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Abstract 
 

A preliminary study modeling the nonlinear behavior of long, slender wooden members was 
conducted at Colorado State University to evaluate their use in inexpensive, destroyable crash 
barriers. This preliminary study compared the results of physical test data, published exact 
solutions, and the solutions of a numerical model all with respect to simple, two-dimensional 
elastica frames. 

 
The results have varying levels of agreement that nonetheless give credibility to the performance 
of the numerical method. The research shows that the numerical model is ready to be expanded to 
model three-dimensional elastica frames. 
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Executive Summary 
 
 
Wood is a desirable  building material because it is relatively inexpensive and widely available. 
Though it is widely used in stiff structures with tight serviceability requirements, it is generally 
unused in cases where the structure is desired to have a relatively low stiffness and have large 
deformations or even break altogether. Inexpensive wooden crash barriers could be designed to 
absorb the energy from an impact and protect the more expensive object or vehicle hitting it. The 
crash barrier could then be cheaply replaced or left to biodegrade if need be. 

 
The goal of this project was to learn to model two-dimensional frames of long, slender wooden 
members and compare them to published results and data gathered from physical experiments. 
This study was done us ing three different frames – a rigid-node square loaded at opposite 
midspans in tension, a diamond frame with two rigid nodes and loaded at opposite pin 
connections in tension, and a slightly more complicated three-bay by three-bay frame. 

 
The results of the physical experiments and the numerical model have satisfactory levels of 
agreement with published data while the results of the three-bayed frame and the model have 
good qualitative agreement. Though the results are not perfect, there is significant evidence 
validating the numerical model. The next step in this project would be to expand the numerical 
model to three dimensions and to compare the results to more physical experiments.  
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1. Introduction 
 
In nearly all applications of wood for use as structural components, deflections of wood trusses, 
beams, or frames are limited to infinitesimal amounts. This is usually because serviceability of 
wood structures demands high stiffness and low displacement load-deformation characteristics so 
that bridges do not sag under load and residential houses do not sway in the wind. Yet there are 
other applications of wood structural members, which as a class have seen very little exploration 
and study, that could benefit from having a relatively low stiffness, thereby yielding a “soft” 
structure that has a load-deformation properties that exploit the ability of the structure to store 
strain energy as it goes through large deformations. Highly flexible wood networks have a limited 
but unexplored range of applications given the huge prevalence of wood structural members in 
the United States. For many of these applications, they are extremely well suited, and it is 
possible that even more structural systems could be envisioned with similar characteristics.  In 
this research, the fundamental mechanics of these structural wood systems are studied using 
computational techniques and static measurements. (Dynamic testing was not done, contrary to 
what was stated in the proposal) 

 
Before describing the key elements of the research, it is first useful to describe what is meant by a 
large deformation in a wood element. When structural elements are loaded, they deform. This 
deformation within the solid leads to strains, usually qualified as small or infinitesimal. Small 
strains combined with small displacements usually result in a deformed structure that looks, to the 
naked eye, exactly the same as the undeformed structure. The strains are then linked with internal 
stresses via the wood constitutive behavior, and when these stresses are integrated over an interior 
region of the wood structural element, their resultants sum to resist the applied load. This basic 
mechanism is what happens in a large percentage of wood structural elements when loaded under 
given design specifications. However, significant changes in analysis are required when 
considering similar systems under large deformations.  

 
This report outlines the accomplishments that took place during the summer of 2003. The 
following describes tasks completed as part of a study that will be continued by others. The 
purpose of this summer's activities was to test the Fortran code created by Fernando Ramirez and 
determine how well it predicted the behavior of multi-member frames by comparing its results to 
those of experiments and published solutions when applicable. 
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2. Literature Review 
 
Although the majority of wood structures and systems are designed and analyzed by small 
deformation, small strain linear analysis, there is significant literature on the nonlinear analysis of 
wood and wood structures. The vast majority of these studies focus on some of the dominant 
sources for nonlinear response within a structure, including but not limited to material 
nonlinearity in the constitutive law, stick-slip behavior during contact between two wood 
elements, P-Delta effects from second-order analysis, and inclusion of von Karman nonlinearity 
for moderately large deformations in beams. Kingston and Budgen [1] presented one of the first 
nonlinear analyses of the rheological behavior of wood under high stresses in bending and 
compression. Maghsood et al [2] constructed early nonlinear finite element models of structural 
wood members for use in many different applications. Sheathed wood diaphragms also possess 
strongly nonlinear behavior, and were studied by Itani and Cheung [3]. Polensek and Kazic  [4] 
studied the reliability of wood composites in the nonlinear range of behavior. 

 
Several studies have been devoted to the load-slip behavior of connections in wood-metal joints.  
Gebremedhin et al [5] examined metal plate connected wood joints loaded in-plane, and Groom 
and Polensek [6] studied the nonlinear behavior of truss-plate joints. Another area of study with 
strong nonlinear components are light-fame stud walls, which have been studied by Kasal and 
Leichti [7] Kasal, Leichti, and Itani, [8] Groom and Leighti, [9] Tarabia and Itani, [10] and Waltz 
et al [11]. The nonlinear behavior of layered wood systems and wood composites have been 
studied by Wheat and Calixto  [12] and Davids  [13]. Examples of the influence of nonlinear 
material behavior in wood include studies by Lang and Wolcott [14] for viscoelastic 
consolidation, Holmberg et al [15] has studied general nonlinear mechanical behavior, and a 
nonlinear orthotropic finite element model was developed by Tabiei and Wu [16]. 

 
Slender wood elements can exhibit nonlinear response characteristics, especially when loaded 
dynamically.  Tesar [17] has examined the vibration of slender bridges using nonlinear elements, 
and Filiatrault and Folz [18] examined seismic design under such conditions. Other dynamic 
loadings include guardrail systems (an example suggested by this proposed study), which has 
seen initial tests by Plaxico, Ray, and Hiranmayee [19]. Shear walls can also undergo nonlinear 
response under what would be called usual operating conditions, and have been recently studied 
by Ceccotti and Karacabeyli [20] and Andreasson et al  [21]. There are a number of other studies 
of this subject, and this review has been representative but not exhaustive. Other works of a 
similar nature are also mention in Pellicane [22]. There have also been several exact closed-form 
solutions to general elastica problems by Jenkins  [23] and Kerr [24] , both of which we make use 
of during our evaluation of our computational algorithm. 
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3. Theory 
 
3.1 The Elastica Wood Element 
 
The vast majority of structural wood studies completed to date that have modeled wood 
components as one-dimensional fibers have used the assumptions associated with small 
displacement Euler-Bernoulli beam theory combined with linear structural analysis. This implies 
a number of assumptions regarding the behavior of the line element. Most notably, 1) the 
kinematic hypothesis of classical beam theory requires that plane sections of the beam cross 
section remain plane and perpendicular to the centroidal axis of the beam, 2) the stress-strain law 
is one-dimensional and is caused by deformation of the line element center combined with either 
stretch or compression of either side of the element, and 3) the displacements and strains 
are infinitesimal. This allows the equations of equilibrium to be reduced to a single, fourth-order 
ordinary differential equation relating the transverse load q to the transverse displacement w 

 

 (Equation 1) 
 
Here E is the Young’s modulus of the fiber along its long axis and I is the bending moment of 
inertia. Hence all material properties and geometric parameters are condensed into two scalar 
quantities. 
 
For the usual deformation of wood elements, the restriction that the beam displacements are small 
is accurate for most phenomena, such as small amplitude vibrations or normal building analysis. 
However, in these applications, it is very likely that the wood element will be deformed into a 
position for which this equation is invalid.  This is because the mathematical relationship between 
the bending moment M in the cross-section of the fiber and the curvature k of the deformed ele -
ment can be expressed for linear analysis as 
 

 (Equation 2) 
 
The exact mathematical link between the curvature and the transverse displacement of the line 
element w is given by 
 

 (Equation 3) 
 
When the displacements and displacement gradients are infinitesimal, the slope of the deformed 
wood element is very small compared to unity, and hence the denominator above is nearly one.  
In this case, the curvature reduces to the linear differential equation 
 

 (Equation 4) 
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However, for an arbitrary loading of a wood element (or a collection of such elements) under 
large deformations, this relationship is not valid under the most general loading conditions. In the 
present application of narrow wood elements as structural members, the elements undergo very 
large deformations where the slope of the line element is not small, but the strain is still 
infinitesimal. The reason for this is that in beam bending, the axial strain along the element, given 
by the ratio of the distance from the centroid and the radius of curvature, varies linearly with 
distance y from the tube center. If the wood element radius is small, the radius of curvature must 
also be extremely small before the stresses in the wood reach or exceed the elastic limit. Because 
of the mechanics of deformation, then, the nonlinear term in the equation of curvature must be 
included in the analysis, thereby complicating the formulation. 
 
It is proposed to model the wood elements or assembly of elements as a network of elastica, each 
with the capability to withstand large deformations but only small strains for the reasons outlined 
above. This basic problem was first proposed and studied by Euler, who in fact coined the name 
"elastica" and provided the first solutions. Even the simplest elastica geometry admits analytic 
solution only using elliptic integrals, which must generally be evaluated numerically. In this 
proposal, each wood element is formulated as an elastica, with possible junctions where two or 
more elements cross, forming an elastica wood frame. 
 
 
3.2 Variational Formulation and Finite Element Model 
 
The variational formulation and corresponding finite element model of the frame as represented 
by the elastica is based on treating wood elements as a one-dimensional continuum, with the vast 
bulk of the energy stored by extension/contraction and flexure of the element. Because of the 
inherently nonlinear behavior of the response of the elastica to external load, the nonlinear 
curvature term in the expression for the strain energy must be considered. This requires 
minimization of the strain energy of the element represented by the elastica, given as 
 

 (Equation 5) 
 

where L is the length of the beam, w is the transverse beam displacement, R the radius of 
curvature, EI the beam stiffness, and x the beam axial coordinate. There have been several studies 
that have constructed the finite element model of individual elastica, but usually only for very 
special two-dimensional loading conditions of individual elastica. The method used in this work 
is aimed at determining the nonlinear curvature by a sequence of incremental changes to the beam 
geometry through inclusion of the axial force term in the potential energy statement. This 
approach has been used by Yang [25] for two-dimensional geometries. The strain energy due to 
small bending and using Green's strain tensor is given by 
 

 (Equation 6) 
 

where u is now the beam axial displacement and S the axial force along the beam centroidal axis.  
The curvature expression in the second integral is not exact, but is an excellent approximation to 
the curvature if w is much smaller than the beam length. 
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Using the finite element approach where x is always in a local coordinate system of the one-
dimensional elements, the partial derivatives become complete and the variation of the strain 
energy becomes 
  

 (Equation 7) 
 
 
The shape functions, as well as the development of the elastic stiffness matrix, Ke , can be seen in 
Yang. Using these shape functions in each term of Equation 7, we can get the stiffness matrix and 
the geometric stiffness matrix. See Appendix A for the development of the geometric stiffness 
matrix, KG. Under initial loading, the second integral is non-zero under bending, and the first and 
third integrals are exactly zero since the transverse and axial components of displacement 
uncouple. As the geometry changes, all terms become non-zero, and the axial stiffening and 
updated geometry couple to provide an excellent approximation to the exact deformation.  This is 
accomplished through a linearized incremental formulation by which the standard stiffness matrix 
is modified by changes in the geometry. The code used in this project is based on one such 
method as outlined in the text by Yang and Kuo [26].  
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4. Physical Models 
 
4.1 Nodes 
 
Our two-dimensional physical models are the diamond, the square, and the 3x3 bay frame. In all 
models, the members are made of 1/8th-inch diameter wooden dowels. In all the models, a rigid 
connection between members is needed to transfer forces and movents. A few different methods 
of achieving these rigid nodal connections were attempted. A successful connection would be one 
where failure of the member occurs before yielding or failure at the node. The node is considered 
to have yielded or failed if the angle between the members changes or if one of the members slips 
relative to the other. 

 
The first attempts were using different adhesives, wood glue and an epoxy called Hardman 
Adhesives made by Elements Performance Polymers. The wood glue proved to yield before the 
members did. The main difficulty with the Hardman Adhesives is the fact that the glue is too 
viscous and will flow away from its desired location, not enough stays near the node to 
help transfer the forces.  

 
The node connection that was finally decided upon performed very well, but will have some 
drawbacks in the long run. These nodes are comprised of small cubes of wood that are 
approximately 5/8 inches to a side. Small holes slightly larger than the members were 
drilled through each face slightly off the cube’s center. This connection does introduce some 
eccentricities to the structure, but not much more than those using an epoxy for the connection, 
see Figure 1. The eccentricity also allows the members to be continuous through the node, even 
when expanding the concept to three dimensions. A small amount of tape was then used to secure 
the nodes in place and prevent them from sliding along the member, allowing for transfer of shear 
and axial forces between the members. 

 
This connection has a few advantages over a connection where glue is involved. When 
assembling a three-dimensional structure, one can visualize the difficultly in keeping all the 
members in their proper place while applying the adhesives and while they dry. With the wooden 
node, the frame can be moved around and adjusted throughout the assembly process. Once the 
assembly is complete, there is no period of down time while the connections set. 

 
However, the current node has some disadvantages. The connections are limited to orthogonal 
directions. Future applications may require members joining at different angles. This may be 
addressed by using a spherical node, or a node with more sides. These types of nodes will require 
more time to produce and will be more difficult to manufacture quickly and easily without some 
creativity. 
 
 
4.2 Diamond 
 
A simple two-dimensional diamond frame was tested to explore how the code predicted behavior 
of multi-member frames. The diamond had two fixed connections and two pinned connections, 
each across from the other. The frame was loaded by pulling (tension) on the two pin 
connections. The diamond frame's exact solution was found using elliptical integrals as shown in 
the paper by Yang. 
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The pinned connections were made by lining up two nodes and sliding a short dowel through the 
third dimension hole. Tape was used to secure the member dowels to the node. This was done at 
both ends of each member to prevent them from being pulled out of the node. However, at the pin 
connections, no tape was used on the short dowel that connects the two halves of the diamond.  
This allowed them to rotate freely.  
 
 
4.3 Square 
 
The square frame was much simpler. It had four rigid connections and was loaded in tension at 
the mid-span of two opposing members. The square was made using four dowels of equal length 
and four of the same wooden nodes, creating a square where all connections are rigid.  The exact 
solution for this test was also found in Yang's Paper. 
 
 
4.4 Three-Bay Frame 
 
The three-bay frame was assembled using eight 30-inch dowels and 16 nodes. The four vertical 
and four horizontal dowels are then evenly spaced and tape was used to keep the dowels fixed to 
the nodes. Then, small cones were affixed along the top and bottom nodes. This helped the square 
nodes act more like pins as the load is applied and the nodes rotated.  
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5. Testing the Physical Models 
 
5.1 Modulus of Elasticity 
 
Before we could compare our numerical results to those of experiments, we had to have a value 
for the Young's Modulus of the wooden dowels. This value was not taken from design books 
because of the high factor of safety imbedded into wood design codes and there are many 
unknowns surrounding the purchased dowels – species, grade, age, moisture content, etc. – that 
made choosing a published value difficult. The modulus of elasticity was found using the average 
of five samples.  Each sample was created by gluing six short dowels around each end of a longer 
dowel and allowing them to dry for a several days. The purpose of this is to try to prevent the 
main dowel from being damaged by the grips. The Instron machine was then used to acquire data 
relating load and displacement.  
 
5.2 Diamond 
 
The top pin connection was held in place at the top of the Instron machine. A small, light 
container was affixed to the bottom pin connection so ball bearings could be added individually 
to load the frame. The movable base of the Instron was used to measure the deflection after each 
ball bearing was added. After each weight was added, the base was moved by hand until the 
marker lined up again with the center of the node. See Figure 2. The deflection could then be read 
and recorded from the Instron's control panel. 
 
5.3 Square 
 
The mid-span of the top member was held at the top of the Instron machine. A small, light 
container was affixed to the bottom member at mid-span so ball bearings could be added 
individually to load the frame. Again, the movable base of the Instron was used to measure the 
deflection after each ball bearing was added. After each weight was added, the base was moved 
by hand until the marker lined up again with the midspan of the lower member. See Figure 3. The 
deflection could then be read and recorded from the Instron's control panel. 
 
5.4 Three-Bay Frame 
 
The testing apparatus is more than three feet long and four feet high. The apparatus has plexiglass 
on both sides so that the frame could be seen during the loading. The Instron machine was used in 
conjunction with a 1,000-pound load cell to test the three-bay frame. The device used to keep the 
frame two-dimensional was too big to fit inside testing machine. To circumvent this problem, a 
lever system, as seen in Figure 4, was rigged so the contraption could be set up in front of the 
machine and the load applied via the lever. 

 
This setup allowed the loading rate to be controlled much more effectively and made it possible 
to record much of the non-linear portion of the frame’s load vs. deflection curve. The lever 
system required that the raw data retrieved from the Instron machine be adjusted to give accurate 
results. The load was halved and the displacement was doubled since the location of applied load 
was at mid-span of the lever. Elastic deformation of the lever was assumed to be negligible. 
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6. Results 
 
6.1 Modulus of Elasticity 
 
Load-Deflection curves were found for each specimen using the Instron machine and, from this 
data, stress-strain curves were created knowing, each specimen’s length and cross-sectional area. 
Wood does not have a distinct linear region and yielding point like steel does. Hence, only the 
initial portion of the curves which is nearly linear was used to find the slope and, hence, the mod-
ulus of elasticity.  See Figure 5 for an example and Table 1 for the results. 

 
As one can see, the data is variable but stays close to an average near 1500 ksi. Hence, this value 
was used in the code. 
 
 
6.2 Diamond 
 
The results from the diamond frame are shown in Figure 6. The exact solution was taken from the 
paper by Jenkins. The code was run using double symmetry and 10 elements for the member that 
was modeled. 
 
 
6.3 Square 
 
The results from the testing of the square frame are shown in Figure 7. In the code, the double 
symmetry was not used and all four members were modeled using 10 elements per side.  
 
 
6.4 Three-Bay Frame 
 
Using the method of testing discussed above, reasonable, but not perfect, data has been found for 
frame strength. The testing results give a P-Delta curve that match expected characteristics. These 
results can be seen in Figure 8. However, the predicted P-Delta curve from the code does not 
match the experimental results. It can be seen that the experimental data is slightly stiffer than the 
code predicts it should be.  
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7. Discussion and Conclusions 
 
7.1 Code 
 
The code used for this project, originally written by co-author Fernando Ramirez, needed some 
improvement to work for all materials and member sizes.  It was found that the code worked fine 
for materials with very high strength and large size, but would not work for wooden dowels (low 
strength) and small sizes (thin dowels), which was needed for this project.  

 
It was first thought that the strength and material size had a large influence on the condition 
number of matrices in the code. If the condition number is too large the computer is not able to 
accurately solve the large matrices involved in a finite element analysis.  After looking deep into 
this problem it was found that the condition number of the matrices in the code was not what was 
causing the problem. However it was still evident that larger numbers for strength would make 
the code work. To tackle this problem, all the units of force and length were changed at the 
beginning of the code effectively , turning small numbers for strength into large numbers so that 
the code would work. The code only sees numbers, not what units they are in.  After the code was 
done with all of its analysis the results were converted back to the correct units to give accurate 
results.  This method of solving the problem worked for all frames within extremely large and 
extremely small frame properties. 
 
 
7.2 Diamond 
 
Looking at Figure 6, one can see that the code and the exact solution as presented by Yang have 
excellent agreement. The experimental results, however, do not match well.  It is found that they 
differ by a factor of nearly two. This discrepancy is believed to be the result of a difference in the 
definition of the length L or in the load P.  However, after diligent searching, the discrepancy has 
not yet been resolved. It is known that the definition of L as published in the paper by Yang 
differs from the definition of L as published in the paper by Jenkins, which Yang references. Yet 
their solutions are in agreement. Hence, Jenkins' definition of L was used in this project and it 
was determined that Yang was in error. This discovery still does not resolve the issue. 
 
 
7.3 Square 
 
The results from the square model also have a few unresolved issues. The exact solution as 
published by Kerr [24] has good agreement with the experimental results, especially for the 
smaller displacements and loads. However, the exact solution and experimental results differ 
from the results of the code by a factor of the square root of 2. Again, the differences are believed 
to be in the definition of the length and load parameters. Yang defines L as the length of one side. 
However, Kerr defines L as half the length of a side because he uses the double symmetry in his 
solution to the elliptical integral and models only a quadrant of the square. Using this definition 
of L in the numerical analysis yields results that differ by roughly the square root of 2. 
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7.4 Three-Bay Frame 
 
The experimental results and the output from the code tend to be in the same ballpark, but they 
are not perfect. There are two possible reasons for the discrepancy of results between the code 
and physical model: either the code is wrong or the there is something going wrong in the testing 
data. Something that could be wrong with the testing data is that there seems to be a substantial 
amount of friction in the testing device.  
 
The friction between the glass and the nodes causes the data to be skewed in the stronger 
direction. It also causes some jumping in the data from the static friction being exceeded. It would 
seem that this friction would be negligible seeing as the friction between wood and plexiglass is 
not very large, but for a frame that can only hold a handful of pounds this friction significant. As 
for eliminating this friction, several methods have been tried and some are still being considered.  
One method is to constantly tap the glass with some sort of hammer as the frame is being loaded, 
this introduces a small vibration in the plexiglass and causes the nodes to slide more easily.  
Another method is to place a small dowel, sharpened on each side and slightly longer than a node 
is wide, through the hole in the third dimension of the node so that the when the frame is tested 
only these little points sticking out of the node slide against the plexiglass. These points did a 
wonderful job of smoothing out the data, however they failed to change the strength of the frame 
by a significant amount. 

 
Other sources of friction could be between the loading block and the plexiglass, between the 
loading cell and the lever, between the lever and the loading block, and in the hinge at the end of 
the lever. Modifying each of these sources to make them frictionless would be a daunting task at 
best, especially since the exact amount of friction each source adds is unknown. Quantifying the 
amount of load that is added because of friction from these sources can be done by placing a scale 
on each end of the frame testing device and running a stiff rod between them and between the 
plexiglass for the frame to rest on. As the frame is loaded, the difference between half the value 
read from the Instron machine plus the loading block and the total value read from the two scales 
will be the amount of friction loss during the testing. Now the only friction unaccounted for will 
be that between the plexiglass and the stiff rod running between the scales. 

 
This test was performed with a frame that had the sharpened dowels in the nodes and the 
plexiglass was tapped throughout the procedure. The test revealed that there was negligible 
friction from the entire testing device, the values from the load cell and the values from the scales 
were off by an average of less than two percent. This test showed that friction is not the problem 
in our testing device. 

 
Many modifications to the code have been made from its original form to make it work for any 
reasonable frame size and material property. At this point, it is not believed that the discrepancies 
discussed above are due to an inherent flaw in the program itself. The high variability of the 
wooden dowels in strength and homogeneity make it almost impossible to line up physical data to 
exact solution. This could be a cause for some of the discrepancies, but this does not explain 
systematic differences, such as why the experimental results of the diamond frame differ from the 
code and exact solution roughly by a factor of two. These issues need to be resolved before 
continuing with the project.  

 
The next step of this project will be expanding the code to three dimensions and testing a physical 
model in order to verify its results.  
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Appendix A 
 
Development of the Geometric Stiffness Matrix 
 

 
The third term in Equation (7) can be split into two parts. 
 

  (8) 
 
These terms become the entries, KG,11, KG,14, KG,41, and KG,44. These terms are zero if 
inextensibility is assumed, but this is not the case in this study. The second part fills in the rest of 
the geometric stiffness matrix. 
 

  (9) 
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Again, the geometric stiffness matrix is symmetric and all other KG,ij entries are zero. The 
geometric stiffness matrix, KG, becomes: 
 

  (10) 
 
 
The final stiffness matrix, K, is the sum of the elastic stiffness, Ke, and the geometric stiffness, 
KG. 
 

  (11) 
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Appendix B 
 
Tables and Figures 
 
 

Modulus of Elasticity 
Sample E (ksi) 

1 1417 
2 1532 
3 1505 
4 1576 
5 1510 

Average 1508 
 

Table 1.  Modulus of Elasticity Results 
 

 
Figure 1.  Nodal Connection 
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Figure 2.  Experimental setup for the diamond frame 
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Figure 3.  Experimental setup for the square frame  
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Figure 4.  Experimental setup for the three-bay frame 
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Modulus of Elasticity (example of one full test)
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Figure 5.  Example of Stress-Strain curve of a wooden dowel 
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Figure 6.  Results of the diamond frame 
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Figure 7.  Results of the square frame 
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Figure 8.  Results of the three-bay frame 
 


	1. Introduction
	2. Literature Review
	3. Theory
	3.1 The Elastica Wood Element
	3.2 Variational Formulation and Finite Element Model

	4. Physical Models
	4.1 Nodes
	4.2 Diamond
	4.3 Square
	4.4 Three-Bay Frame

	5. Testing the Physical Models
	5.1 Modulus of Elasticity
	5.2 Diamond
	5.3 Square
	5.4 Three-Bay Frame

	6. Results
	6.1 Modulus of Elasticity
	6.2 Diamond
	6.3 Square
	6.4 Three-Bay Frame

	7. Discussion and Conclusions
	7.1 Code
	7.2 Diamond
	7.3 Square
	7.4 Three-Bay Frame

	References
	Appendix A: Development of the Geometric Stiffness Matrix
	Appendix B: Tables and Figures

