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ABSTRACT  
 

Estimating drilling locations plays an important role in forecasting truck trips derived 

by hydraulic fracturing oil development for long-range transportation planning. 

Predicting drilling locations among more than 7,000 oil drilling lands shows a random 

pattern with uncertainty. Twenty-year multi-period forecasting architecture is 

proposed in this study using maximum likelihood estimation to fit in the logistic 

regression. Probability of drilling on each leased space for drilling was predicted in 

order to forecast truck movements with respect to frequency and paths for a 20-year 

period. The maximum likelihood estimates of the parameters of a logistic model 

provide future locations for drilling considering well aging, the number of wells on a 

leased land space, closeness to the current wells, and oil density in an oil development 

zone. While, in the short term, the drilling locations were concentrated in the middle 

of the space, the probability of the drilling was marginally distributed throughout the 

region in the long run. 
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1. INTRODUCTION 
 

Drilling shale oil wells generates a large amount of truck traffic. Heavy loads required by drilling 

activities damage local roads, resulting in the need for several hundred million dollars for repair and 

maintenance. To support logistical activities for efficient energy development, a proactive approach is 

required for allocating investments for paving road and timely maintenance. Forecasting load impact on a 

road network is essential for estimating pavement and repair costs to support energy logistics [1].  

 

Long-range transportation planning requires reasonably accurate information for transportation agencies 

and legislators to make appropriate decisions and justify strategic long-term budget allocations. Such 

planning requires an understanding of the equipment movement and traffic sources required for large-

scale and comprehensive efforts over widespread oil production zones. 

 

This paper focuses on the prediction of oil drilling locations in order to predict rig movements between 

current drilling locations and the next drill locations for the next 20-year planning period where producing 

wells need to be fractured in order to increase oil production. Oil-related traffic models involve historical 

and current oil wells across 17 oil counties in North Dakota. 

 

In 2010, more than 100 million barrels of crude oil was produced in North Dakota, which was about a 

42% increase from 2009. This level of production represents 309,679 barrels oil per day, making the state 

the fourth largest oil producing state in the United States. By April 2012, North Dakota had become the 

second largest oil producing state in the United States, surpassing Alaska, and producing almost one 

million barrels per day. However, there is only one crude oil refinery in the state, located near Mandan, 

with a capacity of 58,000 barrels per day. The rest of the state’s oil production is transported through five 

major pipe transloading facilities and 18 BNSF and Canadian National railroads crude-by-rail facilities to 

oil refineries in Texas, Oklahoma, and Louisiana. In addition to crude oil, 13 natural gas processing plants 

handle 80 billion cubic feet of the total 114 bcf of natural gas produced as by-products of oil drilling in 

2011. Drilling rig count is a prime barometer for measuring oil and gas activity. The count averaged 200 

rigs per day in North Dakota in 2011, breaking the record of 126 rigs per day set in 2010 and 182 in 2011.  

 

Thus, estimating drilling locations plays an important role in estimating truck trips for long-term 

planning. Oil production-related traffic is generated by directional shipments: inbound shipments of sand, 

fresh water, pipes, gravel, and supplies and outbound shipments of salt-water as by-products and crude 

oil. Truck traffic generated between origins and destinations is based on commodities that must be 

shipped. Horizontal drilling using hydraulic fracturing generates about 2,024 inbound and outbound truck 

movements [2]. Approximately half of the trips are loaded. Based upon the projected number of rigs and 

drilling activities, the number of oil wells can be estimated. Drilling activities vary by the duration of the 

drilling process as well as by the locations in each county or smaller unit. In general, it takes six weeks to 

two months to drill one oil well [1]. 
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Predicting drilling locations among more than 7,000 oil lease units shows a random pattern with 

uncertainty. A spacing unit is the land which covers an area at least as large as can be “efficiently and 

economically be drained by one well” [3]. The spacing units within an oil field have uniform sizes and 

shapes in general; nonetheless, the sizes and shapes can differ within in the same oil field. Most of the 

spacing units for horizontal wells are either 640 acres or 1,280 acres [4]. Instead of drilling one well in a 

new spacing unit, some wells are drilled horizontally, crossing into neighboring spacing units. The 

challenges of the choice-based prediction stem from the unknown history of the rigs’ movements and 

their pattern and randomness under uncertainty of oil price and rig activity. Because of the severity of 

traffic and the uncertainty of the drilling and production locations, estimating well locations to estimate 

traffic generation plays an important role in long-range transportation planning (LRTP).  

 

The paper regards this prediction problem of predicting oil spacing units as choice-based prediction using 

maximum likelihood method. Twenty-year multi-period forecasting architecture is proposed for use in 

this study. State transportation agencies and legislators require long-term traffic estimations and cost 

analysis in order to make appropriate decisions and to justify strategic, long-term budget allocations. 

Thus, this study estimates drilling probability on each spacing unit using the maximum likelihood 

estimation in order to forecast truck movements with respect to frequency and paths for a 20-year period. 
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2. LITERATURE REVIEW 
 

Geographic information systems (GIS) are widely used for spatial pattern analysis to predict 

unpredictable movements of humans, animals, diseases, and other biological organisms. The analyses 

integrate several data sources, including geographical locations, tracks of historical movements, and 

behavioral patterns [5]. Similarly, pattern recognition analysis is commonly used to recognize the patterns 

referred to as a group of statistical techniques [6]. These techniques can be found in disease, crime 

analysis, and biology studies. 

 

To estimate randomly distributed locations, several spatial estimations were introduced in criminal 

analysis and disease and epidemic models to handle dynamic movement under uncertainty. Volz and 

Meyers [7] present a new model, “neighbor exchange” (NE). This model is a dynamic addition to the 

static contact network model. “The model assumes that at any given time, an individual will be in contact 

with an individual-specific number of neighbors with whom disease transmission is possible. Each 

contact is temporary, lasting a variable amount of time before coming to end, at which point the neighbor 

is replaced by a different individual.” This model expresses the dynamic characteristics of the epidemic 

propagation thus capturing the susceptible–infected–recovered (SIR) dynamics in a population. 

 

Bertuzzo et al. [8] conducted research on the propagation of cholera through the hydrological network 

connections. They test different lattice models as networks to calculate the front speed of an epidemic. 

They suggest their approach can be better for the solution of the heterogeneous networks. Danon et al. [9] 

used a degree of distribution to present a risk assessment model of infection in a social network. They 

used surveys to generate better results from their model. They provide survey results and their 

implications about different models, which use different assumptions to model disease propagation in a 

social network.   

 

Brown, Dalton, and Hoyle [10] used spatial choice analysis to develop an empirical prediction model for 

future suicide bombings. They study two models: the spatial preference model and the logistics regression 

model, and their fusion with each other. They compare these models with the naïve model, which shows 

significant improvement in the forecasting.   

 

Bernasco [11] analyzed criminal locations at a detailed spatial resolution. The author proposes that the 

offenders make their decisions on the detailed level, so the study should use detailed resolution, too, 

rather than on a larger level like census tracts. Discrete choice and spatial choice models are studied 

taking into account smaller resolution. It is noted that small spatial units depend strongly on their 

environment and models that take spatial interdependence into account are needed. 

 

Another way of spatial modeling is spatial choice modeling. Hunt, Boots, and Kanaroglou [12] compared 

spatial choice modeling. They provide general choice models, and then the study attempts to add a spatial 

component in choice models. Later, they present newer choice models which can be useful for 

geographers: the generalized extreme value model, the open-form choice model, and the choice set 

model. They propose that these newer models are evolved enough to take into account spatial component 

while keeping random utility. Bhat and Sener [13] use a spatial logit model to accommodate spatial 

correlation across observation units. They propose a copula-based, closed-form binary logit choice model. 

Their method highlights the power of closed-form techniques for accommodating spatial effects. 

 

Zhu and Timmermans [14] extended the heuristic rules, conjunctive, disjunctive and lexicographic rule, 

and introduce heterogeneity. They suggest that instead of conventional discrete choice models using 

principles of bounded rationality, it is better to model pedestrian behavior as it is a complex 

environmental process. 
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Alamá-Sabater, Artal-Tur, and Navarro-Azorín [15] introduced the neighborhood effect in spatial 

conditional logit framework. They investigated the drivers of the location choices of industrial firms in 

cases of inter-territorial spillovers. They confirmed the influence of the spatial factors on the decision 

analysis with other major factors. They developed their model based on the standard random utility 

maximization (RUM) framework. 

 

For pattern recognition, discriminant analysis (DA) would determine where each well belongs with the 

classification of groups and variables [6]. The DA finds the best linear combinations of the geographical 

and behavioral variables for the oil wells. Forecasting production from oil wells is different from the 

traditional prediction of oil production and population growth in terms of geographical dynamics and 

flow. For example, oil and gas production rate and growth per region and zone can be estimated based on 

the production plan and oil richness; however, the estimation is appropriate for fixed regions and zones, 

which are known. Similarly, the number of oil wells can be estimated by using linear projection in 

response to trends. Mitra et al. [1] estimated the future locations of drilling rigs from lease data. They 

assumed that the drilling activity would begin at the final year of the lease right before the lease expired. 

They also assigned three to five additional wells to the mineral land lease. Due to lack of information 

available for the estimation, the study uses distances fron the nearest oil wells. 

 

In summary, the literature review indicates that drilling locations can be estimated by using a variety of 

methods, including a spatial choice model with the combination of logit regression. The required spatial  

information can be collected, and the outputs for the decision-making process can be visualized by using 

GIS. To our knowledge, based on extensive literature review, no application has been published for 

predicting horizontal drilling locations for a long-term period.  
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3. METHODOLOGY  
 

3.1 Datasets  
 

An oil spacing unit represents the public land lease for drilling and producing oil available from the North 

Dakota Oil and Gas Division. The division provides all oil activity related GIS files through ArcIMS 

Viewer [16]. Historical oil wells and existing rig locations are available from the information server; 

however, the historical drilling activities have not been published to the public, which make clustering 

analysis difficult. 

 

The previous active oil wells can be tracked by spud year in the given oil wells from the North Dakota 

Department of Mineral Resources [16]. Since 2005, more than 20 rigs actively drilled horizontal wells, 

which increased from the previous year by 78.6%. At the same time, the increased number of wells 

produced more than 50 million barrels per year and steadily increased. Thus, the years from 2005 to 2011 

were considered in the historical period to estimate the oil production and historical rig locations in time 

series. The prediction model proposed herein does not account for the oil wells located out of the spacing 

units. This study uses the forecasting data from the North Dakota Department of Labor for the number of 

oil wells for a 20-year time window through oil zones. 

 

3.2 Modules of the Model  
 

The drilling process takes six weeks to two months, which means that rig equipment can drill up to 10 

wells in a year. A search for the next drilling sites was based on the probability of drilling for each unit 

(Figure 1). The potential drilling locations were sequenced by the probability of drilling a spacing unit, 

and then, most likely, wells were selected by the numbers in accordance with oil zones and oil counties. 

The selected spacing units are drilled, thereby generating truck trips to ship sand, gravel, fresh water, 

pipes, etc. Different commodities need different types of trucks. When the drilling phase is finished, the 

oil wells are equipped with well overhead to produce crude oil, thereby generating truck trips to transport 

crude oil and salt water and for maintenance [1]. The trip generation process is explained in Figure 3.1. 

The searching process is repeated after updating the drilling information of the spacing units over the 20-

year time window. 

 

The maximum likelihood model estimates the parameters of the temporal and spatial factors for placing 

drilling locations. External factors, such as oil in the market and operator’s characteristics, are also critical 

for the study; however, the study used the annual forecasts of wells and production per county obtained 

from the Oil and Gas Division of North Dakota. This study assumes that the agency forecasts the number 

of oil wells considering the oil price trend and operators’ activities throughout the state. Thus, this study 

relies on their estimates and just focuses on predicting vertical wellbores on a spacing unit. The maximum 

likelihood estimation explains the choice of drilling locations because the number of drilling sites in a 

county is limited based on the drilling forecast data for each county. All the spacing units’ predicted 

values and limits lie between 0 and 1. 
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Figure 3.1  Five sub-systems for forecasting of oil spacing units for trip generation (truck trips). 

 

Maximum likelihood estimation is used for selecting drilling location to fit logistic regression model in 

this study. The response probability π, regression coefficient β, and explanatory variable x are elements of 

the logistic regression model in the form of 
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In the model, the β0 is the intercept and the βs, all s={1,…,16}, present the estimated coefficients 

of each independent variable for the maximum likelihood ratio. WELLFRQ5 presents the well 

density by measuring the number of wells producing within five miles and WELLFRQ10 and 

WELLFRQ15 within 10 miles and 15 miles, respectively. The oil wells along a river and lake or 

in the middle of the water locations are presented by the binary variable of AQUA. The next 

sections explain the other variables in detail. 
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3.3 Dynamic Estimation of Temporal-Spatial Factors 
 

This study considers a variety of temporal and spatial factors in order to estimate likely locations for 

drilling oil wells.  

 

3.3.1 U.S. Geological Survey’s Oil Assessment Information 
 

This study spatially joins the U.S. Geological Survey (USGS)’s Williston Basin oil assessment data to the 

spacing units in order to measure the attractiveness of each spacing unit for drilling. The assessments 

includes Elm Coulee-Billings Nose (z = 1), Missouri-Little Knife (z = 2), Central Basin-Poplar Dome (z = 

3), Northwest Expulsion Threshold (z = 4), and Eastern Expulsion Threshold (z = 5) assessment units 

(AUs) in the Bakken formation [17] [18]. Each factor is converted into a value between 0 and 1. The 

undiscovered oil is a technically recoverable resource, so it was matched to each assessment unit out of 

3.64 billion barrels from the Bakken formation. 

  

  


n

i zi

zi
zi

Barrel

Barrel
BarrelASSESSUNIT

1

, ∀𝑧 = {1,2,3,4,5}  (4) 

 

where i is a spacing unit, and z represents an assessment unit (AU) in the Bakken formation. The number 

of barrels is estimated based on the area of the spacing unit in each zone. 

 

3.3.2 Distance from Pipe Loading Sites 
 

We measure the Euclidian distance from an oil spacing unit to the closest pipe transloading facility (5). 

By drilling an oil well near the pipe transloading facility, oil producers can reduce transportation costs 

and required resources and also lessen the impact on public roads. In that sense, drillers would prefer to 

lease the public trust mineral land and private oil fields near the pipe transloading sites in cooperation 

with other factors. The distance was estimated using an as-the-crow-flies route between a site proposed 

(xi, yi) and the closest pipe transloading facility (xq, yq). 
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3.3.3 Distance from Fresh Water Depots 
 

The distance between a spacing unit and the closest water depot is measured by Euclidean straight line 

between two coordinates for a rig (xi, yi) and for the nearest source of water (xw,yw) (6). Drilling activities 

will take place as close as possible to existing water depots to minimize logistics cost and increase 

productivity. Approximately 400 truck movements are needed to ship fresh water in order to drill a 

horizontal well. In consideration of this, the oil spacing units are more likely to be located near the water 

depots. 
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3.3.4 Area Density 
 

To avoid the risk of having a dry well, a rig would be placed in a productive area, which is proven. Oil 

density with a threshold distance can be used to estimate the maximum likelihood of drilling. Each 

spacing unit’s ZONEDENSi counts the number of wells in the oil drilling history within d0 = 5, 10, or 15 

miles, respectively, because the study uses homogeneous buffer sizes for each spacing unit (7). 

 

j

di FZONEDENS }15,10,5{0
  (7) 

  

3.3.5 Well Age 
 

The variable of a well’s age verifies if drilling occurred in the past five years from the baseline scenario 

(i.e., 1, 2, 3, 4, or 5). For example, the estimation of the drilling location on a spacing unit in 2010 sees 

the drilling history of 2009 for k = 1 (8). In other words, this model estimates dynamic causal effects. In 

this distributed lag model, the maximum of the k value is five years in the state. The independent variable 

of aging can be weighted by special coefficient of β in the model.  
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3.3.6 Distance from the Closest Well 
 

By placing a rig at the closest spacing unit, the workover rigs and all other resources can be used with 

shorter movements. Furthermore, the new drilling can minimize the risk of having a dry oil well. The 

distance is measured by Euclidean straight line between two coordinates (xi, yi) and (xneighbor, yneighbor). 

 

   22

neighborineighborii yyxxNEARWELL   (9) 

  

 

However, some newly deployed equipment will not start from the current rig location points. Instead, they 

will find neighboring spacing units, which have potential. For example, the spacing unit (2, b) is drilled 

(see Figure 3.2-a), and then the rig chooses a cell (2, b) and starts to drill the zone (see Figure 3.2-b). 

Cells (2, a) and (2, b) are now excluded for the next drilling locations (c), so cell (1, b) was chosen (see 

Figure 3.2-c) following by 1c (see Figure 3.2-d).  
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Figure 3.2  Searching neighbor units for drilling location. Among the alternate movement (solid lines), 

the dashed line is selected for the next drilling location in accordance with the probability of 

drilling. 

 

3.4 Zonal Plan as a Constraint 
 

Additional new wells based on oil zones (i.e., seven oil zones in 17 counties) were used to 

predict the total oil wells in Phase I and Phase II for planning. This study relies on the 

information given for predicting the oil activities for a 20-year planning horizon. In addition to 

predicting drilling behavior, the plan acts as a restriction or guideline for future drilling activities 

in the regions. 

 

3.5 Selection Process in GIS 
 

The study clipped the oil activity-related layers for the 17 oil counties (Figure 3) and then exported drilled 

oil and gas wells for the last five years based on the spud date (2006-2011) from the oil wells dataset. The 

oil spacing units are grouped into 2010 and 2011 by start date. 

 

In addition to public land leases, this study includes oil exploration and leasing activities on privately 

owned land. Since data are not available as to the lease negotiation and timing on private lands, it’s 

assumed that leasing activities on public and private lands within a geographic area occur simultaneously. 

That is, once a company acquires a public land lease, it will negotiate leases with private landowners in 

contiguous areas. This model assumes that if there is a public land lease acquisition and actual drilling 

activity occurs that private land within three miles of the public lease will also have similar drilling 

characteristics, as long as it has not already been drilled. 

 

3.6 Spatial and Temporal Autocorrelation 
 

A group of wells from 2005 to 2012 was used to check out the spatial and temporal autocorrelation. The 

research tested the autocorrelation using Moran’s I index. Inverse distance was used for the 

conceptualization of spatial relationships using Euclidean distance of 30Km. Moran’s index was 0.509, 

which indicates fairly distributed and clustered at the same time. In general, the positive Moran’s I index 

express the clustered pattern of the oil wells throughout the periods with variance of 0.000322 and 

expected index of -0.000273. Across the oil fields in the Bakken formation, the spatial clustering is 

frequently shown because the oil drilling activities are concentrated within the Williston thermal maturity 

in that productive wells are coincident with the area [19]. In addition, gathering modes, such as rail 

terminals and pipelines, are one of the critical factors of production.  During this period, the wells were 

randomly distributed by p-value of less than 0.0000001 and z-score of 28.376223.  
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Figure 3.3  Regional public trust land mineral and U.S. Geologic Survey oil assessments. 
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4. EMPIRICAL RESULTS  
 

4.1 Model Validation 
 

The output of the model estimate is displayed in the map in Figure 4.1. We estimated the 589 drilling 

locations in 2011. The estimated drilling locations are compared with the 693 oil wells spudded in 2011 

and the 200 sample rigs during 2011. The yearly drilling locations are not traced, so the exact locations of 

drilling are not known to the public. The distribution of the spacing units and oil wells are reasonably 

distributed through the overall oil counties (Figure 4). The visualized distribution of the estimated drilling 

sites and rig locations indicates the differences are shown in the counties of Golden Valley, Stark, and 

Billings. The south of Williams County also shows the gaps from the estimation. 

 

The average distance from drilling locations to the sample rig locations was 4,137.79 meters. At the 95% 

confident level, the sample average of distance between an estimated drilling site and an existing rig 

location will be within between 3673.56 meters and 4602.03 meters. The standard error was 236 and 

standard deviation 5,736.54 meters. Among 589 drilling locations, about 5% of them are farther than 10 

kilometers away from an existing rig location, and about 10% of them are off more than 8115.79 meters. 

Because the size of a spacing unit is one mile by two miles, the average distance is acceptable for the 

model by 2.57 miles (Table 4.1).  

 

Table 4.1  Summary statistics of the distance between observed and estimated drilling sites. 

Measure Values 

Mean 4137.79 meters 

Mean (Lower 95%) 3673.56 meters 

Mean (Upper 95%) 4602.03 meters 

Mode 0 meter 

Standard Deviation 5736.54 meters 

Minimum 0 meter 

Maximum 85497.11 meters 

Count 589 spacing units 

90th Percentile 8115.79 meters 

95th Percentile 10398.13 meters 

Coefficient of Variation 138.64 % 
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Figure 4.1  Oil wells drilled in 2011 (base year) and spacing units selected to drill in 2011. Sample rigs of 

all drilling activities through 2011. 
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4.2 Model Comparison and Interpretation 
 

The overall model as a whole fits significantly given a p-value of 0.001. The Wald test indicates that the 

model is statistically significant. Table 4.2 shows the coefficients (labeled Estimates), their standard 

errors (error), the Wald Chi-Square statistic, and associated p-values. The coefficients of the geospatial 

variables, WELLFREQ5, AREAMILE, and ZONEDENS are statistically significant. For the temporal 

variables, YEAR2 has a significant impact with a 90% confidence level in the full model. The logit 

regression coefficients give the change in the log odds of the outcome for one unit increase in the full 

prediction model. 

 

For every one-unit change in AREAMILE, the log odd of drilling increases by 1.8464. Similarly, for 

every one-unit increase in ZONEDENS, the log odds of being drilled to produce oil increase by 0.5151. 

The coefficients for the categories of historical drilling year have a slightly different interpretation. 

However, only significant spatial factors and temporal factors are considered for the nested model to 

reduce the size of the model and for ease of implementing it in GIS software. The portion of the output 

labeled Model Fit Statistics describes and tests the overall fit of the model. The -2 Log L (1408.390) can 

be used in comparisons of nested models; thereby indicating two models (full model and nested model) 

are not significantly different by both 5% and 10% level (i.e., -2(1248.488-1249.478)=1.98<12.02(90%)). 

Thus, this study implements the nested model in GIS for simplicity.  

 

In the nested model (Table 4.2), the number of wells within 5 miles (WELLFREQ5) and 15 miles 

(WELLFREQ15) are statistically significant as well as AREAMILE and ZONEDENS. Among the 

temporal factors, YEAR2 is statistically significant; however, this study includes all the other temporal 

variables in the nested model. 

 

4.3 Output and Visualization 
 

In 2005, many wells from the middle of the region gained high weights because the regions have a 

concentration of shale oils (Figure 4.2). The southeast corner also gains high probability because 

relatively fewer oil spacing units are shown in the map. In 2020, the likelihood ratio of the drilling 

locations moves westward because many of rigs have already drilled in the middle of the region, and there 

are many newer oil wells to the west. In 2025, the probability of drilling spacing units is widely dispersed 

while the zones located in the middle of the region have high chances to be drilled. In 2030, the 

probability of drilling spacing units is almost evenly distributed across the region because most of the 

zones have been developed in the 20 years since 2012. 
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Table 4.2  Comparison of Full Model and Nested Model of selection of drilling locations. 

Independent 

Variables 
Names 

Full Model Nested Model 

Estimates 
Wald 

Chi-sq 
Pr>Chisq Estimates 

Wald 

Chi-sq 
Pr>Chisq 

Constant  5.6552 0.0695 0.7921 -9.2857 73.3581 0.0001 

YEAR5 Oil drilled 5 year back -12.9064 0.0006 0.9803 - - - 

YEAR4 Oil drilled 4 year back -0.2035 0.1274 0.7211 -0.4736 0.6961 0.4041 

YEAR3 Oil drilled 3 year back -0.9420 2.7207 0.0991+ -0.6961 2.4346 0.1187 

YEAR2 Oil drilled 2 year back -1.1233 9.2485 0.0024* -0.8349 9.0205 0.0027* 

YEAR1 Oil drilled 1 year back -0.1790 0.5604 0.4541 -0.2362 1.1282 0.2881 

AQUA Water and river -1.3061 3.1817 0.0745+ -0.8791 2.2032 0.1377 

ASSESSUNIT Relative Oil 

Recoverable in 

Williston Basin 

1.8464 0.5939 0.4409 - - - 

OilMEAN Million Barrels -1.5482 0.3683 0.5439 - - - 

WDEPNEAR Distance from the 

nearest water depot 

-0.1219 1.2905 0.2560 - - - 

PIPENEAR Distance from the 

nearest pipe 

transloading sites 

0.2494 2.5291 0.1118 - - - 

WELLFREQ5 Number of oil wells 

within 5 miles 

0.4670 4.2297 0.0397* 0.3240 5.9016 0.0151** 

WELLFRQ10 Number of oil wells 

within 10 miles 

-0.4782 0.9808 0.3220 - - - 

WELLFRQ15 Number of oil wells 

within 15 miles 

0.8151 2.8662 0.0905+ 0.6582 8.1520 0.0043* 

NEARTRUST Distance from the 

nearest trust land 

   - - - 

NEARWELL Distance from the 

nearest active oil well  

-0.0890 0.1599 0.6892 - - - 

AREAMILE Space of the spacing 

unit 

0.5244 3.8584 0.0495** 0.6316 6.9912 0.0082* 

ZONEDENS Density of the oil zone 0.5151 4.5806 0.0323** 0.5367 8.3890 0.0038* 

Global Testing Likelihood Ratio  81.3151 <0.0001  94.0081 <0.0001 

Score  80.2154 <0.0001  80.0007 <0.0001 

Wald  71.4877 <0.0001  80.4878 <0.0001 

Model Fit -2LogL 1248.488   1249.478   

Note: dependent variable: drilling = 1 if a spacing unit is selected, drilling = 0 if it is not selected; 6670 observations 

used out of 6711. Individual coefficients are statistically significant at the *1%, **5%, and +10% level. 
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5. CONCLUSION  
 

This paper proposed a geospatial analysis for estimating drilling locations for a 20-year long-term period 

by investigating the probability of drilling for each spacing unit. The maximum likelihood estimation of 

the parameters of a logistic regression provides information regarding locations for drilling with regard to 

well aging, drilling limitations on a spacing unit, closeness to the current wells, and oil density in an oil 

development zone. The estimation also includes the U.S. Geological Survey’s oil assessment. 

Figure 5.1  Probability of drilling on spacing units using for the next 20 years. 

 

2015 2020 

2025 2030 
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Nevertheless, the estimation process of the drilling locations heavily relies on the future oil forecasting 

information from state agencies and the U.S. Geological Survey’s assessment of the Bakken formation. 

Therefore, the output of this study should be more in line with the potential oil development strategy for 

long-range transportation planning. Small variations in the process will result in huge variations at the end 

of the 20-year long-term planning period. Nonetheless, this model provides information for long-range 

transportation planning related to shale oil development that provides heavy impact on roads in the United 

States. 

 

In a future study, other methods, such as bioinformatics, clustering, and simulation, could be implemented 

and compared with the proposed model in order to improve quality of the output. The proposed model in 

this study can be utilized for the regions where development begins. When the vertical and horizontal 

drilling activities are mixed, two different models could be developed to represent each group. The model 

provides a low level of transferability due to the variation of geospatial patterns, although the procedure 

can be adopted.   
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