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EXECUTIVE SUMMARY 

 

This research examines a range of incident detection technologies to determine a recommended 

combination of approaches for use in the Utah Department of Transportation�s (UDOT) Advanced Traffic 

Management System (ATMS).  The technologies that were examined are computer-based automatic 

Incident Detection (AID), Video Image Processing (VIP), and detection by cellular telephone call-ins.   

Three performance measures are generally used in incident detection technology analysis:  time 

to detect, false alarm rate, and detection time.  A direct comparison of the performance of the computer-

based algorithms is difficult because both the measures of effectiveness and how an incident is defined 

are inconsistent throughout the literature.  The values are given as reported in the literature.  The number 

of false alarm rates have been normalized by applying false alarm rates to the number of detector stations 

in the UDOT ATMS area (87 detectors).  The results indicate that among the algorithms implemented 

outside of the laboratory environment, the All-Purpose Incident Detection (APID) algorithm performs 

well, giving about eight false alarms per peak hour (on the ATMS network) with 2.5 minutes to detect and 

an 86 percent detection rate.  Inside the laboratory, the new neural network method also performs well 

with two false alarms per peak hour on the ATMS network with about 1 minute to detect and an 89 

percent detection rate.  Incident detection by video image shows promise with 0.03 false alarms per hour, 

20 seconds to detect, and a 90 percent detection rate.  The video image detection system has several 

advantages over the traditional inductive loop systems because it can detect incidents anywhere in its field 

of view, including the emergency lanes.  

Increased use of Cellular telephones has made them the primary means of incident reporting.  

They also have made many of the computer-based algorithms obsolete because incident reports from 

them are received more quickly and accurately than automatic algorithms can detect incidents.   
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This project originally was scoped to include a rigorous testing of several computer-based 

algorithms.  The project�s Technical Advisory Committee (TAC), however, redirected this work to look 

more closely at the impact of cellular telephones in incident detection.   

Cellular telephone technology will continue to impact the power and speed with which incidents 

are detected.  The Federal Communications Commission has mandated that all cellular telephone service 

providers give the name, number, and location of a cellular telephone caller to the Pubic Safety 

Answering Point by October 2001, for when that caller dials 911.  This information will be helpful to 

identify locations of traffic incidents.  The number of cellular telephones in use also is increasing.  UDOT 

has placed several �Highway Help Cellular �*11� signs on Utah Highways and Interstates.  Before more 

of these signs are placed on the freeways to enhance incident detection time, a public awareness program 

should be instituted.  The *11 calls are answered by the Highway Patrol dispatch center in the Traffic 

Operations Center, which is not able to dispatch emergency medical services needed in major accidents.  

While both 911 and *11 are on the freeway signs, public perception does not differentiate between the 

two. 

Incident detection by cellular telephones will continue to be the primary means of incident 

detection.  Because the ATMS already possesses the APID and Double Exponential Smoothing (DES) 

algorithms as part of the Navigator software, they should be enabled and calibrated as a secondary form 

of incident detection.   

Other forms of incident detection can be evaluated from the ATMS.  The neural network method 

and the video image processing method likely could be modified to work with existing ATMS equipment. 
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CHAPTER 1.  INTRODUCTION 

 

Freeway incidents cause injury, traffic congestion, increased environmental pollution, and cost 

millions of dollars every year in user-delay, cost, vehicular damage, and personal injury.  Engineers and 

transportation officials have dedicated substantial resources in the past years to find better ways of 

preventing freeway incidents from occurring and managing them when they do.  When there is an 

incident, minimizing the response time (the time from when an incident occurs to the time that emergency 

crews arrive on the scene) is crucial in several aspects.  The most important is the treatment of injuries.  

The faster treatment arrives, the greater the survival rate of serious injury during an incident.  Second, 

clearing the incident quickly minimizes the traffic flow disruption and the potential for secondary 

incidents. 

Automatic incident detection (AID) has been considered a method for quickly detecting potential 

incidents.  The technology has been in the research, development, and testing stages since the 1970s.  

During that time, many incident detection methods and algorithms were developed.  Past experience has 

shown that when a traditional AID system is installed, the number of false alarms have become such a 

problem that traffic operations centers stop using them altogether.  Other systems have a poor enough 

detection rate that operators are unable to rely on the system as their primary method of incident 

detection. 

As part of the I-15 reconstruction project, the freeway network in the Salt Lake valley has been 

instrumented with an advanced traffic management system (ATMS).  As part of the project, 87 sets of 

inductive loop detectors spaced at 800 meters and traffic monitoring video cameras have been installed.  

Also, the Utah Department of Transportation (UDOT) has acquired the base software used in the Atlanta, 

Ga., TOC.  This software already has two automatic incident detection algorithms.  Also, a UDOT 

management team has been formed and other local agencies have or are in the process of organizing their 

own incident management teams. 
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Several of these facts or circumstances have caused UDOT to ask questions about automatic 

incident detection.  The questions were later formulated into the objectives of this project.  They are: 

1. Qualitatively evaluate and recommend an incident detection algorithm or algorithms for the  

UDOT ATMS. 

2. Investigate the impacts of cellular telephones on incident detection and propose a strategy for 

future implementation. 

By examining available literature and studies on incident detection algorithms and methods, a 

discussion of each algorithm is provided along with its reported performance, installation experience and 

deficiencies.  Also provided are comments from other Traffic Operations Centers (TOCs) and consultants 

who have installed such systems around the nation.  A comparison of the algorithms is provided, 

adjusting the performance measures to reflect how algorithms would perform on the Salt Lake Valley 

freeway network.   

Over the last decade, more and more drivers carry cellular telephones.  This has greatly impacted 

incident detection.  In this research, we address how UDOT may be able to make incident detection by 

cellular telephone work to its advantage.   

Incident detection by video image processing is a new technology that varies from traditional 

inductive loop detection technology.  A discussion of the state of this technology provides ideas about 

how it might be used within the ATMS coverage area. 

The majority of freeway incidents in the UDOT ATMS area are detected by cellular telephone 

call-ins.  After the initial call, the accident is verified.  This is done in one of two ways.  Either the TOC 

operators verify the accident using the traffic monitoring video cameras, or a highway patrol officer must 

verify the site in person.  Personal verifications are required in areas without video coverage, or areas 

outside of the planned coverage area.  Highway patrol vehicles are scheduled to travel each freeway 

corridor at frequent intervals.  The approximate mean time from the first call to the time that an 

emergency vehicle arrives on the scene is about four minutes.   
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The TOC operators also have a speed map of the freeways in the ATMS that contributes to 

incident detection.  The map shows the speeds measured from the fixed speed detectors located 

approximately 800-meter intervals on the freeway network.  The speed map color codes specific freeway 

links according to speed.  Operators monitor the map and check on locations where speed is diminishing 

to check for incidents.  UDOT also has an incident management team, which is responsible for 

coordinating incident clean-up activities, doing incident verifications, and even minor disabled vehicle 

repair or towing.   
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CHAPTER 2.  MEASURES OF PERFORMANCE 

 

Three parameters consistently have been used to measure the performance of incident detection 

algorithms.  Unfortunately, how they are defined from study to study is not consistent.  The parameters 

are detection rate (DR), false alarm rate (FAR), and time to detect (TTD). 

 

Detection Rate 

  The detection rate generally is considered the ratio of the number of detected incidents to the total 

number of incidents.  This varies according to the definition of an incident.  Some studies count any 

stalled vehicle to be an incident, regardless of location, while others only count lane-blocking incidents.  

Those who belong to the latter group generally have reported higher detection rates because shoulder 

incidents often do not cause sufficient disruption in traffic flow to trigger an alarm. 

 

Time to Detect 

  Time to detect is defined as the time from when the incident occurs until it is detected.  This does 

not include the time taken to verify the incident.  Algorithms will often adjust the persistence of the alarm.  

This persistence determines the number of time intervals that incident level flow disruption must exist 

before an alarm is raised.  Most algorithms use 20- or 30-second time intervals.  For most research results, 

the time to detect is assumed to have been calculated based on peak hour volumes.  The basis for the 

calculations, however, generally was not provided with the reported performance results.  It is possible 

that the reported TTD for installed systems is based on peak and off-peak period flows while the TTD for 

laboratory tests generally is based on peak volumes.   

 

False Alarm Rate 

  The false alarm rate is most often defined as the percentage of incorrect detection signals relative 

to the total number of algorithm decisions.  Most algorithms make one decision per detector station each 
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time interval.  The reporting of this value is inconsistent in the literature due to the many ways it can be 

calculated.  Given the above definition, small false alarm rates are reported.  The number of decisions and 

the total number of detector pairs in a network can cause many false alarms in a short time.  Others make 

relatively few decisions over a period of time creating a high percentage of reported false alarms.  

Another definition used is the number of false alarms per time frame, per station.   

The values of these measures are interdependent.  Generally, increasing the performance of 

detection rates, the false alarm rate also will rise. Similarly, if false alarms are decreased, then the 

sensitivity of the algorithm is reduced as a whole and the detection rate falls.  In general, the longer an 

algorithm is given to analyze data, the better results it will give.  This means that by increasing TTD, both 

the DR and FAR improve.  Because of this dependency, most reports give a range of DR, FAR, and TTD 

to describe the performance of an algorithm.  These values must be calibrated for each specific 

installation to balance the tolerable number of false alarms with an acceptable time to detect and detection 

rate. 

  The original intent was to compare the performance reports for each of the algorithms according 

to the three parameters.  It quickly became evident, however, that most of the studies use different 

combinations of the definitions and do not always explicitly state what definitions they use.  This makes a 

direct comparison of each algorithm rarely possible and likely to be inaccurate because each site has its 

own number of detectors, detector spacing, time intervals, geometry, and recurrent congestion 

characteristics.  To compare 100 percent detection rate for an algorithm tested on only eight detectors to 

an algorithm tested on 500 detectors, with a rate of 68 percent is not reasonable.   

  Instead of attempting a direct comparison of performance measures, each set of performance 

measures is given as reported.  The definitions of the measurement methods are given where they are 

reported. 
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CHAPTER 3.  ALGORITHM DESCRIPTIONS 

Four main types of computer-based algorithms have been developed in the last 30 years: (1) 

pattern recognition, (2) catastrophe theory, (3) statistical, and (4) artificial intelligence.  While pattern and 

statistical based algorithms were first created in the 1970s, artificial intelligence is the newest and least 

mature of the four. 

Some of these methods also are applied to incident detection using video image processing.  

Because this technology does not neatly fit into any of the four categories, it is treated on its own in 

section 3.5. 

New programs or technologies incorporate several of the established incident detection 

algorithms through a decision support system.  For example, if five algorithms are incorporated, the 

decision support framework may trigger an incident if three of the five algorithms �agree.�  Examples of 

these algorithm �groups� are proposed by Sheu and Ritchie (2000), Levin et al. (1979), and Cohen and 

Ketselidou (1993). 

In our literature search, we also encountered several documents and articles that support incident 

detection research and evaluation.  Examples are simulation programs, evaluation frameworks, and full 

reviews of incident detection technologies (Dougherty, Chen, and Montgomery 1998; Madanat et al. 

1996; Kan, Krogmeier, and Doerschuk 1995; Kang, Ritchie, and Jayakrishnan 1998; Parkany and 

Bernstein 1998; Miller and Abkowitz 2000; Sullivan 1997; Solomon, 1991) Kan, W.Y.; Krogmeier, J.V.; 

Doerschuk, P.C. Sensor Signal Processing for IVHS Applications. 1995. 

 

Pattern-Based Algorithms 

Pattern-based algorithms are the most common algorithms in current operation.  They work from 

occupancy, traffic volume, and traffic flow information that usually is collected from inductive loops.  By 

identifying patterns in the data that are not considered �normal� for a stretch of road, potential incidents 

are recognized.  This method requires preset thresholds that define normal interrupted flow.  Anything 
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outside of �normal flow� should set off an alarm.  Setting these thresholds is difficult and time 

consuming.  This step should not be treated lightly to ensure the best performance.  

 

The California Algorithm 

One of the first to be developed, the California algorithm � sometimes referred to as Traffic 

Services Corporation-TSC algorithm 2, continues to be the algorithm most others use as a basis of 

comparison.  The algorithm tests for an incident using three tests on the measured occupancy from two 

adjacent detectors.  A potential incident is declared when values from the three tests surpass preset 

thresholds.  The three tests are defined as follows: 

1. The difference between the upstream station occupancy (OCCi) and the downstream 

station occupancy (OCCi+1) is checked against threshold value T1. If the threshold value is exceeded, then 

proceed to step two. 

2. The ratio of the difference in the upstream and downstream occupancies to the upstream 

station occupancy (OCCi � OCCi+1)/OCCi is checked against threshold T2. If this threshold is exceeded 

proceed to step three.  

3. The ratio of the difference in the upstream and downstream occupancies to the 

downstream station occupancy (OCCi � OCCi+1)/OCCi+1 is checked against threshold T3. If this threshold 

is exceeded, a potential incident is indicated and step two is repeated. If this threshold is again exceeded, 

a potential incident is flagged. 

An incident state is terminated when threshold T2 is no longer exceeded.  The thresholds are 

calibrated from empirical data. 

Although the California algorithm is straightforward, it requires the laborious calculation of 

thresholds for each location where it is installed.  In large networks, separate thresholds must be 

calculated for different road geometries (i.e. ramps, weaving sections, hills, etc.).  Due to its simple 

nature, its performance is not as good as that of later revisions or new techniques (Stephanedes and 

Hourdakis, 1996).  It is a sound algorithm that is used in many locations. 



 11 

TSC Algorithm 7 

After further research into the subject, Payne and Tignor (1978) published 10 new algorithms 

based on the original California algorithm.  The two that performed best are TSC 7 and TSC 8.  The TSC 

7 algorithm replaces the use of relative temporal differences in downstream occupancy values with 

downstream occupancy measurements.  By doing this, recurring compression waves, common in heavy 

traffic, do not give off false alarms.  It was found that simple downstream occupancy data that dropped 

below a certain threshold, usually 20 percent, was more indicative of an incident.  

Along with the change in parameters, a persistence check was added to the basic algorithm that 

required that traffic discontinuity continue for a specified period of time before an incident was declared.   

 

TSC Algorithm 8  

This was the most complex algorithm to come from the modified California series and also is the 

best performer (Cohen and Ketselidou 1993).  This algorithm provides a repetitive test for compression 

waves.  These waves result in traffic slowdowns that move upstream and may produce momentary 

stoppages of traffic in heavy flows.  By analyzing data, compressions can be detected and alarms are 

suppressed for up to five minutes at upstream locations.  This way normal traffic congestion is less likely 

to give false alarms.  This algorithm categorizes traffic data into nine different states and requires five 

different threshold values to be calibrated.   

 

APID Algorithm 

The All Purpose Incident Detection (APID) algorithm was developed by Philip H. Masters as a 

component of the COMPASS software for use in Toronto�s ATMS (Chang and Lin 1993).  The APID 

algorithm is a combination of the various California algorithms along with a compression wave test 

routine and a persistence test routine.  Unlike the California algorithms, it uses smoothed-occupancy as 

the detection variable to reduce false-alarm rates.  The algorithm�s goal was to provide excellent 

performance under all conditions, thus the �all purpose� acronym.  The algorithm worked well under high 
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traffic volumes, but performed poorly under low traffic volumes (Masters, Lam, and Wong 1991).  

Results given in an off-line evaluation showed a 66 percent detection rate over 29 incidents (86 percent of 

incidents creating abnormalities in traffic flow) with a TTD of 2.55 minutes and a FAR of 0.05 percent 

per station.  This algorithm was to be used in Atlanta during the Olympics, but never was put on-line.  

The algorithms are built into National Engineering Technology�s (NET) Navigator software that was 

developed for Atlanta, Ga., and remains in place in the navigator software present at the GDOT and 

UDOT TOCs, although it has not been activated.  The city of Boston, Mass., currently is planning to 

implement the APID algorithm on the Boston Tunnel Project with detector spacing at every 70m. 

(Swartz, 2000) 

 

PATREG Algorithm 

Developed in 1979 by the Traffic Road and Research Laboratory (TRRL), the Pattern 

Recognition Algorithm (PATREG) was designed to work in conjunction with the High Occupancy 

(HIOCC) algorithm (Collins, Hopkins, and Martin 1979).  The algorithm functions by estimating travel 

times between detector stations, converting this to a speed, then checking the current speed against preset 

thresholds. If the speed falls out of the thresholds for a specified period of time, then an alarm is sounded.  

The travel times are determined by a complex cross-correlation technique that matches up-stream to 

down-stream flow measurements. The algorithm worked best in low to medium flows (1,500 vph).  This 

is because at higher flows, traffic becomes too irregular to adequately match flow measurements.  Flows 

are measured every second, and every 40 seconds a new speed is displayed for that section of road.  This 

algorithm requires detector spacing at 1/3 of a mile minimum.  This algorithm is quite outdated, as no 

new developments have been made since the early 1980s. 

 

Catastrophe Theory 

Catastrophe Theory takes its name from the sudden discrete changes that occur in one variable of 

interest while other related variables are exhibiting smooth and continuous change (Persaud and Hall 
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1989).  These variables are speed, flow, and occupancy.  When speed drops dramatically without a 

corresponding increase in occupancy and flow, the alarm sounds.  In this regard, Catastrophe Theory 

based algorithms are able to differentiate between incidents and recurring congestion.  Congestion builds 

up slowly, while incidents cause a sudden queue to develop and drastic changes in speed to occur.  The 

algorithms exploit this phenomenon.  The difference between Catastrophe-based and pattern-based 

algorithms is that pattern-based methods rely on individual variable and pre-set thresholds, while the 

catastrophe method uses multiple variables and compares them to previous trends in data for recurrent 

congestion.  The only type of algorithm that fits into this classification is the McMaster algorithm 

(Persaud and Hall 1989). 

 

McMaster Algorithm 

The theory is based in sudden changes that occur in one variable of interest while other related 

variables exhibit smooth and continuous change.  This can be applied to incidents by looking at the 

relationships between speed, flow, and occupancy.   The algorithm functions are based on data from a 

single detector station (Antoniades and Stephanedes 1996). 

Using historical data, a flow-occupancy and speed-occupancy charts for the Burlington 

Expressway, near McMaster University, were created (Forbes, 1992).  Figure 3.1 shows an example of 

these charts.   
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Figure 3.1 Speed/Occupancy Graph used by the McMaster Algorithm 
Source (Forbes 1992) 
 

This chart gives parameters for recurrent congestion. Thresholds for incidents were calibrated 

from this data.  New charts must be made for each section of freeway where the algorithm is 

implemented.   

The algorithm uses data illustrated by these charts by breaking it into ranges.  When traffic 

patterns fall into a range that describes incident conditions for a preset number of intervals, an alarm is 

sounded.  Initial tests of this algorithm were not encouraging, but as the algorithm evolved and the 

thresholds became more complex, results improved (Persaud, Hall, and Hall 1990).  The best data had 

extremely low FAR, but high TTD (about two minutes). 

 

Statistical Methods 

Statistical methods compare real time traffic data with data forecasts.  Algorithms model the 

actual traffic patterns, using time series data, and create a forecasted range of values.  Any unexpected 

changes in traffic, compared to the forecasted traffic flows, are then classified as incidents. The advantage 
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to this method is that large amounts of data need not be gathered before the algorithm is implemented. 

Algorithms that fit into this category are the High Occupancy (HIOCC) algorithm (Collins and Martin 

1979), smoothing (DELOS) model (Chassiakos and Stephanedes 1993), the Bayesian algorithm (Levin 

and Krause 1978), Auto-Regressive Integrated Moving-Average time series (ARIMA) algorithm (Ahmed 

and Cook 1982), Standard Normal Deviates (Dudek, Messer, and Nuckles 1974), and filtering models 

(Chassiakos and Stephanedes 1993).  

 

HIOCC Algorithm 

The TRRL developed this algorithm in conjunction with the PATREG algorithm. The premise of 

the HIOCC algorithm is that traffic will stop or slow considerably if there is an incident.  The algorithm 

takes occupancy data every tenth of a second, and gives a value of 0 to 10 for every second of time.  Zero 

means no vehicles have occupied the sensor that second, and 10 means the sensor was occupied the entire 

second.  If two values of 10 are given consecutively, an alarm is sounded.  The algorithm also is designed 

to terminate an alarm.  It does this by taking the smoothed values of occupancy over the last five minutes 

of pre-alarm data and comparing it to the instantaneous smoothed occupancy values.  When the 

instantaneous values drop below the pre-alarm levels, the algorithm is terminated.  The smoothed 

instantaneous occupancy value is raised artificially in practice to prevent the alarm from premature 

termination.  Field results from M1 and M4 in London, along with the Boulevard Peripherique in Paris, 

show the algorithm works well under congested conditions, but its effectiveness in light to moderate 

flows is yet to be seen (Chang and Lin 1993).  Given the nature of the algorithm, performance is expected 

to drop in light flows.  Actual numbers from seven stations along a two-mile stretch for 18 months of data 

show 10 of 11 incidents detected and 130 false alarms, seven of those with no apparent slow-down of 

traffic.  A false-alarm rate is difficult to obtain solidly, because slow-moving vehicles initiated one third 

of the false alarms.  
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ARIMA Algorithm 

ARIMA models are used to provide short-term forecasts of traffic occupancies and the associated 

95 percent confidence intervals.  These low-order linear models do this by taking observed data from 

three previous time intervals and predicting current conditions.  If current conditions fall out of the range 

predicted by the model, an alarm is sounded.  This algorithm was tested in several field tests.  In an off-

line test, the following performance was reported (JHK and Associates 1993): 

   Detection Rate:      100% 

   False alarm rate: 2.6% 

   Mean-time-to-detect:    0.58 min. 

In a different test, the algorithm was compared to the DES and California algorithms (JHK and 

Associates 1993).  With false alarm rates adjusted to one percent for all of them, the ARIMA model out 

performed them in detection rate and time to detect.  This algorithm performs well under moderate and 

heavy traffic flows, but is questionable under light flows.  It also is quite simplistic in its modeling 

characteristics, and therefore cannot account for many complexities associated with traffic behavior.  The 

algorithm assumes stability from day to day, and its parameters are defined from one set of field data.  

Items such as day-to-day changes in traffic flow, weather conditions, construction, and other variables all 

thwart the performance of this algorithm.  Because of these limitations, this algorithm is not used, and 

work to improve it has not been done.  Improvements would include a test for outlying data points and 

multivariate time-series models, instead of the single variable set-up. 

 

SND Algorithm  

Texas Transportation Institute (TTI) developed this algorithm in 1974 for use on the Houston 

Gulf Freeway (I-45) (Dudek, Messer, and Nuckles 1974).  The Standard Normal Deviate (SND) 

algorithm uses simple statistical analysis to determine a SND.  SND is the current control variable minus 

the mean, all divided by the standard deviation.  The mean and standard deviation of the control variable 

are determined from historical values.  If the current occupancy value computes an SND value outside of 
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preset thresholds, an alarm is sounded.  Persistence checks can be applied to reduce false alarms.  An off-

site evaluation performed by the designers showed results of 92 percent detection rate with a time to 

detect of 1.1 minutes and a false alarm rate of 1.3 percent.  The most critical aspect of this algorithm is 

determination of the thresholds, a process that is not well defined.  Further, detector spacing is an issue, 

since the algorithm relies on shock waves passing over detectors.  

 

DES Algorithm 

The double exponential smoothing (DES) algorithm was first developed in 1974 by Cook (1974).  

This statistical method is similar to the SND method, but uses a more complicated forecasting method.  

The smoothing aspect of the algorithm weighs recent traffic measurements more heavily than past 

measurements.  In this way, changes in weather or volumes do not set a false alarm as readily.  The 

double exponential algorithm smoothes data according to the following relations: 

S1 (t)= �x (t) + (1 - � S1 (t � 1); 

S2 (t) = �S1 (t) + (1 - � S2 (t � 1); 

Where: 

�� A smoothing constant determining the weight of past data 

S1= The first set of smoothed data 

S2= The second set of smoothed data 

The smoothed set of data then is used to construct a tracking signal, which indicates deviation of 

the traffic measurement from the normal trend. Zero indicates no change, large values tend to indicate a 

possible incident.  Cook tested the algorithm in 1974 using 13 different variables.  Volume and 

occupancy yielded the best results.  Busch and Fellendorf (1990) found that a speed discontinuity index 

also yielded good results.   

Due to its simplicity, the algorithm is frequently used for comparison in other studies.  A form of 

this algorithm also was developed for use in the COMPASS software to work with the APID algorithm.  

This particular version of the DES algorithm has the tracking signal computed by dividing cumulative 
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error of the variable by the current standard deviation.  A predetermined threshold value for the tracking 

signal determines when an alarm is sounded.  This algorithm is useful due to its simplistic nature and 

because no calibration is needed.  Acceptable performance also has been repeatedly reported for this 

algorithm.  Overall this is a useful, but simple algorithm. 

 

Filtering Models 

Chassiakos and Stephanedes (1993) developed the DELOS (Detection Logic with Smoothing) 

algorithm.  The algorithm is designed to be simple because researchers determined that highly specific 

tests are not easily transferable, due to the amount of work that goes into determining thresholds for them.  

They wanted to design an algorithm that could be easily adapted to different locations. 

The backbone of the algorithm is a moving average filter, which manipulates raw data before it is 

sent to the algorithm for calculation.  The algorithm itself detects incidents through a high spatial 

occupancy difference between adjacent stations.  The difference between this and standard pattern-based 

algorithms is that DELOS uses a three-minute average of the spatial occupancy instead of one-time 

interval.  Also, the occupancies for the previous five minutes are stored.  Large differences between the 

two values indicate an incident.  

This logic can differentiate between an incident and recurring congestion by comparing the 

smoothed occupancy over a longer time interval.  This method yields excellent DR and FAR rates, 

outperforming the California #7 algorithm in several comparisons conducted on Minnesota and California 

freeway data sets (Stephandes 1993). The drawback, however, is the considerable amount of time it takes 

to detect incidents due to the three-minutes necessary to average data.  Subsequently TTD is over three 

minutes.  This algorithm would be a good choice if the time to detection was not a large concern, as it is 

easy to implement and has a low false alarm rate coupled with high detection rates.  Sample performance 

measures, from I-35 in Minnesota show an 80 percent DR with 0.35 FAR.   
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Bayesian Algorithm 

This algorithm uses differences in occupancy between two detectors, similar to the California-

based algorithms, but then takes this and applies Bayesian statistical differences to compute the 

probability that a large difference in occupancy is caused by an incident or recurrent congestion (Levin 

and Krause 1979).  Three databases of information are needed for this to work: incident-free data for the 

stretch of road, incident data, and the highway patrol log, which lists the type, location, and severity of 

incidents.  All historical information then is analyzed, and a statistical range is set up to determine if a 

given occupancy difference is incident-caused or incident-free.  One large difference between this and 

other algorithms is that instead of either a yes or no result, percentage results can be given showing the 

probability of an incident.  The version of the algorithm tested had a probability threshold and when this 

was exceeded, an alarm was sounded.  Off-line results of this algorithm were good with for detection 

rates and false alarm signal, but the TTD was high due to the time needed to verify the incident.  Reported 

off-line results from the J. F. Kennedy Expressway show a DR of 100 percent, FAR of 0 percent, and a 

TTD of four minutes.   

 

SSID Algorithm 

The Single-Station Incident Detection algorithm (SSID) uses a statistical T-test to analyze the 

temporal difference in occupancy at a single detector station (Antoniades and Stephanedes 1996).  The 

occupancies during the 10 previous time intervals are averaged, and the standard deviation also is 

calculated.  The T-test is used to find confidence limits around the mean.  When a new interval is read, 

the value is compared to the standard deviation and confidence limit.  An alarm is sounded if the new 

mean divided by the maximum allowable mean (determined from confidence limits) is greater than 1.015 

and if the new mean minus the previous mean is greater than 75 percent of the standard deviation.  This 

algorithm was tested on I-35 in Minneapolis and yielded a 100 percent DR and a 0.2 percent FAR.  TTD 

was not reported, but would be in the range of one to three minutes, since two time intervals of queued 

traffic on the loop would be required to set off the alarm.  
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Artificial Intelligence 

Artificial Intelligence (AI) is a recent development of AID algorithms.  These algorithms detect 

incidents by either a rule-based algorithm or an algorithm that has �learned� to recognize incident 

patterns.  Neural Network (Stephanedes 1995) and Fuzzy Set Logic (Chang 1994) are the main AI 

applications that have been applied to AID. 

 

Neural Networks 

In the early 1990s, researchers at the University of California, Irvine, showed the feasibility of 

using artificial neural networks for incident detection (Ritchie and Cheu 1993).  A neural network is an 

algorithm modeled after the neural structure of a human brain.  Information is distributed along many 

parallel paths to simple processing elements (PEs).  A PE is a node where many input signals from other 

PEs can be processed, and several outputs sent to more PEs.  The signal can be weighed, depending on its 

relevancy to the PE it is being sent.  Automatic incident detection networks usually are multi-layer, feed-

forward structured (MLF).  The MLF consists of three layers, the input layer that takes data from loop 

sensors, intermediate layer that processes data, and the output layer, which gives an incident or incident-

free signal.  Training of the network must be done before implementation.  Through trial and error, the 

network �learns� the appropriate weights to apply to the inputs and outputs.  Supervised training involves 

letting the network know if its output matches the correct condition, while unsupervised training has the 

network finding patterns in data and producing consistent output for the input values.  Most work on 

neural networks applied to AID was done in the early nineties by the University of California, Irvine and 

University of Minnesota (Dia and Rose 1997, Geng and Lee 1998).  Initial results were promising, with 

all three measures of performance better than those displayed by the California algorithm in use in Orange 

County.  The neural network algorithm had a detection rate of 85 percent, with a false alarm rate of 0.075 

percent and a detection time of three minutes.  This was much better than the on-line values of the 

California algorithm, taken from data at more than 800 detector stations in California.  A detection rate of 

0.075 percent equaled one false alarm every 11 hours for the data set tested.  The University of 
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Minnesota�s study tested a MLF network with 35 detector stations.  The same data set that was used for 

training also was used to test the algorithm.  The results were not as good as the University of California�s 

study, but still promising.  The Neural Networks were just beginning to be developed, but no further 

research or deployment has been done on the subject in recent years.  With more work and a few actual 

sites in use, this would be a good choice for an algorithm.  It is not recommended for implementation 

because on-line performance has yet to be documented.  

 

Fuzzy Set Algorithm 

As its name implies, this algorithm does not give a clear �incident� or �no incident� signal, rather 

it gives the likelihood for an incident.  The fuzzy logic is designed to approximate reasoning when data is 

missing or incomplete.  In this algorithm, the fuzzy set logic is applied as a supplement to the California 

#8 algorithm (Chang 1994).  Although early research has been promising, no actual results have been 

determined.  The fuzzy logic also requires extensive calibrating to define the logic boundaries.  The best 

definition of this algorithm is a pattern-based algorithm with artificial intelligence technology in the 

decision tree process.  It has not been fully developed and tested.  

 

Video Image Processing 

Incident detection using video image processing has several distinct advantages over inductive 

loop-based technology (Blosseville, Morin, and Locegnies 1993).  Inductive loops only are capable of 

gathering traffic flow data at a point.  Video image technology can provide this as well as information 

about traffic flow at a higher level.  It can measure travel times, average speed, and detect stalled or 

stopped vehicles within the detection zone.  It has been successfully used to accurately detect shoulder 

incidents (Blosseville, Morin, Locegnies 1993). 

Two video incident detection technologies, TRAFICON (Versavel, 2000) and NESTOR (*) have 

the capability to use many existing pan-tilt-zoom traffic monitoring CCVT cameras.  This requires each 
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camera to have one or more �home� positions when used for incident detection.  While an operator 

wishes to pan, tilt, or zoom the view, the operation of the incident detection algorithm is suspended. 

Blosseville, Morin, and Locegnies (1993) tested video image incident detection on a 1.7 km long corridor 

in France.  They tested several scenarios and compared them with the recorded video from each camera.  

Table 3.1 summarizes the results of the study. 

 

Table 3.1  Results of Video Imaging by Incident Detection 

 Traffic Lanes (TL) Emergency Lanes (EL) 

 Approaching Moving Away Approaching Moving Away 

Detection Rate 88 % 91 % 79 % 85 % 

False Alarm Rate 3% 

False alarm frequency 0.2 per camera per 24 hr.�s 

Average Detection Time (TL) 22 seconds 

Average Detection Time (EL) 63 Seconds 

Source: (Blosseville, Morin, and Lochegnies 1993) 

 

An Autoscope video detection system is reported to have detected 80 percent of all incidents with 

only a 3 percent false alarm rate (False alarms to total number of alarms) (Michalopoulos, Jacobson, and 

Anderson 1993).  Through the use of incident detection algorithms, the system also detected incidents 

almost two miles away, well outside the range of the camera�s vision.   
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CHAPTER 4.  ANALYSIS OF ALGORITHMS 

 

Limitations of Computer-Based Incident Detection 

No matter how complex or evolved an algorithm is, it never can fully mimic and comprehend the 

dynamic nature and changes associated with traffic flow.  This random variation in traffic flow patterns is 

what causes most AID technologies to fail.  

There are two main problems with computer-based algorithms.  The first is that the time to detect 

is usually too long to be useful.  Second, the number of false alarms is sufficient to irritate operators and 

usually either causes them to ignore the alarms, or turn them off altogether, as demonstrated in other 

TOCs.  For most algorithms, the TTD ranges from 30 seconds to more than five minutes, with typical 

times being about two minutes.  In a study done on filtering techniques, TTD was reported against the 

time noted in an engineer�s logbook.  The engineer detected incidents through the video coverage of the 

street network in the TOC.  In 27 incidents, the engineer detected the incident before the algorithm 

(Stephanedes and Chassiakos 1993).  In a separate evaluation for the McMaster algorithm in Toronto, an 

operator with live video of the network detected incidents an average of two minutes before the algorithm 

(Hall and Shi 1993).  Operators in traffic operations centers that have video coverage of the freeway 

network generally will detect incidents more quickly than a computer-based algorithm. 

Another problem associated with algorithms is the number of false alarms given, although false 

alarm rates of less than 1 percent commonly are reported.  This can be misleading from the actual number 

of false alarms sounded.  A false alarm rate of 0.1 percent, based on false alarms per decision made, 

would be unacceptable in a system the size of Chicago, which has more than 600 stations.  An alarm 

would be given more than once a minute (Hall and Shi 1993).  The Boston Tunnel project determined that 

an operator would tolerate 10 false alarms per hour before completely ignoring or shutting the detection 

system down (Swartz 2000).  For large networks, the rates calculated, based on the number of algorithm 

calculations must be near 0.0001 percent.  Few algorithms can achieve this level of performance at all, 

and usually do so at the expense of detection rates and time to detect.  Levin (1979) stated that reducing 
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the FAR was the most difficult challenge of incident detection technology.  The Salt Lake City ATMS 

area currently has 87 detectors planned for the I-15 and I-215 network.  This network would require a 

false alarm rate of less than 0.0006 percent to yield 10 false alarms per hour based on a calculation per 

detector pair every 20 seconds.  

The data source for most algorithms is from inductive loop detectors.  An automatic incident 

detection algorithm only can be effective when flows are heavy enough that traffic is substantially 

interrupted by an incident.  Traffic incidents in low flows and shoulders incidents do not usually cause 

enough disturbance to the flow to be recognized.  Several papers acknowledge this flaw and consequently 

leave out all shoulder incidents from the reported detection rates.  This limits the usefulness of computer-

based algorithms, which are powerless to help in these circumstances and are thus limited in their 

usefulness. 

At any given time, a system of inductive loop detectors will have some loops that are in need of 

repair.  Although stationary freeway loops may experience less down time than the standard intersection 

stop-line and queue detectors, they still have maintenance problems.  This has several implications for an 

AID system.  Since most algorithms use a pair of detectors, this normally would cause one or two pairs to 

be down.  If the algorithm is sophisticated enough, it should take the �new� adjacent pair of detectors and 

continue its calculations.  For this section of roadway it will take approximately two times longer for the 

incident-induced queue to build sufficiently to trigger an alarm.  Less sophisticated algorithms may not 

deal with the down detector at all.  In the reviewed literature, JHK and Associates (1993) included a 

discussion of the various methods that can be used to determine whether or not a detector is functioning.  

There was, however, no discussion on how the various algorithms cope after a detector is found to be 

faulty.  Chang and Lin (1993) comment that the APID algorithm is sensitive to loop detector failures, but 

offer no insight into the extent of the sensitivity.   

Many of the algorithms are based on preset thresholds calibrated from �normal flow� conditions.  

When the conditions change, the algorithm performance likely will degrade on one or more of the 

measures of performance.  The algorithms that follow trends rather than thresholds will theoretically 
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perform as well as in �normal� conditions.  Video image processing algorithms also will degrade as 

visibility decreases.  This also will affect the ability of operators to verify incidents through CCTV 

systems.  Little or no discussion was provided for this problem in the collected AID systems literature.   

Chang and Lin (1993) review weather sensitivity reports for some algorithms.  The comments 

are, however, not qualified by performance statistics and in some cases they do state that further 

investigation is required.  The comments are provided here for information.  The APID algorithm showed 

robustness in varying weather conditions, but further testing was required.  The McMaster algorithm was 

reported to suffer an increase in false alarms during a snowstorm.  The Bayesian method is also reported 

to be sensitive to weather conditions.  The SND and DES algorithms can tolerate moderate variations in 

weather conditions.  Image processing technology as it is applied to incident detection also can be 

affected by weather and lighting conditions. 

 

Comparison of Results 

A direct literature-based comparison of algorithm performance is not possible, due to differences 

in testing different methods, networks, data sets, and calculation methods.  The only way to accurately 

compare algorithm performance would be to test them side-by-side in a controlled environment.  In the 

literature, some algorithms were tested with recorded data, some with real-time data, and others with 

simulated data.  The number of detectors ranged from as few as eight to as many as 500.  Table 4.1 shows 

the reported performance for the algorithms.  Although these reported performance measures are known 

to be incompatible, they are provided as a summary of reported findings.  Each false alarm rate is shown 

as an approximate hourly false alarm rate for the Salt Lake freeway network of 87 detectors.   
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Table 4.1 Summary of Algorithm Performance 
 

Name DR 
(%)a 

TTD 
(min) a 

FAR 
(%)a 

FAR  
basisb 

Installations Projected SLC 
Network false 
alarms per hour 

APID 86 2.50 0.05% 
 

Calc Toronto, Boston 7.74 

DES 92 0.70 1.87% 
 

Calc Toronto 289.48 

ARIMA 100 0.40 1.50% 
 

Calc Laboratory 232.20 

Bayesian 100 3.90 0% 
 

n/a Laboratory 0.00 

California 82 0.85 1.73% 
 

Calc California, 
Chicago, Texas 

267.80 

Low-Pass Filter 80 4.00 0.30% 
 

Calc Laboratory 46.44 

McMaster 68 2.20 0.0018
% 
 

Calc Minnesota 0.28 

Neural 
Networks 

89 0.96 0.012% 
 

Calc Laboratory 1.86 

SND 92 1.10 1.30% 
 

Calc Not Known 201.24 

SSID 100 not 
reported 

0.20% 
 

Calc Laboratory 30.96 

TSC #7 67 2.91 0.134% 
 

Calc California, 
Chicago, Texas 

20.74 

TSC #8 68 3.04 0.177% 
 

Calc California, 
Chicago, Texas 

27.40 

Video Image 
Processing c 

90 0.37 3.00% 
 

Tot France 0.03 

Cellular 
Telephones d 

100 - 5.00% 
 

Tot n/a 0.005 

 

a  Please note that not all values may not have been measured in the same way.  
b  (calc) means the measurements likely were based on the total number of calculations (assumed to be every 20 

seconds per detector pair).  (tot) indicates that this is based on the total number of alarms per location (assumed to be 
four freeway incidents per day in the ATMS coverage area) 

c  Only the values for the main traffic lanes were used, leaving out the values for emergency lane (shoulder) detection. 
d Information for Cellular telephones based on an interview (Ranson 2000).  Two incidents are assumed to occur per 

peak period and 40 peak periods each month.  False alarms are �ghost calls,� or people calling in incidents that don�t 
exist.  This value was reported to be about four per month (Ranson 2000). 
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Of the inductive loop computer-based algorithms, the trade-off between performance values is 

evident in the reported values.  The Bayesian algorithm, for example, detects all incidents and has no false 

alarms, but has the highest value for TTD.  The inconsistency in false alarm rate calculations also is 

evident here.  Although a 20-second calculation interval is assumed, some of the algorithms may apply a 

30-second interval and not report this value. Very high and low values for FAR are seen in several of the 

algorithms.  For several of the algorithms, the calculation method or the definition of an �incident� were 

not reported.  Where the calculation method is not stated, it was assumed that all FAR values under 2 

percent were calculated based on the per calculation method, rather than the per total false alarms method. 

Of the loop-based algorithms that have testing experience outside of the laboratory, the APID and 

DES algorithms stand out as being superior.  APID reports a DR of 89 percent, a TTD of 2.5 minutes and 

a FAR of 0.05 percent, which is slightly more than seven false alarms per hour in the peak period.  The 

DES algorithm shows a much faster TTD at 0.7 minutes and a higher detection rate at 91 percent, but 

shows a great number of false alarms.  If the DR and TTD thresholds were loosened, it is likely that the 

number of false alarms would be substantially reduced.   

The McMaster algorithm also reports good performance values.  This algorithm, however, does 

not take advantage of the spatial and temporal changes in traffic flow values because it bases its 

calculations on the data from a single detector.  These calculations therefore are based on temporal 

variations only.  This algorithm may be more appropriate at remote locations or where more complete 

detector coverage is not available.  If the special component of the calculation is to be used, close detector 

spacing is recommended.  Where this is not possible, or detector spacing is distant, this algorithm could 

be considered.   

Of the algorithms tested only in the laboratory, the Neural Networks method appears to have the 

most balanced performance values with a DR or 89 percent, a TTD of 0.96 minutes and an FAR of 0.92.  

Most of the other algorithms tested only in a laboratory seem to have been calibrated to give maximum 

detection rates, which resulted in unreasonable values for FAR and TTD. 
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The video image processing system and the cellular telephone reporting have similar performance 

values.  Both of these outperform the loop-based detection systems by a large margin.  The time to detect 

an incident using cellular telephones is not known exactly, but it is generally very short (Ranson, 2000). 
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CHAPTER 5.  INCIDENT DETECTION BY CELLULAR TELEPHONES 

 

Over the last 10 years, ownership of cellular phones has grown tremendously.  In 1990, there 

were 5,283,000 U.S. subscribers to cellular service.  Today that number is estimated to be more than 100 

million (Mussa and Upchurch 2000).  This increase has led to many people being able to report traffic 

incidents over their phone.  As ownership continues to grow, the detection times and rates will continue to 

improve.  The diminishing volume of research in automatic incident detection in attributed, in part, to the 

increasing impact that cellular telephone saturation has made. 

Currently in the SL Valley, when a caller wants to report an incident, they will either call (911) or 

the cellular highway help number (*11).  Figure 5.1 shows how a call normally is processed.  It is 

important to note that when a call is placed using the *11 number, it is directed to the Utah Highway 

Patrol (UHP) dispatch area in the TOC.  At that location, they currently are not able to dispatch all 

emergency services � notably medical emergency service.  Therefore, if the reported incident has any 

potential injuries, the call must then be forwarded to the main UHP dispatch center or to a 911 call center. 

 
911 

Cell Calls 
*11 

Highway 
Help 

UHP 
Dispatch Incident 

Management 

 

Figure 5.1 Current Incident Reporting Call Path 

 

Literature on Cellular Telephones and Incident Detection 

Mussa (1997) analyzed the performance of cellular phones in incident detection by considering 

the percent of drivers with cell phones, incident severity, and traffic volume.  In all but the lightest flow, 

the cell phones reach 100 percent detection rates and have minimal detection times. 
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Mussa and Upchurch (2000) conducted a series of simulations to determine the effects of varying 

the number of cellular telephone customers willing to use their phones to report an incident.  They 

compared this to a computer-based automatic incident detection algorithm.  Simulation scenarios were 

run for low, medium, or heavy traffic encountering shoulder, 1-lane, or two lane incidents were using the 

FRESIM (Freeway Simulation) software.  It was found that higher volumes corresponded to lower 

detection times, and one and two-lane incidents received more calls than shoulder incidents.  It is 

important to note that nearly all shoulder incidents were reported.  Automatic incident detection 

algorithms generally cannot detect shoulder incidents because they often do not sufficiently disrupt traffic 

flow.   

The results of the simulations were much better than any algorithm, even with conservative input 

parameters.  If 10 percent of drivers have a phone and 10 percent of those are willing to call in (1 percent 

of drivers calling), 80 percent of the incidents are detected within five minutes. If the percentages increase 

to 25 percent of people owning cellular telephones and 40 percent of those willing to call (10 percent of 

drivers calling), all incidents are reported within 1.5 minutes.  False alarms, in the form of prank calls or 

faulty information do occur, but not nearly on the same scale as false alarms given by algorithms. 

Much attention recently has been given to the danger of using cellular telephones while driving.  

Reed and Green (1999), explore these effects by measuring lateral speed of the vehicle in the traffic lane 

(weaving within the lane) during normal driving and while dialing on a keypad.  A 43 percent increase in 

lateral speed was found if the driver was dialing a keypad.  The risk of encouraging the use of cellular 

phones for incident detection is that the number of unsafe drivers on the road will increase. 

One new technology explores the use of cellular telephones as probes to measure travel time 

along a major freeway corridor in Texas (Balke, Dudek and Mountain 1996).  The results of this report 

are, however, pessimistic and inconclusive.   
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Enhanced Cellular 911 Service 

The Federal Communications Commission has mandated that all cellular telephone service 

providers implement Enhanced 911 Service (E911) (FCC 1999).  The requirement consists of two phases.  

Phase One requires carriers to provide caller�s location to within 300 meters and the caller�s telephone 

number to the Public Safety Answering Point (PSAP).  The deadline for implementation of this phase was 

April 1, 1998.  Phase Two simply requires a more specific location to be provided.  The Phase Two 

implementation deadline is October 1, 2001.  The location of a caller is helpful to incident management 

teams and could be used to improve their detection and response times.  It is possible that this may help 

screen out some false alarm calls though the separation of the caller location and the accident location 

reported. 

Two technologies are available that provide a caller�s location.  The first technology uses a 

triangulation procedure between two adjacent cellular telephone towers.  This technology does not require 

any modification to the phones.  Two-way pagers also can be located using this technology.  An engineer 

at a local cellular telephone service carrier said that although this technology is in place, it is too lengthy 

to be useful.  He said that they are working quickly to discover new methods for speeding the process up 

by the October 1, 2001 deadline.  The second technology, called the handset method, uses a small Global 

Positioning Satellite (GPS) unit in each handset.  The only problem with this technology is that by the 

deadline, there will be many users that still are using older cellular phones, which do not have the GPS 

technology.   

The location technology is important to incident detection because callers on the road do not 

always know where they are.  While they generally can give an approximation of the incident, unless it 

occurs within camera coverage, details are not always available.   

A disadvantage of cellular telephones in incident detection is the multiple reporting of incidents 

and locating of incidents.  Until emergency vehicles arrive on scene, calls can continue to come in to 

report the same incident (Ranson 2000).  During the tornado of 1999, the entire cellular network became  
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jammed to due cellular calls.  A recent interview with a local cellular provider, however, revealed that cell 

saturation quickly is becoming a minor problem as new digital technology replaces analog methods.   

 

Highway Help: Cellular *11 

Several Highway Help signs are in place on Utah freeways.  Most are located along the freeway 

system near major junctions (see Figure 5.2).  Several signs have been displaced due to construction.  An 

example sign located on I-80W between Foothill Blvd. and 1300 E. is shown in Figure 5.3.  Currently, all 

calls to *11 are taken by the Highway Patrol Dispatch center located within the UDOT TOC.   
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Figure 5.2 Highway Help Sign Locations 
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Figure 5.3 Highway Help Sign 

 

An average of 4,000 calls per day are received at the Highway Patrol Call Center located in the 

UDOT TOC (Rueckert 2000).  Estimated percentages of call types are presented in Table 5.1. 

Table 5.1 Call Types received by the *11 Cellular Highway Help Number 

Percentage Call Type 

30% Incidents 

50% Road Debris / Disabled Vehicles / Reckless Driving  

20% Road Condition Inquiries / Business Calls 

Source: (Nelson 2000) 

 

It is important to note that because the highway patrol cannot dispatch medical emergency 

services from their facility, they did not intend this number and facility for the purpose of directing callers 

to call in about major incidents.  The reason for this is that from their facility they are not able to dispatch 

medical emergency services.   

On July 21, 2000, the FCC approved the U.S. Department of Transportation�s request for a three-

digit traveler information telephone number, �511.�  This number functions similarly to the emergency 
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�911� number.  The intention of the number is to replace approximately 300 existing numbers throughout 

the states so people can acquire traveler information anywhere in the U.S.  The FHWA has offered up to 

$50,000 for each state to convert existing numbers to �511.�   

 

Recommendations for Cellular Incident Detection 

Based on the review of available AID technologies and the impacts of cellular phones, the 

conclusion reached is that cellular phones are more accurate, quicker, and have less false calls than AID.   

The reemergence of call boxes also is valuable � only cellular and solar powered, as opposed to 

traditional boxes (Ullman 1999).  Those without cellular telephones would benefit from the technology by 

being able to place an emergency call from a box. 
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CHAPTER 6.  CONCLUSION AND RECOMMENDATIONS 

 

This research reviewed various technologies and algorithms for incident detection to determine 

the most potentially beneficial system to the Salt Lake Valley.  The results from algorithm performance 

reviews and conversations with other DOTs and cities using incident detection revealed that cellular 

phone technology has made much of the computer-based incident detection technology obsolete.   

The findings of the algorithm review indicate that the majority of the techniques rely on inductive 

loop detection to collect speed, occupancy, flow or other measures.  These are used to create thresholds 

that determine the bounds of �normal� flow.  When flows exceed these thresholds, a potential incident is 

reported.  The traditional problem with automatic incident detection is balancing the ability to detect an 

incident in a timely manner while minimizing the number of false alarms.  If the thresholds are too 

restrictive, then false alarms increase.  If the thresholds are too lax, the time to detect the incident 

increases.  Finding this balance is difficult and has resulted in many of the installed incident detection 

algorithms being turned off by the TOC operators. 

Another issue is that many of these algorithms are tested and installed with close detector 

spacing, typically 70 m, to provide timely incident detection.  UDOT freeway detector spacing is 800 m 

making detection a much longer process.   

The most widely implemented algorithm is the California series (California, TSC #7 and TSC 

#8), which have been used in California, Texas, and Chicago.  Based on results from these installations, 

the time to detection is three minutes with a 68 percent detection rate.  APID is an enhanced version of 

the TSC #8 algorithm.  It is shown as the most effective algorithm in the field with installations in 

Toronto and Boston.  Its performance is reported as an 86 percent detection rate and a 2.5-minute time to 

detect.  For Salt Lake Valley 87 detectors, it is estimated that the California algorithms would produce 21 

false calls per hours and the APID would produce eight false calls per hour during the peak periods. 
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Other methods that have been simulated, but not installed, have shown promising results.  The 

neural network method has been modeled to provide 89 percent detection in 0.96 minutes with a false 

alarm rate that translates into two false alarms per hour on the Salt Lake network during the peak period.   

While the incident detection has shown promising results in the past, the use of video coverage on 

the freeway systems and ever-expanding use of cellular phones has made the need for incident detection 

less important.  Incident detection algorithms rely on congestion to trigger preset thresholds.  In low flow 

conditions, algorithms perform poorly because the incident may fail to disrupt traffic sufficiently to 

trigger the thresholds.  This means the algorithms are most suited for high flow conditions.  This also is 

when many drivers are available with cellular communication.  The result is that other drivers are calling 

in incidents seconds after they happen and minutes before the algorithms can detect the onset of 

congestion. 

Based on these findings, it is recommend to UDOT that cellular telephone technology be used as 

the primary form of incident detection.  APID and DES algorithms that are already embedded in the 

GDOT software, however, should be activated and calibrated as a backup to cellular telephones. 

If UDOT wish to test and compare any of the other computer-based algorithms, the TOC will be 

an ideal setting.  In particular, the artificial intelligence methods and the video image processing methods 

seem promising and should be evaluated further. 
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