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ABSTRACT 

In recent years, transportation agencies have increasingly turned to machine learning (ML) to 
enhance the effectiveness of infrastructure asset management. However, limited local inventory 
data often hinders building accurate and reliable ML models. Additionally, data privacy and 
ownership concerns discourage agencies from sharing raw datasets. Many state departments of 
transportation (DOTs), including the Utah DOT (UDOT), face challenges in managing culverts 
due to limited inspection data and privacy concerns. This research proposes using federated 
learning (FL), an emerging ML paradigm, to enhance culvert condition prediction without 
requiring centralized data sharing. By leveraging FL, UDOT can collaboratively train predictive 
models with data from other state DOTs while preserving data confidentiality. The project 
involves collecting culvert and environmental data from multiple state inventories, preprocessing 
them to ensure consistency, and developing artificial neural network (ANN)-based models within 
the FL framework. The resulting FL model achieved an accuracy of 80.4%, performing 
comparably to the centralized model trained on the fused dataset and significantly outperforming 
the model trained solely on Utah’s data. The findings demonstrate that FL can effectively 
support high-performance predictive modeling while preserving data. This research offers a 
novel approach to infrastructure asset management that balances predictive accuracy with 
regulatory compliance, setting a precedent for broader adoption of FL in transportation systems. 
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EXECUTIVE SUMMARY 

The Utah Department of Transportation (UDOT) faces significant challenges in managing over 47,000 
culverts across the state, due primarily to sparse inspection records and data scarcity. One effective 
approach to improving traditional culvert inspection and management is leveraging the capabilities of 
artificial intelligence, including machine learning (ML). Traditional ML approaches for culvert condition 
prediction require large, diverse datasets, something UDOT currently lacks. To address this, the research 
project explored federated learning (FL) as an innovative, privacy-preserving solution for predictive 
culvert maintenance. 

This study developed and evaluated an FL framework that enables collaborative model training across 
multiple state departments of transportation (DOTs) without exchanging raw data. Using inspection 
records from six states, including Utah, the research team trained predictive models to estimate culvert 
condition ratings. These models incorporated both physical features (e.g., material, length) and 
environmental factors (e.g., soil pH, flooding frequency) and were implemented using artificial neural 
networks (ANNs) within the FL framework. 

Four models were tested: a local Utah model (Utah-CL), a synthetic data-augmented model (Utah-
SMOTE), a centralized model using all state data (ALL-CL), and the proposed FL model (ALL-FL). The 
FL model outperformed both local and synthetic approaches and achieved performance comparable to the 
centralized model, attaining 96% of the centralized model’s accuracy while ensuring data privacy. It also 
excelled in identifying high-risk culverts, achieving notably higher precision and recall rates for critical 
condition classes. 

The findings confirm the feasibility of FL for culvert condition prediction under data-limited scenarios. 
Moreover, FL proved to be a scalable and effective alternative to data augmentation, offering UDOT a 
practical solution to prioritize inspections, allocate maintenance budgets strategically, and improve safety 
outcomes. By implementing the FL framework into its asset management systems, UDOT can enhance 
decision-making while collaborating with other DOTs without breaching data privacy regulations.  

 

 



1 | Page 
 

1. INTRODUCTION 

1.1 Project Motivation 

Managing and maintaining critical transportation infrastructure components, such as culverts, are 
associated with significant challenges that directly impact public safety and economic efficiency. 
Culverts, serving as conduits under roadways and railways for water flow (Figure 1), are susceptible to 
deterioration over time due to factors like weather conditions, material wear, and load stresses (Salem, 
Salman, and Najafi 2012). The failure to address the deteriorating condition of culverts in a timely 
manner can lead to severe consequences, including roadway collapses, flooding, environmental damage, 
and costly emergency repairs. To mitigate these risks and ensure the long-term functionality of the 
transportation network, a systematic approach to culvert condition assessment and maintenance is 
paramount (Mohammadi, Rashidi, et al. 2023). Unfortunately, traditional culvert inspection and 
management practices are no longer appropriate to meet the growing demands of modern infrastructure 
networks due to their reactive nature, high labor costs, and the disruption they cause to traffic flow 
(Piratla, Jin, and Yazdekhasti 2019). 

 
Figure 1. Culvert under a road 

A strategy to enhance traditional culvert inspection and management practices lies in employing the 
power of artificial intelligence. Specifically, innovative machine learning (ML) algorithms have opened 
up fresh avenues for creating more efficient and powerful strategies for inspecting and managing culverts 
(Stoner, Pang, and Piratla 2019). ML algorithms are capable of making accurate predictions. By analyzing 
historical inspection data, weather patterns, and environmental factors, ML models can predict the 
likelihood of culvert deterioration. This predictive capability enables a proactive approach for 
maintenance, allowing agencies to prioritize repairs before critical failures occur, minimizing disruptions, 
and optimizing resource allocation (Meegoda et al. 2017). 

While data-driven approaches like condition prediction models offer the potential to transform 
infrastructure asset management, many DOTs face a major obstacle: data scarcity. This lack of sufficient 
data can stem from several factors, including the high cost and resource demands of traditional data 
collection methods and the absence of a centralized data management system (Sinha, Labi, and Agbelie 
2017). These data collection methods often rely on manual inspections, which require significant labor 
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hours, specialized equipment, and transportation resources to access and evaluate infrastructure assets 
such as culverts. For example, the Utah Department of Transportation (UDOT) lacks a comprehensive 
culvert management system. This results in sparse and inconsistent inspection records for its extensive 
culvert inventory with more than 47,000 culverts across the state, hindering the development of robust 
predictive models (Mohammadi, Sherafat, et al. 2023; Beaver and McGrath 2005). 

1.2 Research, Objectives, and Tasks 

Data scarcity is a significant challenge for UDOT as it seeks to leverage predictive models for culvert 
asset management. The lack of comprehensive, high-quality data directly impedes the development and 
effectiveness of ML models, which rely on large, diverse datasets to make accurate predictions. 
Insufficient data results in reduced model accuracy, as the available training sets are too small or 
unrepresentative to provide reliable insights into the condition of infrastructure assets like culverts. This 
limitation restricts the application of advanced ML techniques and increases the risk of overfitting, where 
a model performs well on training data but fails to generalize to new or unseen data (Mohammadi, 
Rashidi, and Asgari 2024c). 

The scarcity of data in the context of culvert asset management complicates the identification of critical 
patterns, predicting asset deterioration, and prioritizing maintenance activities. To overcome these 
challenges and fully utilize the potential of ML in managing culverts, a variety of strategic methods are 
required. These include improving data collection techniques, such as adopting more automated and 
efficient sensing technologies, integrating data from other transportation agencies, and optimizing the use 
of existing data through advanced analytics (Gillani and Niaz 2023). 

One of the most effective methods for addressing data scarcity is collaborative data sharing among 
different state DOTs. By merging inventory data from other agencies, UDOT can significantly enhance 
the diversity and richness of its datasets. This approach allows for a more comprehensive view of the 
demands and usage patterns of culverts, increasing the robustness and accuracy of predictive models 
(Mohammadi, Rashidi, and Asgari 2024b). For instance, data from other DOTs can help fill gaps in 
UDOT’s own dataset, providing valuable insights into regional variations in infrastructure health and 
enabling the creation of more generalized models applicable across various geographic areas. However, 
this strategy faces a number of significant challenges that need to be addressed before it can be fully 
realized. 

First, inconsistent data formats and protocols across DOTs present a major barrier to the seamless 
merging of datasets. Each agency may use different standards for data collection, storage, and reporting, 
which makes it difficult to standardize and integrate data from multiple sources. Second, data privacy 
regulations such as the General Data Protection Regulation (GDPR) (Voigt and von dem Bussche 2017) 
and the California Consumer Privacy Act (CCPA) (Bukaty 2019) impose stringent limitations on data 
sharing, especially when it comes to personal or sensitive information. These regulations are designed to 
protect the privacy of individuals and organizations, but they can complicate data sharing across 
jurisdictions. Finally, reluctance among some DOTs to share data due to competitive interests or 
administrative obstacles is another critical issue.  

Researchers facing the challenges of limited infrastructure data and data-sharing obstacles have found a promising 
solution in federated learning (FL). This innovative ML technique, pioneered by Google in 2016 (Konečný et al. 
2016), was designed specifically to address data privacy and scarcity concerns. This was initially built to 
enhance text prediction across Android devices while complying with privacy regulations like GDPR and 
CCPA. The key to FL lies in its collaborative yet decentralized structure. This enables collective learning 
without compromising the privacy of individual data sources (McMahan et al. 2017). 
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While previous studies have shown the promise of FL in various fields, its potential for infrastructure 
management with limited data remain underexplored (Mohammadi, Rashidi, and Asgari 2024a). This 
research investigates the effectiveness of FL for predictive analysis in this context, specifically for UDOT’s 
culvert inspection planning. The proposed FL method allows UDOT to benefit from data held by other state 
DOTs while maintaining strict data privacy and security. This research aims to showcase FL’s potential for 
culvert condition prediction models, providing valuable insights for UDOT and other DOTs facing data 
scarcity and data privacy concerns. The objective of this research project is threefold: 

1) Assess the feasibility of FL for culvert condition prediction with limited data 
2) Evaluate the performance of FL models compared to traditional centralized ML models 
3) Quantify the privacy benefits of FL for UDOT 

To achieve our objectives, the following section will review existing culvert condition prediction models 
and explore the application of FL in academic literature. Subsequently, we will discuss the data collection 
and preparation process and the development of FL and ML models. Finally, we will elaborate on this 
study’s outputs and key findings. 

1.3 Report Overview 

This report is organized into the following key sections:  
• Introduction: This section outlines the motivation behind the research, detailing the challenges faced 

by UDOT in managing culvert inspections and the role of ML in addressing these issues. It also 
defines the research objectives and tasks. 

• Background: This section reviews existing ML applications in culvert inspection and the 
introduction of FL as a solution to data privacy concerns in collaborative data sharing across state 
DOTs. 

• Methodology: This section describes the process of data collection and preparation, model 
development using ANN, and the implementation of FL to overcome data limitations. 

• Results and Discussion: The findings from applying FL to culvert condition prediction are presented 
and analyzed. This section compares FL with traditional ML models and discusses the advantages of 
using FL, particularly in terms of accuracy and data privacy. 

• Conclusions and Recommendations: The final section summarizes the study’s key findings and 
provides recommendations for future research and practical applications of FL in infrastructure 
management. 
 

  

Following this structure, the report effectively presents the background, methodology, results, and 
implications of using FL to enhance culvert condition prediction while preserving data privacy. 
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2. BACKGROUND 
In this section, we review the literature regarding the applications of ML to enhance culvert inspection processes. 
Also, we discuss existing FL deployment and its potential application within the context of culvert condition 
prediction models. 

2.1 ML Applications in Culvert Inspection  

The condition of a culvert, typically represented by a numerical value, is determined by a combination of 
factors that affect its structural integrity and performance. Given the numerous variables that influence the 
condition of a culvert, its assessment is a complex task (L. Li et al. 2020). Researchers have increasingly 
turned to ML techniques, which have proven effective in addressing complex challenges. The 
development of ML-driven models for predicting culvert conditions has significantly enhanced traditional 
inspection approaches, offering more accurate insights and predictions (T. Li, Sahu, Zaheer, et al. 2020). 
Table 1 provides a summary of the different models developed in this field. These predictive models 
enable DOTs to better estimate the rate of culvert degradation, facilitating more targeted inspection 
schedules based on the predicted condition. By prioritizing inspections for the most vulnerable culverts, 
these models help to extend their operational lifespan and ensure a safer, more reliable infrastructure. 

For example, Tran et al. (2006) introduced a probabilistic neural network (PNN) model to classify and 
estimate the deterioration of pipes. Their study involved a discriminant analysis, comparing the 
performance of the PNN with that of a traditional parametric model. This comparison highlighted nine 
critical factors that influence concrete stormwater pipe deterioration, with the PNN model performing 
slightly better in terms of predictive accuracy. The dataset used for training the models was drawn from 
the City of Greater Dandenong, Australia, and contained only 583 data points, a limitation that 
constrained the robustness of the model. Another study by Salem et al. (2012) identified key factors 
contributing to the deterioration of metal culverts. They built a deterioration prediction model based on a 
relatively small dataset of 99 records from the Ohio DOT using a binary logistic regression model and 
forward stepwise variable selection. However, this study was also limited by its narrow dataset, which 
included just four independent features. While offering valuable insights, both studies focused on specific 
types of pipes, which restricts the broader applicability of their findings. 

Further progress was made by Tatari et al. (2013), who developed a regression model using ANNs to 
predict culvert conditions based on Ohio DOT’s culvert inventory data. This model, which incorporated 
nine features such as traffic data, culvert type, and age, was trained on a small sample of just 39 culverts, 
leading to an inherently high feature-to-data ratio. Meanwhile, Stoner et al. (2019) leveraged a large 
dataset of 8,000 culverts from South Carolina DOT to create predictive models using ANNs and logistic 
regression. They constructed individual models for each of the six types of culverts in the state, using a 
comprehensive dataset that included 10 defect categories. Their approach utilized a multiclass 
classification algorithm and successfully predicted culvert conditions across various ages. However, this 
study was limited to data from one state, and its findings might not apply to other regions with differing 
culvert conditions. 

In recent years, additional studies have focused on improving ML-based culvert condition prediction 
models. Gao and Elzarka (2021) developed a binary classification model using a decision tree algorithm 
to assess the condition of culverts in Ohio. This model, which used 11 features from the ODOT culvert 
dataset, achieved a 75% accuracy rate. While the model performed well, its binary nature, classifying 
culverts into only two condition categories, was a notable limitation. Moreover, the data used in this study 
were sourced solely from Ohio, which restricts its generalizability to other states. In a more 
comprehensive study, Mohammadi et al. (2023) compared five multiclass classification algorithms 
(random forest, decision tree, support vector machine, k-nearest neighbors, and ANN) for predicting 
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culvert condition ratings. Their study, which incorporated a diverse dataset of 2,555 culvert records from 
four states, showed that the random forest (RF) algorithm outperformed the others in terms of accuracy, 
precision, recall, and F1 score. However, the study faced challenges with data privacy compliance since it 
combined data from multiple states, which may have violated privacy regulations. 

Table 1. A summary of studies that developed ML models for culvert inspection programs 
Reference Year Objective 

Tran et al. (2009) 2009 Predicting the structural condition of pipes with PNN 

Salem et al. (2012) 2012 Predicting the binary scale of culvert condition  
with logistic regression 

Tatari et al. (2013) 2013 
Predicting the adjusted overall rating of culverts’  

condition with ANN 

Stoner et al. (2019) 2016 
Predicting culvert condition ratings with ANN  

and logistic regression 

Gao and Elzarka (2021) 2021 Predicting the binary scale of culvert condition  
with a decision tree 

Mohammadi et al. (2023) 2023 Predicting culvert condition ratings with RF, SVM, 
decision tree, ANN, and k-nearest neighbor 

 
2.2 Federated Learning Applications  

FL introduces a revolutionary approach to data analysis and the development of ML models by 
overcoming the legal and privacy restrictions typically associated with data fusion. Instead of centralizing 
datasets, FL operates in a decentralized manner, making it an ideal solution for sensitive data 
management. Several pioneering studies have acknowledged FL’s importance and explored its application 
in various real-world scenarios. This literature review section focuses on using FL in the civil engineering 
sector. 

In one such study, Khalil et al. (2022) applied FL to maintain privacy in ML, specifically for predicting 
the thermal comfort of workers in industrial IoT environments. They developed a federated neural 
network algorithm, named Fed-NN, which not only preserved privacy but also cut communication 
overhead by 50%. Their experiments demonstrated that Fed-NN could forecast thermal comfort with 80% 
accuracy while ensuring privacy in industrial IoT settings. Similarly, Moretti et al. (2021) proposed a 
federated model designed to enhance digital twin (DT) applications. By employing a cross-disciplinary 
and multiscale approach, they successfully built a federated data model to support DT-based asset 
management tools. This model was validated with a federated building-level DT for the West Cambridge 
Campus, showcasing its potential for real-time applications at both building and environmental scales. 

In construction management, FL offers significant potential for fostering collaboration and enhancing 
data sharing. Zhang and Pan (2022) developed an FL-based collaboration framework aimed at 
overcoming challenges in the intelligent design of residential buildings. This framework leveraged FL to 
train ANN models directly on the data owners’ local devices, ensuring that sensitive building drawings 
are not shared. To encourage data sharing, the framework incorporates a collaboration matching 
mechanism based on game theory. This mechanism rewards data owners who contribute higher-quality 
and larger quantities of data by granting them access to more data in return. The case study involving 
residential building drawings demonstrated that the ANN model trained via FL on a larger, aggregated 
dataset outperformed the model trained on local data alone, highlighting the advantages of this 
collaborative approach. Li et al. (2021) also employed FL to tackle privacy concerns in construction 
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worker data and address the challenge of preserving the personalization of safety monitoring systems. 
They introduced FedSWP, a framework utilizing federated transfer learning to protect personal image 
data while enhancing the accuracy of occupational health and safety (OHS) monitoring systems. Their 
model demonstrated its ability to provide accurate safety alerts and health recommendations, particularly 
for crane operators monitoring facial fatigue. Using FL, they significantly improved model performance, 
showcasing the scalability of FedSWP in diverse construction OHS applications.  

FL is also finding significant applications in transportation systems, where large volumes of data are 
generated by various sources, including vehicles, sensors, and infrastructure. These data often contain 
sensitive information related to travel patterns and locations, making privacy preservation a crucial 
consideration. Alqubaysi et al. (2025) proposed an FL-based predictive traffic management (FLPTM) 
system to optimize service access and privacy for autonomous vehicles (AVs) within an ITS. The system 
employed a contained privacy-preserving scheme (CPPS) that decentralizes data processing, enabling 
vehicles to train local models while keeping raw data confidential. The FLPTM system showed promising 
results in reducing communication costs, mitigating adversarial effects, and improving access time while 
maintaining data privacy. In a similar application, Saputra et al. (2019) developed an FL-based approach 
to predict energy demand in electric vehicle networks. Their method improved the prediction accuracy 
while minimizing communication overhead and preserving user privacy. Anaissi et al. (2023) leveraged 
FL for structural health monitoring, applying a personalized FL approach to overcome non-IID data 
challenges in FL. Their model, based on a deep neural network and autoencoder architecture, achieved 
impressive damage detection accuracy (86% to 97%) compared with traditional FL methods. 

Despite these advances, there remains a gap in addressing the data scarcity in culvert inventories, a 
challenge that many transportation agencies, including UDOT, face. Previous studies on condition 
assessment of culverts have encountered several limitations, such as using data from a single state’s 
culvert inventory (Tatari et al. 2013; H. D. Tran, Perera, and Ng 2009; Stoner, Pang, and Piratla 2019) 
and primarily employing binary classification models (Gao and Elzarka 2021; Salem, Salman, and Najafi 
2012). To address these issues, we propose a comprehensive FL-based model designed to handle data 
inconsistencies and noise without significant loss in performance. This model’s strength lies in its ability 
to generalize to new, unseen data beyond just the datasets on which it was trained. It aims to enhance 
culvert condition prediction models while addressing privacy concerns and maintaining compliance with 
data protection regulations. Additionally, we conducted a comparative analysis between traditional data 
augmentation techniques and FL, demonstrating FL’s superior ability to handle data scarcity compared 
with other leading solutions. 
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3. METHODOLOGY 

The primary focus of our research is to address data scarcity within UDOT’s culvert inventory while 
maintaining data privacy. With many culvert inspection records being missed in Utah’s culvert inventory, 
the resulting gap poses a serious challenge for sound decision-making regarding culvert inspection and 
maintenance. To overcome this data scarcity, we considered two approaches:  

1) Sourcing culvert data from other DOT inventories to create a richer and more informative dataset  
2) Augmenting the dataset with synthetic data using the Synthetic Minority Oversampling 

Technique (SMOTE)   

Traditionally, when data are gathered from multiple datasets or organizations, the standard approach has 
been to utilize centralized ML models. However, data privacy has been a significant concern with this 
method (Mohammadi, Rashidi, and Asgari 2024b). In light of the growing global focus on data privacy 
and the risks associated with centralized learning, we propose an alternative solution, FL, that balances 
leveraging comprehensive datasets and ensuring data privacy (Figure 2). Additionally, we suggest 
implementing an ANN as the ML algorithm within the FL framework. To assess the effectiveness of this 
approach, our study compares the performance of the developed ML models under various scenarios.  

 

  

Figure 2. The proposed model for predicting Utah culvert conditions based on FL 



8 | Page 
 

3.1 Data Collection and Preparation  

To address the data scarcity in Utah’s culvert inspection records, we extended our data collection to 
include culvert inventories from five additional states: Colorado, Vermont, New York, Massachusetts, 
and Ohio. These states contributed the following number of culvert records: 766 from Colorado, 3,884 
from Vermont, 1,050 from New York, 417 from Massachusetts, and 1,851 from Ohio. Since these states’ 
DOTs have made their culvert data publicly available, we accessed these datasets through ArcGIS 
websites and open data portals. These states were selected based on their data availability and the 
similarity of their culvert features to those in Utah. Key similarities included the presence of essential 
physical attributes in the culvert inventories, such as structure type, shape, length, year of installation, and 
inspection dates. Any inventories missing these key characteristics were excluded from the analysis. 
Furthermore, the inspection protocols followed by these states often adhered to, or were adaptations of, 
the National Association of Sewer Service Companies (NASSCO 2001) guideline. This guideline 
established a common framework for assessing pipe or culvert conditions and facilitated data 
preprocessing. 

However, note that the inspection data from these states did not follow a standardized manual. To resolve 
this issue, we applied a data preprocessing method. This preprocessing approach is analogous to data 
preprocessing in centralized learning. Key steps involved adjusting categorical features to ensure 
consistency across datasets and standardizing target labels. Specifically, we standardized the culvert 
rating scales (target labels) from the different states to match Utah’s 5-point rating system. This required 
converting the 9-point scale used by Colorado DOT, Vermont’s 7-point scale, Ohio DOT’s 9-point scale, 
New York DOT’s 7-point scale, and Massachusetts DOT’s 10-point scale to align with UDOT’s rating 
system. To ensure the conversion was accurate, we conducted a thorough analysis comparing the 
inspection criteria of these states with UDOT’s standards. Refer to Table 2 for a detailed explanation of 
how each state’s rating scale was mapped to UDOT’s system. 

Table 2. Rating scales standardization 

UDOT Minor Defects 
(5) 

Moderate 
Defects (4) 

Significant 
Defects (3) 

Major Defects 
(2) 

Critical Defects 
(1) 

CDOT & 
ODOT 9 & 8 7 6 4 & 5 1 & 2 & 3  

VTrans Excellent Good & Fair Poor Critical Urgent & 
Closed 

NYSDOT 7 6 & 5 4 3 0 & 1 & 2 

MASSDOT 9 & 8 7 6 5 0 & 1 & 2 & 3 
& 4 

 

  

The final dataset used to develop the ML models comprised inspection data for 8,240 culverts sourced 
from the inventory databases of six different states. This dataset was divided into two main categories of 
variables: physical features, which were directly available in the inventories, and environmental features, 
which were added to enrich the data. The physical features included key culvert properties such as 
material, shape, length, installation year, inspection year, and geographic coordinates (longitude and 
latitude). These structural and historical details were directly extracted from each state’s culvert inventory 
databases. 
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In addition to the physical features, we supplemented the dataset with environmental features that were 
not initially included in the culvert inventories. Specifically, soil-related properties, such as soil pH, 
drainage class, moisture content, electrical conductivity, and flooding frequency, were collected from the 
USDA’s Web Soil Survey database (Soil Survey Staff, Natural Resources Conservation Service n.d.). 
Using ArcGIS, we extracted and compiled the soil data before integrating those data with the culvert 
records. By incorporating these environmental factors, we enriched the multi-state inspection data, 
creating a more comprehensive feature set for building ML models that can generalize across diverse 
geographical regions. After completing the data preprocessing, the final set of variables used for model 
development is presented in Table 3. 

Table 3. Variables considered for the model development 
Variables Target Label   

Environmental  
features 

Soil pH    

Culvert condition 
rating    

Soil drainage class    
Soil moisture    
Soil electrical conductivity    
Flooding frequency   

Physical  
features 

Culvert installation year    
Culvert structure    
Culvert shape    
Culvert length    
Culvert inspection date   

 

3.2 Model Development   

To address the challenge of limited data availability in UDOT’s culvert dataset, we proposed leveraging 
FL as a strategic solution. FL enables multiple agencies or regions to collaboratively train ML models 
without the need to exchange raw data, thereby preserving data privacy while expanding the effective 
training dataset. To demonstrate the efficacy of this approach, we plan to develop and compare four ML 
models: three centralized models built using ANNs trained on a single or fused dataset, and one federated 
model that distributes training across decentralized nodes. This comparison will allow us to evaluate the 
performance gains and practical benefits of FL in addressing data scarcity while maintaining privacy 
standards. 

3.2.1 Artificial Neural Network (ANN) 

ANN is an ML algorithm inspired by the structure and function of the human brain, designed to replicate 
the communication processes between biological neurons. ANNs consist of interconnected nodes, known 
as artificial neurons, organized in a layered structure. Typically, an ANN includes an input layer, multiple 
hidden layers, and an output layer, as shown in Figure 3. Each connection between neurons is assigned a 
weight that determines the influence of one node on another. These weights are updated during the 
model’s training process to produce accurate outputs (Mohammadi, Rashidi, et al. 2023; Hassandokht 
Mashhadi, Rashidi, and Marković 2024). The core operation of a neuron is based on a weighted sum of its 
inputs, which is then passed through an activation function. This can be expressed mathematically as: 
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Here, 𝑦𝑦𝑖𝑖 represents the output vector, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑 is the input vector with 𝑑𝑑 dimensions of features, 𝜔𝜔𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑 
is the model’s parameter vector (including weights and biases), and f denotes the activation function. By 
using activation functions such as sigmoid, tanh, or ReLU, non-linearity is introduced into the model, 
allowing it to capture complex patterns in data (J. Li et al. 2022). 

ANNs have proven highly effective in modeling intricate relationships with minimal programming and 
have been widely applied in civil engineering. Notable applications include predicting formwork pressure 
in self-compacting concrete, estimating work zone capacities, and forecasting the lateral capacity of 
monopiles (Gamil et al. 2023; Mashhadi, Markovic, and Rashidi 2022; Taherkhani, Amir Hosein, Mei, 
and Fei 2023). The ANN architecture employed in this study for model development is illustrated in 
Figure 3. To improve the model’s capacity to learn complex non-linear relationships, we incorporated the 
ReLU activation function between layers. The model’s parameter vector (𝜔𝜔) was optimized by fitting the 
output (𝑦𝑦𝑖𝑖) to the cross-entropy loss function (ℓ(. , . )). The objective function for the multi-class 
classification ANN model developed in this study is represented as follows: 

𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝒏𝒏𝛚𝛚∈𝑹𝑹𝒅𝒅𝓛𝓛(𝛚𝛚) = �𝓵𝓵(𝒇𝒇(𝒙𝒙𝒊𝒊),𝒚𝒚𝒊𝒊)
𝒏𝒏

𝒊𝒊

 

Where 𝑖𝑖𝑡𝑡ℎ data sample is part of the dataset 𝐷𝐷, which consists of 𝑛𝑛 data points. 

 
Figure 3. The developed ANN’s architecture 

3.2.2 Federated Learning (FL) 

FL represents a modern shift in ML, enabling distributed collaboration among multiple participants. 
Rather than exchanging raw data, each participant trains a model on its own dataset and shares only the 
learned parameters. These updates are then aggregated to form a comprehensive global model (T. Li, 
Sahu, Talwalkar, et al. 2020). This method supports various ML techniques, including but not limited to 
decision trees, logistic regression, and ANNs. In this research, we employed ANNs due to their high 
effectiveness in prediction tasks, suitability for multiclass problems, and seamless integration with the 
Flower framework. Flower is an open-source platform designed specifically to support federated systems, 
allowing customization through different algorithms and optimization techniques (Beutel et al. 2020). Our 
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choice of ANNs within this ecosystem was reinforced by their proven performance across numerous 
academic studies (Goto et al. 2023; Senapati et al. 2023). 

When analyzing FL more deeply, it can be classified based on how the data are distributed among 
participants. There are three primary types: horizontal FL, vertical FL, and federated transfer learning 
(FTL). Horizontal FL, also known as data parallelism, is applied when all participants possess the same 
set of features but work with different samples. A common use case might involve smartphones collecting 
keyboard data from different users to improve next-word prediction models. Each client uses the same 
model architecture and training parameters. This setup improves generalization by learning from diverse 
data while ensuring privacy by keeping personal information on-device. Conversely, vertical FL arises 
when participants have different features but share data samples. For example, one organization may 
collect demographic information while another holds purchasing records for the same individuals. This 
arrangement allows models to benefit from complementary feature sets while upholding privacy by 
separating the data attributes. Lastly, FTL is used when there is both feature and sample heterogeneity. 
This method typically involves using a model pre-trained on a related task, which is then fine-tuned 
locally at each node, such as IoT devices or smartphones. This approach offers quicker training times, 
eliminates the need to start from scratch, and provides customization based on localized datasets (L. Li et 
al. 2020; Yang et al. 2019). In our study, since DOTs maintain similar data structures but differ in the 
records they collect, we adopted horizontal FL as the most appropriate model. 

The neural network structure and the loss function employed within the FL setup mirrored those used in 
the centralized ML models to ensure consistency in comparison. For the FL implementation, we adopted 
Federated Averaging (FedAvg) as our foundational algorithm, detailed in Algorithm 1. FedAvg is widely 
recognized for its straightforward design and strong performance in aggregating model updates across 
multiple distributed participants (L. Li et al. 2020). The process begins with a central coordinator 
initializing a global model (ω₀) and sharing it with a randomly selected group of participating clients (Sₜ). 
Each client then trains the model using its own private dataset (Dₙ), and upon completion, returns the 
updated parameters (ωₜⁿ) along with the number of local training samples. The server then updates the 
global model (ωₜ₊₁) by computing a weighted average of the local contributions, factoring in the size of 
each client’s dataset. This newly updated model is redistributed for the next training iteration. The 
training cycle continues until the model achieves satisfactory performance. This method ensures that each 
client’s influence on the global model is proportional to the volume of data it holds, enabling balanced 
and privacy-preserving learning across the network. 

To evaluate the performance of our ML models on unseen data, we adopted a hold-out cross-validation 
approach. This technique involves splitting the dataset into two separate portions: one for model training 
and the other for testing its generalization ability (Mohammadi et al. 2025). Specifically, we allocated 
80% of the data for training and the remaining 20% for testing. In the centralized learning setup, this 
process occurs in a unified environment where the entire model is trained and validated in a single 
location. However, implementing hold-out cross-validation in an FL context requires modifications due to 
the decentralized nature of training. In FL, each participant retains a portion of their local data for testing 
and uses the rest to train the shared model. Once local evaluations are completed, performance metrics 
such as accuracy and precision are collected from each agent and averaged to estimate the overall 
effectiveness of the global model. A detailed overview of the key steps and logic behind our FL setup is 
provided in the accompanying pseudo-code. 
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Algorithm 1: Federated Averaging Algorithm (FedAvg) 
Input: Number of agents (𝑁𝑁), Local datasets (𝐷𝐷𝑛𝑛), the strategy of the framework, including the number of 
communication rounds (𝑚𝑚), the fraction of agents on each round (𝑠𝑠), the number of local epochs (𝐸𝐸), 
learning rate (𝜂𝜂), optimization function (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), and local mini-batch size (𝐵𝐵).   
Output: updated parameters of global ANN model (𝜔𝜔), ANN model’s performance metrics (𝑝𝑝) 
Server Execution: 

 Initialize global neural network model (𝜔𝜔0) 
 for round t = 1, 2, …, 𝑚𝑚 do 

   𝑆𝑆𝑡𝑡 ← random subset of  𝑚𝑚𝑚𝑚𝑚𝑚(s × N, 1) branches to participate in the training 
   Distribute 𝜔𝜔0 to all agents in  𝑆𝑆𝑡𝑡 
   for each agent 𝐷𝐷𝑛𝑛 ∈ 𝑆𝑆𝑡𝑡 in parallel do 

  Initialize 𝜔𝜔𝑡𝑡
𝑛𝑛 = 𝜔𝜔0 

  ω𝑡𝑡
𝑛𝑛
+1,𝑝𝑝𝑡𝑡𝑛𝑛 ← Agent_Update (𝐷𝐷𝑛𝑛,ω𝑡𝑡

𝑛𝑛) 
   end 

 ω𝑡𝑡+1 ←
1

|{𝑆𝑆𝑡𝑡}|
∑𝐷𝐷𝑛𝑛∈𝑆𝑆𝑡𝑡 ω𝑡𝑡

𝑛𝑛
+1 

𝑝𝑝𝑡𝑡 ← ∑𝐷𝐷𝑛𝑛∈𝑆𝑆𝑡𝑡
|𝐷𝐷𝑛𝑛|

∑𝐷𝐷𝑛𝑛∈ 𝑆𝑆𝑡𝑡|𝐷𝐷𝑛𝑛| × 𝑝𝑝𝑡𝑡𝑛𝑛  

  end 

Agent Execution: 
Agent_Update (Dn,  ω): 

  𝐷𝐷𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐷𝐷𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ←  Split 𝐷𝐷𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
  for epoch e = 1, 2, …, E do 

  ℬ𝓉𝓉𝓉𝓉𝓉𝓉𝓉𝓉𝓉𝓉 ← Split Dn
train into batches of size 𝐵𝐵 

  for batch 𝑏𝑏 ∈ 𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 do  
  ω ← ω− η�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(ω;𝑏𝑏)� 

  end  
  end 
  ℬ𝓉𝓉est ← Split 𝐷𝐷𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 into batches of size 𝐵𝐵 
  for batch 𝑏𝑏 ∈ 𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 do 

  𝑝𝑝𝑏𝑏 ← calculate the model’s performance on the agent’s test set 

  end 
  𝑝𝑝 ←  ∑𝑏𝑏 ∈ 𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  |𝑏𝑏|

|𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|  × 𝑝𝑝𝑏𝑏
  return ω, p to server 



4. RESULTS AND DISCUSSION 

Recent advancements in artificial intelligence have sparked growing interest among transportation 
departments in integrating these tools, particularly predictive ML models, into their infrastructure asset 
management workflows. Despite this enthusiasm, the implementation of ML has been hindered by data 
limitations and concerns surrounding data confidentiality. To navigate these challenges, our study 
explored using FL as a decentralized solution for building predictive models targeting infrastructure 
condition assessment. We applied this method to culvert inspection practices in Utah, where the available 
dataset was insufficient in size and coverage. To overcome this limitation, we incorporated culvert data 
from other state DOTs using the FL approach, which enabled collaborative training without 
compromising data privacy. To benchmark the performance of FL, we also developed three centralized 
ANN-based models: Utah-CL (trained solely on Utah’s dataset), Utah-SMOTE (trained on Utah’s data 
augmented with synthetic samples), and ALL-CL (trained on a fused dataset from six states). We 
evaluated all models using standard performance indicators such as accuracy, precision, recall, F1 score, 
and total loss. As illustrated in Figure 4, the federated model (ALL-FL) consistently outperformed both 
Utah-CL and Utah-SMOTE across all metrics, achieving a 30.4% improvement in accuracy over Utah-
CL. Although the centralized ALL-CL model achieved the highest accuracy, the ALL-FL model followed 
closely, attaining approximately 96% of its performance, highlighting FL’s strong viability and promise 
in transportation infrastructure analytics. 

Figure 4. The comparison of classification reports for three ML models: ALL-CL (representing a 
centralized learning model based on all six datasets fused), FL (representing a federated 
learning model using six datasets), Utah-CL (a centralized learning model based on only the 
Utah dataset), and Utah-SMOTE (a centralized learning model based on Utah dataset 
augmented with synthetic data using SMOTE) 
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With a precision of 65.5%, the ALL-FL model outperforms both the Utah-CL and Utah-SMOTE models 
while coming close to the centralized benchmark, ALL-CL. Specifically, ALL-FL falls just 9.5 
percentage points below ALL-CL’s 74% precision but exceeds Utah-CL’s 39% by a notable 26.5%. 
Compared with Utah-SMOTE, which achieved a precision of 47%, ALL-FL demonstrated an 18.5% 
improvement. Since precision measures the accuracy of positive predictions for each class, ALL-FL’s 
strong performance highlights its reliability, being over 1.5 times more precise than the Utah-CL. 
Regarding recall, the ALL-FL achieved 47.1%, placing it again between ALL-CL (70%) and Utah-CL 
(28%). Although it does not capture as many true instances as the ALL-CL, the model still identifies a 
substantial portion of relevant cases, more than two-thirds of what ALL-CL detects, and clearly 
outperforms Utah-SMOTE, which recorded 33.5%. The F1 score, which reflects a balance between 
precision and recall, reached 48.2% for ALL-FL. While this lags behind ALL-CL’s 71%, it is nearly 
double Utah-CL’s performance, indicating a significant increase in overall predictive balance. Utah-
SMOTE’s F1 score, meanwhile, lies between those of Utah-CL and ALL-FL, further reinforcing the 
latter’s advantage. In terms of loss, a metric indicating the deviation between predictions and actual 
outcomes, the ALL-FL achieved a score of 0.639. This is substantially closer to the ALL-CL’s lower loss 
of 0.403 than to Utah-CL’s much higher 2.94, demonstrating FL’s strength in maintaining prediction 
accuracy without data centralization. Interestingly, although Utah-SMOTE outperformed Utah-CL across 
precision, recall, and F1, its loss was higher, suggesting significant prediction errors in certain class 
distributions. This disparity may indicate inconsistencies in the ability of synthetic data to represent 
complex class relationships. 

When focusing on accuracy, a primary benchmark in most ML evaluations, the results strongly favor 
FL’s potential. The ALL-FL model achieved nearly 96% of the accuracy recorded by the centralized 
ALL-CL model, despite not having direct access to the fused dataset. This highlights FL’s remarkable 
ability to deliver near-equivalent performance while preserving data locality and privacy. For UDOT, this 
is particularly impactful; the ALL-FL model effectively bridges the performance gap between Utah-CL 
and ALL-CL. In terms of loss, FL closed more than 78% of the disparity and filled the gaps in accuracy 
and precision by 12% and 75%, respectively. This makes FL a practical solution for limited data and a 
competitive alternative to centralized learning. 

Figure 5 further illustrates the advantage of the ALL-FL model by comparing the confusion matrices. In 
contrast to Utah-CL, which failed to identify any culverts in class 1, the ALL-FL model demonstrated 
outstanding performance by achieving a 97% recall for this critical class. This result even exceeded the 
performance of both Utah-SMOTE and ALL-CL for class 1. Although Utah-SMOTE improved the recall 
for class 1 to 50%, it was still far behind the recall achieved by ALL-FL. However, class 2 prediction 
remained a challenge for the ALL-FL model, mainly due to the absence of class 2 samples in the Ohio 
dataset. As a result, nearly half of the class 2 culverts were incorrectly classified as class 1, indicating a 
cautious yet safer misclassification pattern. In contrast, the Utah-CL model misclassified all class 2 
culverts as class 4, a more problematic outcome. Interestingly, the centralized ALL-CL model also 
struggled with class 2, reinforcing the need for more balanced datasets across states. While Utah-SMOTE 
showed improvement in minority class predictions, it also introduced increased misclassification in 
majority classes like class 4. It suggests that although data augmentation boosts recall for 
underrepresented categories, it may inadvertently compromise precision in dominant ones. Still, from a 
practical standpoint, where correctly identifying high-risk culverts is more crucial than perfect 
classification of less critical ones, such trade-offs can be justified. Nonetheless, the superior balance and 
generalization achieved by the ALL-FL model underscore its value in settings with limited but privacy-
sensitive datasets. 
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Figure 5. Confusion matrices of ALL-FL, ALL-CL, Utah-SMOTE, and Utah-CL models 

This study successfully addressed its primary objectives by comprehensively developing and evaluating 
FL models for culvert condition prediction. First, to assess the feasibility of FL under data-limited 
conditions, we simulated real-world scenarios where UDOT had access only to a small local dataset while 
leveraging FL to train models with other DOTs’ data collaboratively. The FL model effectively learned 
from distributed data sources without requiring direct data sharing, confirming its applicability in sparse 
data environments. Second, the performance of the FL models was rigorously compared with traditional 
centralized ML models trained on both local (Utah-CL) and fused datasets (ALL-CL), as well as with a 
synthetic data augmentation approach (Utah-SMOTE). The results demonstrated that FL consistently 
outperformed the local and augmented models and closely matched the accuracy and reliability of the 
centralized model trained on a fused dataset. Lastly, we quantified the privacy benefits of FL by 
illustrating that model training was accomplished without transmitting raw culvert data between agencies, 
thereby preserving compliance with data privacy standards such as GDPR and CCPA. This approach 
validated FL as a privacy-preserving and technically effective solution for enhancing UDOT’s culvert 
inspection planning framework. Beyond privacy, the FL framework distributes computational demands 
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across participating nodes, reducing the strain on centralized servers and offering a more scalable and 
cost-efficient solution for infrastructure asset management. 

This approach facilitates the creation of more generalized and robust predictive models, even without 
a centralized dataset. UDOT can implement the developed FL framework as a strategic tool to enhance 
the efficiency and effectiveness of its culvert inspection planning process. By collaborating with other 
state DOTs through the FL infrastructure, UDOT can continuously improve its predictive models using 
external data without compromising data privacy. This allows UDOT to make data-driven decisions even 
with its limited internal culvert inspection records. The FL model can help prioritize inspections by 
identifying high-risk culverts based on predicted deterioration patterns, enabling proactive maintenance 
actions before failures occur. Integrating this model into existing GIS platforms or asset management 
systems allows for seamless visualization and scheduling of inspections across the network. Additionally, 
FL reduces reliance on resource-intensive traditional inspections by narrowing the focus to critical assets, 
optimizing budget allocation and minimizing traffic disruptions. Over time, as more agencies participate 
and share model updates, the collective accuracy and robustness of the system will improve, further 
empowering UDOT to maintain its infrastructure efficiently.
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5. CONCLUSIONS AND RECOMMENDATIONS 

The quality and quantity of local datasets significantly influence the effectiveness of ML models. 
This study presents an innovative solution to the challenges posed by limited local data when building 
predictive models for critical transportation infrastructure components such as culverts. Culverts often 
receive fewer inspections, which leads to data scarcity and avoids implementing proactive maintenance 
strategies, ultimately posing risks to their structural integrity and longevity. Our case study centered on 
UDOT, where culvert inspection data proved insufficient for developing a reliable ML model. We 
proposed an FL framework to address this limitation by integrating culvert data from five additional state 
DOTs: Colorado, New York, Vermont, Ohio, and Massachusetts. 

The results underscore FL’s capacity to deliver strong predictive performance for culvert condition 
classification while maintaining strict data privacy and compliance with data-sharing policies across 
jurisdictions. Unlike centralized learning, FL allows each state to retain its data and contribute only model 
parameters to a shared global model. Our FL-based model significantly outperformed the model trained 
solely on UDOT’s dataset, demonstrating the advantage of this collaborative, privacy-preserving learning 
method. Although it did not surpass the accuracy of the centralized model trained on the fully fused 
dataset (ALL-CL), its performance came remarkably close, achieving 80.4% accuracy compared with 
ALL-CL’s 84.1%, or approximately 96% of its performance.  

We also experimented with SMOTE to improve class representation. The Utah-SMOTE model 
outperformed the basic Utah-CL model in terms of precision, recall, and F1 score, particularly in 
identifying underrepresented classes. However, this enhancement came at the cost of reduced overall 
accuracy and increased loss due to misclassification in the majority classes. While SMOTE effectively 
addressed class imbalance, it did not match the balanced performance achieved by the ALL-FL model, 
which better generalized across both frequent and rare classes while upholding privacy protections. 

Our findings demonstrated the potential of FL as an innovative, privacy-preserving, and effective solution 
for improving culvert condition prediction in data-scarce environments. By addressing the limitations of 
traditional centralized ML and data augmentation methods, the FL framework enabled UDOT to build 
accurate predictive models without requiring access to external raw datasets. The results confirmed that 
FL maintains strong predictive performance and ensures compliance with data privacy regulations, 
making it a practical alternative for agencies constrained by data availability and sharing restrictions. 
Implementing this FL-based approach equips UDOT with a scalable tool for prioritizing culvert 
inspections more efficiently, allowing for proactive maintenance planning, reduced infrastructure risk, 
and optimized use of limited resources. This research provides a foundation for future collaboration 
among DOTs and paves the way for integrating FL into broader transportation asset management 
systems. 
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5.1 Limitations and Recommendations 

• Feature Standardization Across States: The use of horizontal FL required uniform features across 
all datasets, leading to the exclusion of certain variables due to inconsistencies. This may have 
limited the model’s potential. We suggest exploring alternative FL approaches, such as FTL, 
which can accommodate varying feature sets while supporting model generalization. 

• Data Imbalance: All models, whether centralized or federated, faced challenges related to 
imbalanced class distributions. This led to discrepancies between accuracy, precision, and recall. 
Future studies could benefit from expanding dataset sizes or incorporating balancing techniques 
to improve robustness. 

• Model Optimization: Further exploration of optimization algorithms could enhance the 
performance of FL models. Fine-tuning hyperparameters and adopting advanced federated 
optimization techniques may help narrow the performance gap with centralized models. 

• Incorporating More State Inventories: Broadening the scope of participating DOTs would likely 
improve model generalizability and performance metrics, as more diverse data could help capture 
varied culvert conditions. 

• Wider Applications of FL in Infrastructure: The success of FL in this study opens the door for 
applying this framework to other infrastructure assets, such as road pavements, bridges, or 
railway components, especially in cases where data sharing is constrained but predictive 
modeling is needed. 
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