic behavior. 𝛹 < 0 represents an elastic region, which is surrounded by a damage surface 

defined by 𝛹 = 0. To provide sufficient condition, the loading-unloading criteria are stated: 

 

𝛹 = 0 ,
𝜕𝛹

𝜕𝝈
: �̇� > 0     →      �̇� > 0 (3.57) 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     �̇� = 0 
 

To progress further, it is assumed that the deformation can be decomposed into three parts: 

 

𝜺 = 𝜺0 + 𝜺𝐷 + 𝜺𝑖 (3.58) 

 

where 𝜺0 is the elastic part of the deformation, which occurs before any damage takes place and 

is associated with the initial or undamaged compliance tensor. 𝜺𝐷 is the strain that occurs due to 

damage happening in the material and is called elastic damage. This process represents a 

reversible deformation associated with the formation of perfect fracture surfaces. The last term in 

the equation above is 𝜺𝑖, which represents the inelastic strain and is caused by misfit of crack 

surfaces. 

 

The following equations represent the concepts of initial compliance tensor, added flexibility, 

and the relation with the components of the strain tensor. 
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𝑪(𝑘) = 𝑪0 + 𝑪𝑐(𝑘) (3.59) 

𝜺0 = 𝑪0: 𝝈 

 

The rate forms of the damage strain tensor and the added flexibility tensor are also 

shown as: 

 

(3.60) 

�̇�𝐷 = �̇�𝑐(𝑘): 𝝈 (3.61) 

 

�̇�𝑐(𝑘) is defined by a fourth order response tensor as the following: 

 

�̇�𝑐(𝑘) = �̇�𝑹(𝝈) (3.62) 

 

The definition of the terms mentioned above was explained in the previous section and will be 

illustrated again in the following sections. Setting 𝛹(𝝈, 𝑘) = 0, a surface is defined using a 

damage function, 𝑡(𝝈, 𝑘).Incorporating the terms defined above into the damage surface 

equation results in the following equation: 

 

𝛷(𝜎, 𝑘) =
1

2
𝝈:
𝜕𝑪𝑐(𝑘)

𝜕𝑘
: 𝝈 +

𝜕𝜺𝑖(𝑘)

𝜕𝑘
: 𝝈 −

1

2
𝑡2(𝝈, 𝑘) = 0 (3.63) 

 

The thermodynamics principles illustrated in this section will be used in the following sections in 

order to develop models to predict the changes in the behavior of concrete under fatigue loading 

as well as freeze-thaw process. 

 

3.5 Strain-Based Damage Model 
 

Thus far, the formulation has been presented in stress space. However, Thapa and Yazdani 

(2008) developed the formulation in both stress and strain space and proved that both approaches 

are equivalent. 

 

For strain space, they started with Helmholtz free energy (HFE) for small deformations and 

isothermal as follows: 

 

𝐴(𝜺, 𝑘) =
1

2
𝜺: 𝑬(𝑘): 𝜺 + 𝐴𝒊(𝑘) (3.64) 

 

where, 𝜺 represents the strain tensor, k is the scalar damage variable representing dissipation of 

energy, E is the stiffness tensor, and 𝐴𝒊(𝑘) is the inelastic component of the HFE associated with 

the surface energy of microcracks. The dependency of stiffness tensor on damage parameter 

allows the model to capture the anisotropic nature of induced damage through the components of 

stiffness tensor. 
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In their work, Thapa and Yazdani (2008) assumed the following decomposition for the material 

stiffness tensor as: 

 

𝑬(𝑘) = 𝑬0 + 𝑬𝐷(𝑘) (3.65) 

 

where,  𝑬0 is the stiffness tensor for undamaged material and 𝑬𝐷 is the reduced stiffness due to 

microcracks that occurred during the damage process. 

 

Utilizing the Clausius-Duhem inequality followed by standard thermodynamic arguments, the 

dissipation inequality becomes: 

 

𝑑𝑠 = −(
𝜕𝐴

𝜕𝑘⁄ )�̇� ≥ 0 (3.66) 

 

where, 𝑑𝑠 is the dissipating rate. 

 

The substitution of Equations 3.64 and 3.65 into Equation 3.66 results in: 

 

𝑑𝑠 = −(
1

2
) 𝜺: �̇�𝐷: 𝜺 − �̇�𝑖 ≥ 0 (3.67) 

  

For a given material under a specified load path, the equation above must give the same result as 

what is obtained from dissipation inequality from stress space. Considering the constitutive 

relation as follows: 

 

𝝈 = 𝑬(𝑘): 𝜺 (3.68) 

 

and comparing the dissipation inequalities obtained from both stress and strain spaces, the 

following equation will be obtained: 

 

𝝈: �̇�𝑫: 𝝈 = 𝜺: �̇�𝑫: 𝜺 (3.69) 

 

which shows the equivalency of both stress and strain approaches.  
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4 LITERATURE REVIEW 
 
4.1 Modeling of Concrete Under Fatigue Multiaxial Loading 
 

In order to describe the behavior of concrete under multiaxial loading, different approaches have 

been used. Each approach is used for different scales of damage. There are three types of damage 

that could be modeled using different approaches: 

1. Describing damages corresponding to atomic voids and crystalline defects using material 

science models at atomic scale. 

2. Damages on scales of microcracks and microvoids. Continuum damage mechanics is a 

good approach to describe such damages. 

3. Damages on a scale of macro cracks. Fracture mechanics could be used to model the 

behavior of material on such a scale. It studies the behavior of the material based on 

propagation of a discrete crack. 

In addition, based on the different parameters, modeling the mechanical behavior of concrete 

under fatigue loading could be categorized into three groups: fatigue life models, 

phenomenological residual strength/stiffness models, and progressive damage models. 

 
4.2 Fatigue Model Categories 
 
4.2.1 Fatigue Life Models 
 

The earliest and simplest form of fatigue modeling is fatigue life modeling. In this type of 

modeling, fatigue damage accumulation during the fatigue process is not considered; therefore, it 

does not give any information regarding the fatigue damage development into the material and 

the state of the material in terms of stiffness and deformation at any specific cycles. However, 

due to its simplicity, it is widely used in industry. Thus, this type of modeling is vastly 

incorporated into finite element software such as ANSYS and in many engineering standards.  

 

Fatigue life models give information about fatigue life of concrete by representing the strength 

versus number of cycles of loading as so-called “S-N” curves. “S-N” curves can be presented in 

the forms of power and logarithm functions. 

 

The power function can be shown in the form of: 

 

𝑒𝑎𝑆𝑁 = 𝑐 (4.1) 

 

where “a” and “c” are material parameters determined by conducting fatigue experimentation 

and are functions of material characterization, specimen configuration, and loading methods; “e” 

is the base of natural logarithm, “S” in the applied stress, and “N” is the fatigue life of 

corresponding applied load.  

 

The logarithm function can be presented as: 

 

𝑆𝑎𝑁 = 𝑐 (4.2) 
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where “a” and “c” are material parameters, “S” is the material strength and “N” is the number of 

cycles of loading corresponding to the strength of the concrete. 

 

Based on these two forms, various models with different material parameters have been 

proposed. In addition to loading amplitude and number of cycles of loading, those models have 

taken other factors affecting the fatigue life of concrete such as stress range, mean stress, and 

stress ratio (load path) into account. 

 

Aas-Jakobsen and Lenschow (1973) proposed a model that considers the effect of stress range in 

terms of stress ratio “R” (minimum to maximum fluctuating stress) under compressive loading. 

They derived the following relationship for S-N curves: 

 

𝜎𝑚𝑎𝑥
𝑓𝑐

= 1 − 𝛽(1 − 𝑅)𝑙𝑜𝑔𝑁 (4.3) 

 

where  𝜎𝑚𝑎𝑥 is the maximum applied stress, 𝑓𝑐 is the strength of concrete under monotonic 

loading, “β” is the material parameter representing the slope of the S-N curve when R=0 that was 

given as 0.064, and “N” is the fatigue life. By conducting their own tests and utilizing other tests 

results reported in the literature, Tepfers and Kutti (1979) calculated β to be 0.0685. 

 

Although equation 4.3 was a big step toward development of the S-N Curves, it had two 

shortcomings. First, when R becomes one, 
𝜎𝑚𝑎𝑥

𝑓𝑐
=1 and  𝜎𝑚𝑎𝑥 becomes a constant. Theoretically, 

this is incorrect. Rusch (1960) has shown that the sustained strength of concrete is time 

dependent and the long-time strength can reach approximately 75% of concrete’s monotonic 

strength. Second, equation 4.3 does not include the rate of loading (frequency) in the model even 

though this parameter has significant effects on fatigue life of concrete, especially in the case of 

low-cycle fatigue range. Therefore, Hsu (1981) introduced a new parameter, T, that is the period 

of the repetitive loads expressed in seconds per cycle and proposed new equations for S-N curves 

that included T and R and also overcame the shortcomings noted in previous models. By the 

work of Hsu (1981), the concept of three dimensional S-N-R curves, which was proposed earlier 

by Aas-Jakobsen and Lenschow (1973), changed to four dimensional S-N-R-T curves. 

 

4.2.2 Phenomenological Models 
 

Phenomenological models, also known as Continuum Damage Mechanics (CDM), models are 

categorized into to subsections: residual strength models and residual stiffness models. 

 

The residual strength models study the fatigue process by looking at the changes that occur in the 

strength of the material and assume that the material fails when the residual strength reaches the 

applied stress. 

 

In this class of modeling, the residual strength is a function of various factors such as amplitude 

of loading, number of cycles of loading, loading range, loading ratio, and material 

characterization. Therefore, utilizing the residual strength function, the initial (monotonic) 

strength of the material decreases by increasing the number of cycles. This process continues to 
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the point at which the number of cycles of loading reaches the number of failure. At this point, 

the material fails and will not sustain any additional loads. Wen et al. (2012) and Reberg (2013) 

have utilized this approach to capture the effects of fatigue loading on woven fabric composites 

and concrete. Since this research project is based on residual strength models, it will be discussed 

further in detail at the end of this section. 

 

The residual stiffness models incorporate the damage that occurs during the fatigue process in 

the elastic properties of material. The nucleation and propagation of microcracks in the material 

due to cyclic loading is then accompanied by a decrease in the longitudinal modulus of elasticity 

as well as an increase in the irrecoverable (plastic) strain after unloading (Alliche and Frangois, 

1992; Gao and Hsu, 1998). 

  

Under uniaxial fatigue loading, one definition for damage is given as: 

 

𝐷 = 1 −
𝐸

𝐸0
 (4.4) 

 

where D is the damage variable occurred in the material, E0 is the initial or undamaged Young’s 

modulus, and E is the modulus of elasticity of the material after the application of fatigue 

loading. In this approach, D is defined as a damage variable. However, these models do not take 

the actual directionality of damage into consideration. They use a macro scale mathematical 

modeling to describe the damage rate as dD/dN. Although describing the fatigue behavior of 

materials by developing models based on individual cracks might be more accurate, it becomes 

impossible in the case of concrete due to heterogeneity of the material. In other words, although 

in metals that crack propagation pattern is based on a single crack propagation in general, in 

concrete, it is a problem of numerous crack propagation and interaction. Therefore, the macro 

scale mathematical modeling of damage will be a good approach to simulate the fatigue process 

in concrete (Wen, 2011).  

  

4.2.3 Progressive Damage Models 
 

In this approach, the damage variables utilized to develop the models are different from what 

were chosen in the previous approaches. In these models, damage variables such as strain energy 

release rate, damage area, and crack surface are chosen as study parameters to address the 

degradation of the materials. 

 

Natarajan et al. (2005) proposed a model based on internal strain energy release rate to describe 

the fatigue response of fabric-reinforced polymeric composites. They proposed the energy 

release rate equation as follows: 

 

𝑑𝑈

𝑑𝑁
= 𝑎 (

𝜀𝑚𝑎𝑥
𝜀𝑢𝑙𝑡

)
𝑏

 (4.5) 

 

where εmax is the maximum strain, εult is the maximum strain at which the material fails under 

monotonic loading, and “a” and “b” are the material parameters. 

 



35 

 

Based on the energy release rate equation, Natarajan et al. (2005) proposed the following 

equation to predict the failure life of the material: 

 

𝑁𝑓 =
0.5𝑈0

𝑎(𝜀𝑚𝑎𝑥/𝜀𝑢𝑙𝑡)𝑏
 (4.6) 

 

where U0 is the initial internal strain energy. Although this model shows a good correlation with 

experimental data, for different loading types, different formulas of strain energy will be needed. 

Among all these three types of modeling, the fatigue life models are simple and easy to use; 

however, they do not provide all information about changes occurring in material due to fatigue 

loading. This information includes change of modulus of elasticity and deformation 

characterization of the material.  

 

The progressive damage models are good to incorporate new damage variables. However, since 

the propagation of cracks and microcracks forms the major part of fatigue life of concrete, 

therefore, this approach has to study the fatigue behavior of material by modeling the details of 

evolution and propagation of every microcrack individually. As a result, due to scattering and 

widely spread nature of microcracks in concrete, it is obvious that modeling the behavior of 

every macrocrack becomes a tedious task, if not an impossible one. 

 

The phenomenological models provide information essential to designing purposes while 

avoiding the formidable task of studying each crack individually. Therefore, the 

phenomenological models are convenient to be utilized for modeling the fatigue life of concrete 

and brittle materials and is the chosen approach in this research study to model the behavior of 

concrete under fatigue loading as well as freeze-thaw process. In the following sections, the 

fundamental concepts of this approach will be discussed further in detail.  

 

4.3 Continuum Damage Mechanics 
 

Among all these approaches, continuum damage mechanics is the approach utilized in this 

research study. This approach macroscopically studies the changes in the mechanical behavior of 

materials such as concrete by introducing an internal variable called the “damage variable” to 

describe the changes in the material. The models proposed in the framework of continuum 

damage mechanics are based on the thermodynamics of irreversible processes.  

 

In the following, the basis of continuum damage model proposed by Wen et al. (2012), which 

predicts the behavior of woven fabric composites under monotonic multiaxial loading as well as 

fatigue loading, will be explained. In the next sections, two models will be proposed based on 

Wen’s (2012) model to predict the behavior of concrete under fatigue loading and freeze-thaw 

processes, and the results will be compared with the data obtained from literature. 

 

4.3.1 Wen Damage Mechanics Model (2012) 
 

Wen (2012) has proposed a damage mechanics model based on Yazdani (1993) model in order 

to predict the changes in mechanical behavior of woven fabric composite under multiaxial 

fatigue loading. Wen’s model differs from Yazdani’s (1993) model in several ways, including 
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response tensors describing the strain, damage function, which is used to describe the onset of 

damage or the limit surface, and the incorporation of softening function in order to account for 

fatigue type of loading. Although the Wen (2012) model has been proposed to capture the 

changes in the mechanical behavior of woven fabric composite under fatigue loading, we will 

use the same approach to describe changes in the mechanical behavior of concrete under fatigue 

loading as well as freeze-thaw process in the next sections. 

 

The form of Gibbs Free Energy used in this model is shown below: 

 

𝐺(𝝈, 𝑘) =
1

2
𝝈: 𝑪(𝑘): 𝝈 + 𝝈: 𝜺𝑖(𝑘) − 𝐴𝑖(𝑘) (4.7) 

 

Wen et al. (2012) have used the same form of compliance tensor proposed by Ortiz (1985) which 

is: 

 

𝑪(𝑘) = 𝑪0 + 𝑪𝑐(𝑘) (4.8) 

 

In the equation above, 𝑪0 is the initial compliance tensor of the material before any damage 

occurred and 𝑪𝑐(𝑘) is added flexibility due to damage occurred during loading. Differentiating 

the Gibbs Free Energy with respect to stress, the following relationship for strain will be 

obtained: 

 

𝜺 = 𝑪0: 𝝈 + 𝑪𝑐(𝑘): 𝝈 + 𝜺𝑖(𝑘) (4.9) 

 

The equation above shows that the total strain comprises three terms. The first term is the elastic 

strain, the second term is the recoverable strain, which is due to elastic damage (microcracking), 

and the third term is the inelastic (plastic) strain, which is the permanent deformation in the 

material. Wen et al. (2012) have defined the additional flexibility 𝑪𝑐(𝑘) is composed of two 

terms. Each term has been defined for one type of damage mode caused by compressive or 

tensile loading. Microcracking due to compressive loading occurs parallel to the direction of 

loading while under tensile loading it occurs in perpendicular direction. Therefore, Wen et al. 

(2012) have introduced the additional flexibility in the form below: 

 

𝑪𝑐 = 𝑪𝐼
𝑐 + 𝑪𝐼𝐼

𝑐  (4.10) 

 

Wen et al. (2012) have defined the response tensors in order to predict the direction at which 

damage occurs. The rate independent form of damage in compliance tensors have been defined 

as: 

 

𝑪𝐼
�̇� = �̇�𝑹𝐼                  𝑪𝐼𝐼

�̇� = �̇�𝑹𝐼𝐼 (4.11) 

 

For irreversible damage, �̇� ≥ 0. 
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Moreover, Yazdani and Karnawat (1996) have proposed the rate form of inelastic strain as the 

following: 

 

𝜺�̇� = �̇�𝑴 (4.12) 

 

where M is a response tensor to describe the plastic strain. The following equation has been 

introduced in order to represent the scalar function 𝐴𝑖. 
 

𝑡2(𝑘) = 2
𝜕𝐴𝑖

𝜕𝑘
 (4.13) 

 

By utilizing the Gibbs Free Energy and the equation above, Wen et al. (2012) have calculated the 

damage surface equation as the following: 

 

𝛹(𝜎, 𝑘) =
1

2
𝝈+: 𝑹𝐼: 𝝈

+ +
1

2
𝝈−: 𝑹𝐼𝐼: 𝝈

− + 𝝈:𝑴 −
1

2
𝑡2(𝝈, 𝑘) ≥ 0 (4.14) 

 

𝝈+ and 𝝈− are the positive and negative cones of stress tensor. This equation represents the 

damage surface and is true when the damage occurs. If no damage occurs in the material, it 

means that the material is in elastic state and the elastic region is enclosed by the damage surface 

defined by the aforementioned equation. Two conditions should be met in order for damage to 

occur in the material. First, the point of stress must fall on the damage surface described by the 

equation above, and second, the stress increment should point outside the damage surface. These 

two conditions could be stated as below: 

 

𝛹(𝝈, 𝑘) = 0            
𝜕𝛹

𝜕𝝈
: �̇� > 0 (4.15) 

 

Wen et al. (2012) have proposed their model for biaxial tension load path. Therefore, in this case, 

just the response tensor for tension mode of damage has been proposed in the form of: 

 

𝑹𝐼 =
𝝈+⨂𝝈+

𝝈+: 𝝈+
− 𝛼(𝑰 − 𝒊⨂𝒊) (4.16) 

 

where I and i are the fourth and second order identity tensors, respectively, and α is the material 

parameter that could be obtained by utilizing experimental data. The second part, brought in the 

response tensor, is used in order to predict the changes in Poisson’s Ratio once damage 

accumulates.  

 

The second order response tensor M used to describe the inelastic strain is proposed in the form 

shown below: 

𝑴 = 𝛽𝝈 (4.17) 

 

β is also a material parameter which could be obtained experimentally. 
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Thus far, the response tensors for elastic and inelastic strains have been introduced. Strength of 

woven fabric composites differs in various directions. In addition, material strength will be 

reduced by applying cyclic loading. Therefore, Wen et al. (2012) proposed a new damage 

function that incorporates all these features. 

 

In order to incorporate all these features into the model, Wen et al. (2012) used a bounding 

surface approach. Bounding surface approach states that a loading point in stress space is 

enclosed by a surface called strength surface. This surface represents the strength of the material 

either under monotonic loading or under cyclic loading. By utilizing this approach, Wen et al. 

(2012) have proposed his model for 2-D stress space under biaxial fatigue loading. In the Wen 

model, limit surface is a surface at which the material fails under monotonic loading. In other 

words, limit surface is a special condition at which the number of loading is equal to one. In the 

case of fatigue loading, by increasing the number of loading, the limit surface collapses towards 

inside and forms smaller surfaces called residual strength. By continuing the loading, this 

shrinkage continues to a point at which the material fails. At this point, a surface will be formed 

which represents the failure surface. Figure 4.1. shows the schematic representation of bounding 

surface approach utilized by Wen et al. (2012). 

 

Utilizing the formulation presented thus far, and incorporating a softening function in order to 

capture the strength loss in material due to cyclic loading could form the bounding surfaces 

under fatigue loading. In the following, the bounding surface approach, the damage function, and 

the softening function proposed by Wen et al. (2012) will be explained in detail. In the end, the 

results from the model will be compared with the experimental data by Smith and Pascoe (1989). 

 

 
Figure 4.1  Schematic representation of bounding surface approach 
 

The formulation that has been presented so far for fatigue life of woven fabric composites is 

valid for small deformations and negligible thermal effects. Therefore, these assumptions are 

valid just in the low frequency fatigue loading.  

 

Wen et al. (2012) proposed the damage function in terms of strength function and shape function 

in the form of the following: 

 

𝑡(𝝈, 𝑘) = 𝐿(𝝈)𝑞(𝑘) (4.18) 
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𝑞(𝑘) is a shape function that has the value of 1 at the failure surface and 𝐿(𝝈) is a strength 

function which has the following form: 

 

𝐿(𝝈) =
𝝈: 𝑺

𝑡𝑟(𝝈)
 (4.19) 

𝑺 is a strength tensor, and stress tensor and its trace are used to describe the strength in the 

proper direction for a given load path. 

 

𝑺 = [
𝐹𝑡1
𝐹𝑡2
𝐹𝑡3

] (4.20) 

 

Each component of strength tensor represents the strength of the woven fabric composite in a 

specific direction. These components could be determined by performing monotonic uniaxial 

tension load tests in the corresponding directions. 

 

By incorporating the response tensors and damage function introduced into the damage surface 

equation, it becomes: 

 

𝛹(𝝈, 𝑘) = 𝝈: 𝝈(1 + 𝛼 + 2𝛽) − 𝛼𝑡𝑟2(𝝈) −
1

2
(
𝝈: 𝑺

𝑡𝑟(𝝈)
𝑞(𝑘))

2

= 0 (4.21) 

 

To determine the components in strength function, we can introduce uniaxial loading in direction 

1. Therefore, the damage surface equation will become: 

 

𝛹(𝝈, 𝑘) = [
𝜎1
0
0
] : [
𝜎1
0
0
] (1 + 𝛼 + 2𝛽) − 𝛼𝑡𝑟2 ([

𝜎1
0
0
]) −

1

2

(

 
 
 
 [
𝜎1
0
0
] : [
𝐹𝑡1
𝐹𝑡2
𝐹𝑡3

]

𝑡𝑟 [
𝜎1
0
0
]

𝑞(𝑘)

)

 
 
 
 

2

= 0 (4.22) 

 

Then it becomes: 

 

(1 + 2𝛽)𝜎1
2 − 𝐹𝑡1

2 𝑞2(𝑘) = 0 (4.23) 

 

Under monotonic loading and at the limit surface (damage surface) shape function becomes 1, 

𝑞(𝑘) = 1, and applying stress becomes the tensile strength of the material in that direction, 𝜎1 =
𝑓𝑡1. Therefore, the first component in the strength tensor becomes: 

 

𝐹𝑡1 = 𝑓𝑡1√1 + 2𝛽 (4.24) 

 

Other components of the strength tensor could be obtained by using the same experimental data 

but for different directions. Other components of the strength tensor are as follows: 
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𝐹𝑡2 = 𝑓𝑡2√1 + 2𝛽             𝐹𝑡3 = 𝑓𝑡3√1 + 2𝛽 (4.25) 

 

In order to capture the strength reduction in the material due to cyclic loading, Wen et al. (2012) 

introduced the softening function in the form of power function into the model as the following: 

 

𝐹(𝑛) = 𝑛𝐴 (4.26) 

 

where n is the number of cycles of loading and A is the material parameter. Incorporating the 

softening function into the damage function, the damage surface equation becomes: 

 

𝛹(𝝈, 𝑘) = 𝝈: 𝝈(1 + 𝛼 + 2𝛽) − 𝛼𝑡𝑟2(𝝈) −
1

2
(
𝝈: 𝑺

𝑡𝑟(𝝈)
𝑛𝐴𝑞(𝑘))

2

= 0 (4.27) 

 

By utilizing a fatigue uniaxial tensile loading the material parameter A could be obtained. 

Therefore, A could be obtained by the following equation: 

 

𝐴 =
𝑙𝑛 (

𝜎1
𝑓𝑡1
)

ln (𝑛)
 

(4.28) 

 

Also the material parameter α could be calculated by performing a monotonic equal biaxial 

tension test in directions 1 and 2. α could be obtained by the following equation: 

 

𝛼 = 1 −
1

8
(

𝜎0
𝑓𝑡1 + 𝑓𝑡2

)
−2

 (4.29) 

 

where 𝜎0 is the applied stress in directions 1 and 2. 

 

In order to show the capabilities of the model to describe the behavior of woven fabric 

composites under fatigue biaxial loading, experimental data obtained by Smith and Pascoe 

(1989) are used to compare with the results calculated from the model. Material parameters 

could be easily calculated based on the equations provided before. 

  

Figures 4.2–4.4 show the S-N curves of a woven fabric composite under various fatigue load 

paths. As it is shown, the model predicts the reduction in strength of the material due to cyclic 

loading very well.  
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Figure 4.2 S-N curve for woven fabric composite under uniaxial fatigue loading, data by Smith 

 and Pascoe (1989) 
 

Furthermore, Figure 4.5 shows the failure surfaces of the material in the biaxial stress space. The 

bounding surface concept is noticed in this figure. That is, by applying the fatigue loading, the 

limit surface collapses and forms smaller surfaces called failure surfaces as shown in the figure. 

The results obtained by the model show good correlation with the experimental data obtained by 

Smith and Pascoe (1989). 

 

 
Figure 4.3  S-N curve for woven fabric composite under biaxial fatigue loading with stress ratio 

 of 0.5, data by Smith and Pascoe (1989)  
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Figure 4.4  S-N curve for woven fabric composite under biaxial fatigue loading with stress ratio 

 of 1, data by Smith and Pascoe (1989)  

 

 
Figure 4.5  Failure surfaces for monotonic and fatigue loading in biaxial stress space, Smith and 

 Pascoe (1989)  
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5. ANISOTROPIC DAMAGE MODELING OF CONCRETE SUBJECTED 
 TO FREEZE-THAW PROCESS 
 
5.1 Introduction 
 

In recent years, an increased focus has been given to the effects of freeze-thaw cycles on the 

stiffness and strength properties of concrete as a structural material. Damage caused by frost 

expansion is a primary concern when designing concrete structures in cold weather regions. It 

has been shown (Miao et al., 2002; Shang and Song, 2006; Shang and Song, 2008) that the onset 

of damage within concrete can be accelerated when a freeze-thaw cycle occurs while a structure 

is subjected to an external loading. This behavior was further investigated by researchers (Hasan 

et al., 2002; Hasan et al., 2003; Hasan et al., 2008; Shang et al., 2008) showing that the 

mechanical properties of concrete were adversely affected by the CFT. In all these studies, it was 

experimentally demonstrated that the strength of concrete decreased substantially with an 

increase in freeze-thaw cycles. Furthermore, further experimental investigations indicated a more 

compliant concrete behavior under loading after the application of CFT (Song and Ou, 2008; 

Duan et al., 2011; Liu and Wang, 2012). 

 

It is generally agreed upon that there are two forms of freeze-thaw damage. The first is caused by 

hydraulic pressure and is much more prevalent during rapid freezing processes. During this 

process, water that has been absorbed into the capillary pores of the cement matrix expands once 

frozen. If the required volume that is needed for expansion is not available, the excess frozen 

water is transported away by internal pressure. The magnitude of pressure created, as well as the 

resulting damage, is related to the permeability of the cement matrix, the rate of freezing, the 

degree of saturation, and the location of the nearest unfilled void within the cement matrix 

(Pigeon et al., 1985; Detwiler et al., 1989). Localized cracking will take place if the resultant 

pressure exceeds the tensile strength of the concrete mix. Progressive damage occurs within 

concrete because with cracking, more volume is available for water to infiltrate and freeze, 

causing the existing cracks to propagate. 

 

The second form of freeze-thaw damage is termed ice accretion and is more prevalent during 

long freeze periods and when the rate of freezing is relatively slow. Water in gel pores requires a 

much lower temperature to freeze, -78° C according to Cordon (1966). This is due to the surface 

tension forces present in these regions of extremely small radii. For most realistic applications, 

water in the gel pore zones will remain in a liquid state while it remains in the gel pore. As 

temperature drops below 0 °C, the water in the gel pores becomes supercooled and has a higher 

free energy than the ice in the capillaries, which allows the water to move from the gel pores into 

the capillaries where it is more likely to freeze (Song and Ou, 2008). The overall effect of this 

process is a reduced volume of the concrete in the form of gel water and an increase in the 

volume of the capillaries due to expansion of frozen water. Upon thawing, some of the water 

may return to the gel pores, but the original state of the material will not be obtained as this 

process is not reversible. 

 

From the experimental data presented by Shang and Song (2006), Shang et al. (2008), and Shang 

and Song (2008) and the discussion presented by Cordon (1966), it is clear that a meaningful 

constitutive model needs to be developed to help predict the behavior and performance of 
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concrete under combined freeze-thaw and applied load conditions. The design life of concrete 

needs to be taken into consideration so a more efficient, yet safe, design can be obtained. 

 

This section presents a damage mechanics approach to modeling freeze-thaw processes for 

concrete. Using the bounding surface approach, a limit surface, representing the monotonic 

strength of concrete, is developed. This surface is allowed to contract as the number of freeze-

thaw cycles start to increase. This is similar to the isotropic-softening plasticity used in the 

modeling of inelastic behavior of materials. The resulting residual strength surface represents the 

strength of the concrete for various load paths after freeze-thaw processes. Along with proposing 

softening function during CFT, changes in ultimate strain (strain at which failure occurs) are also 

addressed. Consequently, stress-stain curves are obtained that describe the behavior of concrete 

under different proportional load paths. 

 

5.2 General Formulation 
 

The general formulation presented here follows the basic principles of mechanics and internal 

variable theory of thermodynamics. The intent is to present a model that, although is rigorous in 

theory, it lends itself well to computational efforts and engineering applications. Guided by the 

work of Ortiz (1985) and Wen et al. (2012) and for small deformation, the general form of Gibbs 

Free Energy as a state function is given as: 

 

G(𝛔, k) =
1

2
𝛔: 𝐂(k): 𝛔 − Ai(k) (5.1) 

 

where, C is the compliance tensor, σ is the stress tensor, k is a scalar damage parameter, and Ai 

(k) is a scalar function associated with the surface energy of microcracks. The symbol “:” 

represents a tensor contraction operation. A class of constitutive model that is considered 

appropriate for brittle solids such as concrete is given as: 

 

𝛆 = 𝐂(k): 𝛔 (5.2) 

 

where, ε represents the strain tensor. The compliance tensor, C, is assumed to take an additive 

decomposition form as: 

 

𝐂(k) = 𝐂0 + 𝐂c(k) (5.3) 

 

where, C0 and Cc are the initial undamaged and the added flexibility tensors, respectively. 

Because of nonlinearity of constitutive relations caused by damage, the rate form of the 

flexibility tensor is considered as: 

 

�̇�(k) = 𝐂ċ(k) = k̇𝐑 (5.4) 

 

The response tensor, R, is used to specify the direction of the induced damage. The Clausius-

Duhem inequality can be shown to yield the internal dissipation inequality, which in terms of the 

Gibbs Free Energy becomes: 
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∂G(𝛔, k)

∂k
k̇ ≥ 0 (5.5) 

 

It is further assumed that damage is irreversible and that no healing can take place; that is: 

 

k̇ ≥ 0 (5.6) 

 

By combining Equations 5.1 through 5.4 and in the absence of any viscosity considered, the 

general form of the damage surface is given by: 

 

Ψ(𝛔, k) =
1

2
𝛔:𝐑: 𝛔 −

1

2
t2(𝛔, k) = 0 (5.7) 

 

where t(σ,k) is regarded as the damage function. The condition Ψ(σ,k)<0 represents an elastic 

domain, and the condition Ψ(σ,k)>0 is not allowed for rate independent processes.  

 

Guided by the experimental work by Smith and Young (1955), the following form for the 

damage function was proposed by Ortiz (1985) as: 

 

t(𝛔, k) = fce
ln (1 + E0k)

(1 + E0k)
 (5.8) 

 

where fc is the strength of concrete under uniaxial compression, E0 is the initial modulus of 

elasticity, and e represents the natural number. 

 

To progress further, a specific form of the response tensor R must be stated. It is argued that CFT 

make no changes on the failure mode of plain concrete (Shang and Song, 2006; Song and Ou, 

2008). In this paper, only the compression mode of damage is considered. The damage mode is 

presented by the response tensor R as:  

 

𝐑 =
𝛔−⊗𝛔−

𝛔−: 𝛔−
+ αH(−λ)(𝐈 − 𝐢 ⊗ 𝐢) (5.9) 

 

where “⊗” is the tensor product operator, 𝛔− represents the negative cone of the stress tensor,  

H(−λ) is the Heaviside function and λ denotes the maximum eigenvalue of 𝛔−. The fourth and 

second identity tensors are given by I and i, respectively. 

 

The concept of negative cone of stress tensor is defined in (Ortiz, 1985) and will not be repeated 

here. In short, 𝛔− is a stress tensor incorporating only the negative eigenvalue of σ. 

 

5.3 Bounding Surface Approach for Modeling Freeze-Thaw Processes 
 

The concept of bounding surface theory and its application to fatigue type process is a novel one 

and was recently proposed by Wen et al. (2012). In this approach, the limit surface (LS) is 

considered to be a special case when the number of freeze-thaw cycles is zero. 
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To illustrate this further, consider a material element shown in Figure 5.1 and its corresponding 

limit surface (LS) in biaxial stress space shown in Figure 5.2. The LS corresponds to monotonic 

strength of the material unaffected by the freeze-thaw damage. As the number of freeze-thaw 

cycles increases, the strength of the material is expected to decrease, which is represented by the 

reduction, or inward, collapse of the LS. The collapsing of the LS creates new residual strength 

surfaces (RS) depending on the number of CFT. At some point, the reduction in strength of the 

material will result in failure from CFT and under external loading. This is shown in Figure 5.2 

as surface “FS” with the corresponding number of freeze-thaw cycles, Nf. 

 
 

Figure 5.1  Material element with loading directions 1 and 2 

To incorporate the effects of the freeze-thaw damage, the damage function t(σ,k) is modified to 

be given by the product of two functions F(n) and F(σ,k) as: 

 

t(𝛔, k(n)) = Fσ(n). F(𝛔, k) (5.10) 

 

Where, Fσ(n) is interpreted as the softening function due to CFT and F(σ,k) is the strength 

function associated with monotonic loading. The softening function Fσ(n) must be formulated in 

such a way so that the original formulation is retained when CFT is set to zero. 

 

There are two distinct observation that one could make by considering the experimental work of 

CFT damage (Shang and Song, 2006; Shang et al., 2008). First is that the changes of concrete 

strength are nearly linear with respect to numbers of freeze-thaw cycles; and second is that the 

strength reduction is path dependent. The experimental work also indicates that the least damage 

is to occur under biaxial compression paths with stress ratio of between 0.75 and 1.0 (Shang and 

Song, 2006). Guided by these studies and observations, the following form of the softening 

function is proposed as: 

 

Fσ(n) =
σ

fc
= 1 − B [

𝛔: 𝛔

tr2(𝛔)
]
C

n (5.11) 

 

where, B and C are materials parameters. These parameters can be obtained by utilizing two 

uniaxial and biaxial compression tests after CFT, respectively.  
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Figure 5.2  Schematic representation of bounding surfaces in biaxial stress space  

 

Thus far, the discussion and formulations have been centered on stress and strength properties of 

the material. To predict the behavior of concrete under CFT, the deformational characteristics of 

concrete under CFT also needs to be addressed. In the work presented by Wen et al. (2012), it 

was assumed that the failure strain, εu, remains unchanged under fatigue loading. In the case of 

concrete under CFT, this assumption will not result in accurate stress-strain behavior since the 

ultimate strain has been reported to change. A schematic stress-strain behavior of concrete under 

CFT and consistent with experimental results (Shang and Song, 2006; Shang et al., 2008; Song 

and Ou, 2008; Duan et al., 2011; Liu and Wang, 2012) is illustrated in Figure 5.3. It shows 

reduction of strength and subsequently the increase in strain for a given CFT. 

 

Figure 5.4 summarizes the experimental data reported by Shang and Song (2006) on changes in 

the ultimate strain due to CFT with different stress ratios ξ=σ1/σ2. In this figure, a value of ξ=0 

corresponds to the case of uniaxial compression path. For the equal biaxial load path, ξ becomes 

equal to 1.0. Figure 5.4 shows that ultimate strains increase with CFT and that the increase is 

somewhat linear. This increase is attributed to the continuous deformation and propagation of 

microcracks during the CFT process. 

 

 
Figure 5.3  Schematic representation of stress-strain curves for concrete before and after 

 applying CFT 
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Considering the experimental data summarized in Figure 5.4, the following function is postulated 

as a softening function for the ultimate strain as: 

 

Fε(n) =
εf
εu
= 1 + H [

𝛔: 𝛔

tr2(𝛔)
]
Q

n (5.12) 

 

where, εf is the ultimate strain after CFT, εu is the monotonic ultimate strain, and H and Q are 

material parameters. H and Q are obtained by utilizing uniaxial and biaxial compression tests 

after a specified number of freeze-thaw cycles, respectively. The motivation for the type of 

equation shown in Equation 5.12 arises from the observation that it is reasonable to make the 

softening function linear with “n” as evidenced in Figure 5.4. Also, since the rate of change in 

strain is path dependent, the path dependency is also captured by the use of invariant shown in 

the bracket. 

 

 
Figure 5.4  Influence of CFT on the principal ε3 under various stress ratios (ξ=σ1/σ2 ) 

 (Shang and Song, 2006) 

 
5.4 Simulation and Discussion 
 

In this section, the predictive capabilities of the model with respect to freeze-thaw processes is 

demonstrated in detail for various load paths and number of freeze-thaw cycles. There are a total 

of five material parameters in the model. Strength parameters are α, B, and C, whereas H and Q 

are deformational parameters. The strength parameter α can be obtained from a monotonic 

biaxial strength test. To obtain parameters B and C, uniaxial and biaxial strength tests after a set 

number of CFT are required. During the same set of CFT tests, the parameters H and Q could 

also be obtained by taking strain measurements corresponding to the peak stresses. 
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Figure 5.5  Residual strength surfaces for various number of CFT in biaxial compression space 

 (Shang and Song, 2006) 

 

The strength dependency on the number of freeze-thaw cycles, n, is also shown in Figure 5.6 and 

is compared with the available experimental data. The load path dependency of damage is clearly 

indicated in this figure where the rate of change of strength reduction is different for different 

load path groups. 

 

 
Figure 5.6  Residual strength versus number of CFT in biaxial compression 

 (Shang and Song, 2006) 

 

Based on the experimental data provided by Shang and Song (2006), the following values for 

parameters are obtained: α=0.645, B=5.223E-03, C=0.944, H=0.0102, and Q=0.359. These 

values are used to predict material responses for various other load paths. Figure 5.5 represents 

the biaxial residual strength envelopes where the limit surface and the subsequent residual 

strength curves are plotted against the experimental data by Shang and Song (2006). The 

agreement with the experimental data is quite satisfying considering the simplicity of the 

softening function used (Equation 5.11). 

 

A significant improvement of the proposed model over the existing models is its ability to 

capture the deformational characteristics of concrete behavior in addition to the stress reduction. 

These are shown in Figures 5.7, 5.8, and 5.9 where the stress strain responses are predicted for 

ξ=0, ξ=0.5, and ξ=1.0 and under different numbers of freeze-thaw cycles. Stress reduction as 
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well as increase in strain are clearly shown in these figures with excellent correlation to 

experimental data. Also reflected in these figures is the reduction in the stiffness of the material 

due to freeze-thaw damage. This change in the elastic stiffness is shown in Figure 5.10 for the 

case of uniaxial compression and compared with the experimental data reported by Liu and 

Wang (2012). 

 

 
Figure 5.7  Stress-strain curves under uniaxial compression after different CFT 

 (Shang and Song, 2006) 

 

5.5 Conclusion 
 

In this section, the effects of freeze-thaw processes on concrete performance is modeled using a novel 

bounding surface approach. In this approach, the limit surface that is developed for monotonic loading is 

allowed to contract as damage takes place with increasing freeze-thaw cycles. 

 

Stress and strain softening functions are postulated guided by the available experimental data. These 

softening functions are linear with respect to the cycles of freeze-thaw and are structured in such a way to 

provide load path dependency. 

 

The model was then calibrated with respect to available experimental data and compared with other load 

paths to show strength reduction, stress-strain curves, and changes of the modulus of elasticity. The 

model predictions were shown to be satisfactory with respect to salient features of material behavior. 

 

 
Figure 5.8  Stress-strain under biaxial compression (ξ=0.5) after different CFT 

 (Shang and Song, 2006) 
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Figure 5.9  Stress-strain under biaxial compression (ξ=0.75) after different CFT 

 (Shang and Song, 2006) 
 

 
Figure 5.10  Modulus of elasticity versus number of CFT for uniaxial compression 

 (Shang and Song, 2006)  
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6. ANISOTROPIC DAMAGE MECHANICS MODELING OF CONCRETE 
 UNDER BIAXIAL FATIGUE LOADING 

 
6.1 Introduction 
 

The fatigue behavior of concrete has received considerable attention among researchers in the 

past two decades. This can be attributed to the increasing use of concrete as a construction 

material. Concrete has been used in various structures due to its unique features such as high 

compressive strength, good resistance to aggressive and moist environments compared with 

other construction materials, and enhancement in strength and deformation capacity under 

confining stresses. Concrete has been used in dams, bridges, and highway pavements in which 

cyclic loading is considered as one of the factors affecting its mechanical behavior during its 

service life. Various research studies have been published on the effects of fatigue loading on the 

mechanical behavior of concrete in terms of strength, deformation characterization, and modulus 

of elasticity. Most of these studies were conducted on the uniaxial loading of the material (Awad, 

1971; Aas-Jakobsen and Lenschow, 1973; Hsu, 1981; Holmen, 1982; Petkovic et al., 1990; 

Hordijk and Reinhardt, 1993; Kim and Kim, 1996; Zhang et al., 1996; Paskova and Meyer, 1997; 

Gao and Hsu, 1998), while only a few studies could be found in the literature on the effects of 

biaxial stress state loading (Buyukozturk and Tseng, 1984; Nelson et al., 1988; Su and Hsu, 

1988; Yin and Hsu, 1995; Lu et al., 2007). 

  

It is generally accepted that concrete under cyclic loading loses its strength gradually with an 

increase in the number of load cycles regardless of the loading path (uniaxial or biaxial). The 

strength loss during the fatigue process is due to nucleation and propagation of microcracks. 

During cyclic loading, these microcracks increase and grow to a stage in which major cracks are 

formed and reduce the load carrying area tremendously. At that point the strength of the material 

is decreased substantially and approaches the amplitude of the cyclic loading. This results in 

sudden rupture. It has been argued that at any given cycle, the fatigue strength of concrete under 

biaxial compression is greater than that under uniaxial compression (Su and Hsu, 1988; Lu et al., 

2007). This is the result of the relative confinement provided in the biaxial loading state. This 

confinement restricts the nucleation and propagation of microcracks by applying load in two 

perpendicular directions. 

 

In addition to strength reduction, fatigue loading affects the modulus of elasticity and the 

deformational capacity of concrete as well. Awad (1971) and Gao and Hsu (1998) have 

investigated the effects of fatigue loading on the ultimate strain of concrete (strain at which 

failure occurs) and have concluded that the strain increases under cyclic loading state compared 

with monotonic state. Awad (1971) has shown that the ultimate and the irreversible plastic 

strains accumulated after each cycle prior to failure depend on the number of cycles that have 

been applied. In addition to the maximum stress, it has also been shown that stress range has 

significant effects on the fatigue life of concrete (Aas-Jakobsen and Lenschow, 1973; Hsu, 

1981). By keeping the maximum stress unchanged and decreasing the stress range, the number of 

cycles to failure will increase. These results have also been investigated and validated by Awad 

(1971).  
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According to Gao and Hsu (1998), the fatigue strain of concrete comprises three parts: 

irreversible strain caused by cyclic creep under the action of average stresses, irreversible strain 

caused by fatigue cracks, and fatigue strain range. In the same study (Gao and Hsu, 1998), it was 

reported that the modulus of elasticity of concrete degrades during fatigue process due to damage 

accumulation, which happens as a result of microcracking.  

  

Realizing the fact that fatigue loading has a significant influence on concrete serviceability and 

may lead to an abrupt material failure, an accurate and efficient model, which could capture the 

behavior of concrete, is needed. 

 

In this paper, an approach based on continuum damage mechanics is proposed to model the 

behavior of concrete under fatigue loading. The general theory of bounding surface approach 

proposed by Wen et al. (2012) is utilized here in order to capture the strength reduction in 

concrete due to cyclic loading. In the bounding surface approach, the limit surface is allowed to 

contract to form smaller surfaces, called residual strength surfaces, as the fatigue loading is 

applied. A softening function for the loss of strength based on the maximum stress, stress range, 

and load path is proposed. These features are considered a significant improvement and 

extension to the work reported by Wen et al. (2012). To capture the effects of fatigue on 

deformational characterization and material stiffness, two additional softening functions have 

been proposed to predict the ultimate and plastic strains in the last cycle of loading under any 

arbitrary fatigue loading. These additional features of the formulation are considered novel, 

enhancing the predictive capability of the model. At the end, results are compared with 

experimental data showing a good correlation. 

 

6.2 General Formulation 
 

The general formulation shown in the following is based on the damage mechanics approach and 

follows the framework of the internal variable theory of thermodynamics. For isothermal and 

small deformations, the Gibbs Free Energy is obtained as follows (Ortiz, 1985; Yazdani, 1993): 

 

𝐺(𝝈, 𝑘) =
1

2
𝝈: 𝑪(𝑘): 𝝈 − 𝐴𝑖(𝑘) (6.1) 

 

where C is the compliance tensor, σ is the stress tensor, k is a scalar damage parameter, and 

Ai(k) is a scalar function associated with the surface energy of microcracks. The symbol “:” 

represents a tensor contraction operation. A constitutive relation for concrete like materials is 

used as: 

 

𝜺 = 𝑪(𝑘): 𝝈 (6.2) 

 

where ε represents strain tensor. The compliance tensor, C, is assumed to take an additive 

decomposition form as: 

 

𝑪(𝑘) = 𝑪0 + 𝑪𝑐(𝑘) (6.3) 
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where C0 and Cc are the initial undamaged compliance tensor of the material and the added 

flexibility tensor associated with the accumulation of damage, respectively. Due to the 

nonlinearity behavior between stress and strain for brittle materials, the rate form of the 

flexibility tensor must be considered as: 

 

�̇�(𝑘) = 𝑪�̇�(𝑘) = �̇�𝑹 (6.4) 

 

In Equation 6.4, the response tensor, R, determines the direction at which damage occurs. For 

isothermal and small deformation, the internal dissipation inequality can be represented by Gibbs 

Free Energy as: 

 
𝜕𝐺(𝝈, 𝑘)

𝜕𝑘
�̇� ≥ 0 (6.5) 

 

It is also assumed that the damage is an irreversible phenomenon in which, �̇� ≥ 0. By combining 

Equations 6.1 through 6.5, the general form of the damage surface is given by: 

 

𝛹(𝝈, 𝑘) =
1

2
𝝈:𝑹: 𝝈 −

1

2
𝑡2(𝝈, 𝑘) = 0 (6.6) 

 

where t(σ,k) is called the damage function. The Condition Ψ(σ,k)<0 describes the elastic 

condition for the material that is enclosed by the damage surface Ψ(σ,k)=0. The condition 

Ψ(σ,k)>0 is not allowed for rate-independent processes.  

 

Guided by the experimental data (Ortiz, 1985), the following form for the damage function is 

postulated as: 

 

𝑡(𝝈, 𝑘) = 𝑓𝑐𝑒
ln (1 + 𝐸0𝑘)

(1 + 𝐸0𝑘)
 (6.7) 

 

where fc is the compressive strength of concrete, E0 is the initial stiffness, and “e” represents the 

natural number. In this paper, only the compression mode of damage is considered. Guided by 

work of Wen et al. (2012) and Saboori et al. (2014), the damage mode is identified by the 

response tensor R given as:  

 

𝑹 =
𝝈−⊗𝝈−

𝝈−: 𝝈−
+ 𝛼𝐻(−𝜆)(𝑰 − 𝒊⊗ 𝒊) 

(6.8) 

 

where “⊗” is the tensor product operator, 𝝈− represents the negative cone of the stress tensor, 

H(−𝜆) is defined as the Heaviside function of the maximum eigenvalue of 𝝈−, and I and i are the 

fourth and second order identity tensors, respectively. The material parameter, α, shown in 

Equation (6.8), is a strength rated parameter and can be obtained by a biaxial monotonic loading 

test. 
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6.3 Bounding Surface Approach 
 

The bounding surface approach for fatigue was proposed by Wen et al. (2012) in order to predict 

the behavior of woven fabric composites under fatigue loading. This surface is shown 

schematically in Figure 6.1. In the case of fatigue loading, as cyclic loading is applied, the limit 

surface is allowed to contract and to form residual strength curves. This reduction in strength is 

caused by damage and microcracks generated during the fatigue process. As the number of load 

cycles increases, the strength continues to decrease further, and the residual surfaces also shrink. 

The reduction in strength continues to a point at which the residual strength becomes equal to the 

magnitude of loading. At this point, failure surface is formed and the material cannot withstand 

any additional cycles resulting in failure. 

 

In order to capture the described behavior of concrete under cyclic loading, an evolutionary 

equation is needed to predict the failure surface. To accomplish this task, the damage function is 

restructured to be the product of two functions as shown below: 

 

𝑡(𝝈, 𝑘, 𝑛, 𝑟) = 𝐹(𝑛, 𝑟). 𝑡( 𝝈, 𝑘) (6.9) 

 

where F(n,r) is regarded as the strength softening function. The number of cycles of loading to 

failure is given by “n” and “r” is the stress ratio (ratio of minimum stress to maximum stress). 

The dependency of the function, t(σ,k), on “n” and “r” is supported by the experimental 

observation described in the previous section. 

 

 

 

Figure 6.1  Schematic representation of bounding surfaces in biaxial stress space 

 

By considering a fatigue uniaxial compression path and substituting Equation 6.9 into Equation 

6.6, the following form is obtained for the softening function: 

 

𝐹(𝑛, 𝑟) =
𝜎

𝑓𝑐
 (6.10) 

 

where σ is the residual strength of the concrete after a specific number of cyclic loading.  

Equation 6.10 is a representation of so-called S-n curves. Based on the researches reported in 

(Aas-Jakobsen and Lenschow, 1973; Hsu, 1981; Qiao and Yang, 2006), amplitude of loading, 

σmax, stress ratio, r, and finally the load path all contribute to the fatigue life of concrete. While 
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the fatigue life of concrete is adversely affected by the amplitude of loading, Aas-Jakobsen and 

Lenschow (1973) reported that increasing stress ratio results in a greater fatigue life at a given 

stress. Moreover, considering the data provided by Yin and Hsu (1995), it is apparent that the 

rate of reduction in concrete strength is not the same for different load paths. Guided by these 

findings, the following softening function is proposed in this paper as: 

 

𝐹(𝑛, 𝑟) = 𝑛
[𝐴(1−𝑟)(

𝑡𝑟2(𝝈)
𝝈:𝝈

)
𝐵

]

      
(6.11) 

 

where n is the number of cyclic loading and “A” and “B” are material parameters. Utilizing this 

softening function and incorporating it into the Equation 6.6, residual strength surfaces could be 

obtained under various load paths. The inclusion of the first and second invariants of the stress 

tensor allows the formulation to model load path dependency observed in fatigue testing. 

 

In Figure 6.2, a schematic representation of stress-strain behavior of concrete, which is consistent 

with the experimental data (Awad, 1971), is illustrated. The applied stress is signified as σmax and 

the fatigue failure strain in uniaxial compression is given by εuf. The figure shows the reduction 

in strength due to fatigue while the failure strain increases under cyclic loading compared to 

monotonic loading state. 

 

To fully describe the stress-strain behavior of concrete under fatigue loading, four factors, 

including reduction in strength, increase in ultimate strain, plastic strain after each cycle, and 

reduction in modulus of elasticity, need to be addressed. The reduction in strength has already 

been addressed by the strength softening function (Equation 6.11). For deformation, as was 

discussed earlier, concrete under fatigue loading fails at an ultimate strain greater than the one 

under monotonic loading state. Awad (1971) reported that by increasing the stress ratio, both 

ultimate and plastic strain increases and therefore results in a more flexible concrete. Awad 

(1971) also showed that amplitude of loading adversely affects both ultimate and residual strains. 

In order to capture such effects on the mechanical characteristics of concrete, two strain 

softening functions are presented as follows: 

 

𝐹𝜀
𝑡 =

𝜀𝑢
𝑓

𝜀𝑢
= 𝑛𝛽(1+𝑟)      (6.12) 

𝐹𝜀
𝑝 =

𝜀𝑓
𝑝

𝜀𝑢
= 𝑛𝛾(1+𝑟)   (6.13) 

 

where Fε
t is regarded as the ultimate strain softening function, Fε

p is residual strain softening 

function, εu
f is the ultimate strain under cyclic loading, εu is the ultimate strain under monotonic 

loading, and εf
p is the residual strain under fatigue loading prior to last cycle. The number of 

cycles of loading to failure is given by “n.” The dependency of ultimate and residual strain under 

fatigue loading reported by Awad (1971) on loading amplitude as well as loading range are 

addressed by incorporating n and r into Equations 6.12 and 6.13. Utilizing these softening 

functions, stress-strain curves could be obtained under various load paths. The new proposed 

model presented by Equations 6.9 and 6.11 for the strength reduction, Equations 6.12 and 6.13 

for deformation characterization, and the inclusion of the stress ratio, r, are all new and 
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considered as significant enhancement of the model compared with the paper by Wen et al. 

(2012).  

 

 
Figure 6.2  Schematic representation of stress-strain of concrete under monotonic and cyclic 

 loading 
 

6.4. Numerical Example 
 

In this section, results predicted by the model are compared with the experimental data obtained 

from literature.  Material parameters α, A, B, β, and γ are calculated based on the experimental 

data presented.  

 

Figure 6.3 shows the prediction results of residual strength surfaces in biaxial stress space 

against experimental data work of Nelson et al. (1988). The damage surfaces show a good 

correlation for monotonic loading when n=1 as well as for fatigue loading when n=10, 100, and 

1000 with experimental data. For Figure 6.3, following material parameters are used: α=0.587, 

A=-0.0445, and B=1.521. 

 

Figures 6.4, 6.5, and 6.6 show the strength versus number of loading cycles for concrete under 

cyclic uniaxial and biaxial paths with stress ratios of 0.5 and 1.0. These figures show that the 

strength of concrete materials would decrease with an increase in the number of cycles, n. The 

rate of strength reduction for these three figures are different, meaning that the strength loss is 

also dependent on the load path. This is consistent with the experimental data and is captured by 

the proposed model. For Figures 6.4, 6.5, and 6.6, the following material parameters are used: 

α=0.745, A=-0.0431, and B=0.552.   
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Figure 6.3  Residual strength surfaces for various number of cyclic loading, experimental data 

 by Nelson et al. (1988) 
 

 
Figure 6.4  S-n curve for concrete under uniaxial cyclic loading, experimental data by Yin and 

 Hsu (1995) 
 

 
Figure 6.5  S-n curve for concrete under biaxial cyclic loading with stress ratio 0.5, experimental 

 data by Yin and Hsu (1995) 

 

Figure 6.7 illustrates the comparison between the experimental data provided by Awad (1971) 

and S-n curves obtained by the model for three uniaxial fatigue loading with different stress 

ratios. As shown, this model captures the effect of stress range on fatigue life of concrete. It can 

be seen that for any constant stress amplitude, the model predicts a greater fatigue life for a stress 
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range of 0.65-0.68 than a stress range of 0.41-0.47 and 0, which is consistent with the 

experimental data in the literature. For the following figures, the material parameters used are: 

α=0.94, A=-0.0263, β=0.0787, and γ=0.1241. 

 

 
Figure 6.6  S-n curve for concrete under biaxial cyclic loading with stress ratio 1.0, experimental 

 data by Yin and Hsu (1995) 

 

 
Figure 6.7  S-n curves for concrete under uniaxial loading with various stress ranges, 

 experimental data by Awad (1971) 

 

Figures 6.8 and 6.9 represent the capability of the model in predicting the ultimate strain and 

residual strain of concrete under uniaxial fatigue loading after different cycles of loading. The 

model predicts a higher range of ultimate and residual strain for fatigue loading with lower 

amplitude. This is in conformity with the discussion presented earlier and implies that concrete 

becomes more flexible under fatigue loading with lower amplitude. Also, Figure 6.9 shows the 

increase in residual strain by increasing the stress range. That is, for a given “n,” the residual 

strain increases with increasing stress range.  
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Figure 6.8  Ultimate strain versus number of cycles for concrete under uniaxial cyclic loading, 

 experimental data by Awad (1971) 

 

 

 
Figure 6.9  Plastic strain versus loading cycles under uniaxial cyclic loading with various stress 

 ranges, experimental data by Awad (1971) 

 

 

 
Figure 6.10  Stress-strain curves under cyclic (σmax/fc=0.95) and monotonic uniaxial loading, 

 experimental data by Awad (1971) 
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Figure 6.11  Stress-strain curves under cyclic (σmax/fc=0.9) and monotonic uniaxial loading, 

 experimental data by Awad (1971) 

 

Figures 6.10 and 6.11 show the stress-strain curves of concrete under uniaxial monotonic and 

fatigue loading with amplitudes of 0.95fc and 0.9fc. The reduction in strength and longitudinal 

modulus and increase in ultimate strain are predicted by the model. It can also be noticed that the 

ultimate and residual strain predicted by the model for fatigue loading with 0.9fc amplitude is 

greater than the ones for 0.95fc that follows the arguments discussed earlier in the paper. Not all 

of the cycles to failure are shown in Figure 6.11 for clarity. 

6.5 Conclusion 
 

An anisotropic model is utilized to predict the strength behavior of concrete under biaxial 

compressive fatigue loading. Under cyclic fatigue loading, the limit surface is allowed to 

contract and form new surfaces identified as residual strength surface. This is accomplished by 

proposing a softening function that is based on amplitude, stress ratio, and load path. By 

including these parameters, the effects of strange range and the load paths on the fatigue life of 

concrete are studied and predicted. Furthermore, to capture the effects of fatigue loading on 

stress-strain behavior of concrete, two additional strain softening functions are proposed for 

changes in ultimate and residual (plastic) strains. The influencing factors on ultimate and plastic 

strains such as amplitude, load path, and load range are incorporated into the proposed softening 

functions. At the end, the results obtained from the model are compared with the experimental 

data in the literature showing a good comparison.  
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7. CONCLUSION AND FUTURE WORK 
 
7.1 Conclusion 
 
Fatigue failure can be named as one of the major failures that occurs in concrete structures 
such as bridges and pavements. Also, in cold regions like North Dakota where temperature 
reaches to the level of freezing, the freeze-thaw process can be implied as a destructive 

process in concrete that induces significant changes in mechanical properties of concrete and its 

serviceability. However, in both phenomena, not many reliable tests exist to to propose a 

comprehensive model that takes all the effective factors into consideration. In the case of fatigue 

loading, although many fatigue tests have been performed, a small portion of those are dedicated 

to multi axial loading. This could be attributed to the difficulties that exist in such tests. Also, 

such shortcomings exist in the case of freeze-thaw process as well. In the many freeze-thaw tests 

that can be found in the literature, the effects of effective factors such as temperature range, 

frequency of temperature fluctuation, and the duration of the process are not studied even though 

they have considerable effects on concrete properties. 

 

To model these two processes, in this research, the approach is founded on the first principle of 

mechanics and thermodynamics. Continuum damage mechanics is also utilized to describe the 

behavior of concrete under such processes since it is a suitable approach for the crack size 

smaller than the size of the volume element of a specific material. For brittle and quasi-brittle 

material like concrete, the main part of fatigue life deals with the first and second stage of the 

fatigue process, which contains small distributed microcracks. Also, based on the literature, the 

freeze-thaw process does not change the damage process into the concrete; therefore, this 

approach is still valid. 

 

To capture induced damage that occurred in the concrete, a response tensor R is used. Since the 

behavior of concrete under compressive loading is studied, the second form of damage is 

considered. In the case of compressive loading, damage only occurs in the perpendicular 

direction to the loading direction. Also, concrete strength enhances under biaxial loadings and 

the damage occurs in the loading direction as well as the non-loading direction.  

 

In order to capture the strength loss in concrete due to fatigue loading and freeze-thaw process, 

bounding surface approach is used. In this approach, limit surface represents the strength of the 

material. In the case of fatigue loading, limit surface is a condition at which the number of cyclic 

loading is equal to one. Applying cyclic loading results in degradation in the material in the form 

of well-spread microcracks and consequently loss of strength, which ultimately collapses the 

limit surface and forms new surfaces called residual strength. In order to capture such a behavior, 

a specific form of the softening function was obtained based on S-N curves available in the 

literature. Also, due to microcracks that occurred during the cyclic loading, concrete becomes 

more compliant that, as a result, its failure strain increases compared with failure strain under 

monotonic loading. Therefore, another softening function for ultimate strain is proposed to 

capture such a behavior. 

 

In the case of the freeze-thaw process, the limit surface is defined as a condition at which the 

number of applied freeze-thaw cycles is zero. By applying freeze-thaw cycles to concrete, the 

limit surface collapses and forms new surfaces called residual strength. Since the mechanism of 
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generating cracks and damage into concrete in the freeze-thaw process is similar to what occurs 

under fatigue loading, the same approach is utilized to describe such a process. The difference 

between the freeze-thaw model and fatigue model in this study is the formulation of their 

softening functions. 

   

Finally, the models’ predictions are compared with the experimental data available in the 

literature. The results show a good correlation between experimental data and what were 

obtained from the models. Therefore, it shows that the models are capable of capturing the 

changes in the mechanical properties of concrete due to both processes well.  

 

7.2 Future Work 
 

Although the models proposed in this research have shown a good correlation with the 

experimental data, there are still some aspects in the models that can be improved. 

In this research, fatigue loading was assumed to be low frequency. Therefore, the thermal effects 

were neglected in the formulation. It is known that frequency has significant effects on fatigue 

behavior of concrete, and although the assumption of low frequency loading is still valid in many 

engineering conditions, there are some high frequency loading conditions that the effects of 

frequency and the heat generated during the process of loading cannot be ignored. Consequently, 

incorporating the frequency parameters into the model could improve the accuracy of the results. 

 

In the case of freeze-thaw process, due to lack of experimental data on the effects of different 

factors such as temperature range, frequency of temperature fluctuation, and duration of the 

process on mechanical properties of concrete, their effects were not considered in the modeling 

formulation. Therefore, to improve the model, new experiments can be done to measure the 

effects of these factors quantitatively and then modify the model accordingly. 
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