
Characterization of 
Transit Ride Quality

August 2016

prepared for 

US DOT

 
prepared by

Raj Bridgelall 
Jill Hough 

Leonard Chia 
 

North Dakota State University 
Upper Great Plains Transportation Institute 

Small Urban and Rural Transit Center



 

 

Characterization of Transit Ride Quality 

 

 

 

Prepared for: 

 

U.S. Department of Transportation 
 

Prepared by: 

 

Dr. Raj Bridgelall (PI) 

Dr. Jill Hough 

Leonard Chia 

 

Upper Great Plains Transportation Institute 

North Dakota State University 

Fargo, North Dakota 
 

 

Final Report 

 

21177060-NCTR-NDSU09 

 

August 2016 

 

 

 

 

 

National Center for Transit Research 

 

A USDOT Transit-focused University Transportation Center consortium led by  

University of South Florida 

 

4202 E. Fowler Avenue, CUT100, Tampa FL 33620-5375     www.nctr.usf.edu 

 

Member universities: University of South Florida, North Dakota State University,  

University of Illinois at Chicago, Florida International University 
 

http://www.nctr.usf.edu/


 

 

Acknowledgements 
 

The authors wish to thank Julie Bommelman (Transit Administrator of the City of Fargo), James Gilmour 

(Planning Director of the City of Fargo), and Gregg Schildberger (Senior Transit Planner for the City of 

Fargo) for their support in getting access to the buses for roughness measurements and to conduct 

surveys. Our gratitude also goes out to the following reviewers who helped to improve the clarity and 

value of this report: Kirk Burcar (Director of Production Engineering at New Flyer – a bus manufacturer), 

Dr. Nima Kargah-Ostadi, P.E. (Research Engineer at Fugro Roadware Inc. – a leading automated 

pavement ride quality evaluation company in the United States), Todd Belvo (Engineering Manager at 

BWI North America – a premier supplier of vehicle chassis, suspension, brakes, and other automotive 

parts to manufacturers), Eric Beaton (Senior Director of Transit Development for the New York City 

Department of Transportation), and Dr. Marcela Munizaga (Associate Professor at the University of Chile 

and President of the Chilean Society of Transportation Engineering). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Disclaimer 
 

The contents of this report reflect the views of the authors, who are responsible for the facts and the 

accuracy of the information presented. This document is disseminated under the sponsorship of the 

Department of Transportation, University Transportation Centers Program, in the interest of information 

exchange. The U.S. Government assumes no liability for the contents or use thereof. 

NDSU does not discriminate in its programs and activities on the basis of age, color, gender expression/identity, genetic information, marital status, national origin, 
participation in lawful off-campus activity, physical or mental disability, pregnancy, public assistance status, race, religion, sex, sexual orientation, spousal relationship 
to current employee, or veteran status, as applicable. Direct inquiries to Vice Provost for Title IX/ADA Coordinator, Old Main 201, NDSU Main Campus, 701-231-
7708, ndsu.eoaa.ndsu.edu. 

 

mailto:ndsu.eoaa@ndsu.edu


 

 

ABSTRACT 

Strategies often proposed to combat the growing traffic congestion problems of urban environments target 

enhancements to increase the use of bus transit. Therefore, service providers are keen to identify and 

understand factors that could attract more transit riders. Other than affordability, most researchers 

explored convenience and stress factors such as schedule uncertainty, waiting time, travel time, crowding, 

noises, and smells. However, few studies evaluated the significance of ride quality. The high cost to 

collect and analyze roughness data likely deters such studies. This work developed a low-cost smartphone 

based method and associated data transforms to characterize ride quality for non-uniform speed profiles. 

The method distinguished between vibrations induced from road unevenness and operator behavior. The 

authors validated the accuracy of the method by conducting surveys to characterize the perceived 

roughness intensities from buses traveling routes of distinctly different roughness levels. The surveys 

found that smooth rides mattered to most passengers, and that rough rides could even lead to some loss of 

ridership. Additionally, the authors proposed a theory of roughness acclimation and provided some 

evidence that unlike objective measurements, subjective assessments of ride quality could lead to 

significant biases and inconsistencies.  
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EXECUTIVE SUMMARY 

The United Nations projected that by 2050, most of the world’s population will shift from rural to urban 

areas. Subsequently, urbanization will continue to challenge planners as the associated levels of traffic 

congestion increases. Planners often point to service enhancements of bus transit as an effective strategy 

to combat the growing traffic congestion problems of urban environments. As such, transit service 

providers wish to identify and understand the significance of factors that could attract more transit riders 

before investing resources to add capacity. Researchers often identify affordability, accessibility, 

convenience, and stress as factors that affect the choice of public transit. The latter two factors include 

parameters such as the uncertainty of schedules, waiting time, travel time, crowding, noises, and smells. 

However, few studies evaluated the significance of ride quality. 

The high cost to collect and analyze roughness data is a likely deterrent to ride quality evaluations. In 

particular, deployments of existing high-speed instrumentation to measure roughness in urban 

environments, such as inertial profilers, are impractical because of the stop-and-go conditions. To address 

the affordability and scalability issue, this study developed a low-cost smartphone based method and 

associated data transforms to characterize ride quality, for any speed profile. The approach is transferrable 

to connected vehicles by using the same method to transform their inertial, velocity, and geospatial 

position data. The method distinguished between vibrations induced from road unevenness and operator 

behavior. The theories developed also quantified the vehicle impact factors. Those are the relative 

abilities of different vehicles to absorb inertial excitations. The authors validated the accuracy of the 

method by conducting surveys to characterize the perceived roughness intensities from buses traveling 

four routes of distinctly different roughness levels. 

The surveys found that smooth rides mattered to most passengers. In fact, a noteworthy portion (21%) of 

the passengers who perceived the ride to be rough would consider other modes of transportation. Hence, 

even though a majority of the riders were captive in this case study, many felt that rough rides could be a 

deterrent to choosing bus transit. Comfort was the top reason provided as a reason for the importance of a 

smooth ride. Additionally, the authors proposed a theory of roughness acclimation and provided initial 

evidence that unlike objective measurements, subjective assessments of ride quality could lead to 

significant biases and inconsistencies. Given the implications of this finding, the authors wish to conduct 

future research that will extend the experiment and sample sizes to additional roadways and urban 

settings. Statistics of the data collected using the objective means of ride quality characterizations 

developed in this research provided strong evidence that the mean of the measured values adequately 

estimated the ride quality experienced. In particular, the application of classical statistical tests for a 

normal distribution, and the relatively low margins-of-error obtained with sample sizes greater than 30 

indicated that the estimates of ride quality will become increasingly consistent with greater data volume. 

This result points to connected vehicles as the ideal framework to integrate this approach because of the 

large and continuous data volumes anticipated. 

The results of this research will provide agencies with a low-cost framework and tools to assess 

continuously the ride quality of transit services. Such assessments can inform decisions about operator 

training, equipment maintenance, and ridership enhancement programs. Smart city initiatives that urge 

urban planning practices to integrate diverse data sources and ideas from different agencies to realize 

synergies across the entire multimodal system will particularly benefit. For example, transit agencies can 

provide a connection from the ride quality database to highway asset management platforms. Such 

initiatives would allow highway agencies to leverage transit ride quality data for optimized urban 

roadway maintenance planning, and the prioritization of remediation needs. Subsequently, smoother roads 

will reduce vehicle operating costs, decrease roadway maintenance costs, and enhance the ride quality for 

all travelers.
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1. INTRODUCTION 

Growing urban populations and the increasing levels of congestion in most cities worldwide encourages a 

search for solutions that would increase the use of public transit. Hence, urban planners and their 

stakeholders aim to identify the factors that could amplify a mode shift towards public transit. 

Conversely, factors that could deter the frequent use of public transit by contributing to negative 

perceptions of personal comfort and well-being are also of significant interest. In general, most studies of 

transit ride quality focused on convenience and stress factors such as schedule uncertainty, waiting time, 

travel time, crowding, noises, and smells (Dunlop, Casello and Doherty 2015). Very few studies 

evaluated ride roughness to quantify its significance as a potential deterrent to using public transit. 

Transit ride quality is not a well-defined term in the literature. It could encompass a wide variety of 

factors such as the type and quality of onboard services, interior aesthetics and furniture design, road 

disturbances, operator behaviors, and characteristics of the vehicle dynamic responses. The Federal 

Highway Administration (FHWA) long recognized roughness as the most important measure of ride 

quality because it is the characteristic that is most evident to the traveling public (Perera, Byrum and 

Kohn 1998). This study added lateral and longitudinal accelerations to account for roughness induced by 

operator behaviors, and from anomalies that impact only one side of a vehicle. Therefore, this study 

aligns with the FHWA definition to focus on roughness as a dominant aspect of transit ride quality. 

Very little is known about the impact of road roughness on transit ride quality or the level of importance 

that transit users place on experiencing a smooth ride. The lack of ride roughness data for local and urban 

roads may have been one reason for the scarcity of such studies. Existing methods of obtaining ride 

roughness data is expensive. They require expert practitioners and laborious data processing by trained 

personnel. Most agencies use specially instrumented vehicles called inertial profilers to measure the 

elevation profile of the road surface. Special vehicle models then convert that data into a standard 

measure of ride quality called the international roughness index (IRI). Inertial profilers must travel at a 

relatively constant speed to collect good data quality to use the model effectively. Hence, agencies tend to 

avoid ride quality characterizations of local and urban roads because stop-and-go conditions tend to ruin 

the elevation profile measurements (Karamihas 2016). 

Another factor that may have limited transit ride quality studies in the past was the conventional thinking 

that bus transit agencies do not influence decisions in other agencies to prioritize the repair of rough 

roads. However, the proliferation of smart city initiatives worldwide is changing that mindset. Smart city 

initiatives encourage integrated multimodal transportation planning that involves agencies across various 

domains of the planning process (USDOT 2015). Smart city developments benefit from integrated and 

collaborative decision-making among different transportation agencies to identify synergies, reduce costs, 

and promote safety across the multimodal and intermodal system. Hence, governments at all levels have 

been encouraging and funding innovative approaches to develop transportation solutions that integrate 

multiple modes of travel to address the mobility needs of growing urban populations. Subsequently, 

transit agency inputs are becoming more critical to the urban planning processes, especially when they 

involve transit oriented developments (Dittmar and Ohland 2012).  

One of the first studies on transit ride experiences found that the subjective rating of ride comfort was 

highly correlated to the frequency and level of vibrations experienced (Park 1976). A later study 

established that there is a strong linkage between transit ridership and the perception of service quality in 

terms of comfort (Benjamin and Price 2006). However, roughness was not specifically evaluated as a 

comfort factor. With respect to ridership retention or enhancements, at least one study established that 

poor ride quality was a major issue of customer concern (Peterson and Molloy 2007). In addition to the 

potential impact on transit ridership, rough roads affect vehicle operating costs (Abaynayaka, et al. 1976).  



2 

 

That is, road roughness can increase bus repair and maintenance costs by more than 30% (Dreyer and 

Steyn 2015), and increase vehicle fuel consumption by as much as 5 percent (Klaubert 2001). 

The main purpose of this research was to quantify the level of importance of a smooth ride and to 

determine the degree to which rough rides could deter the frequent use of public bus transit. The approach 

utilized was to develop an objective means of measuring the bus ride quality, and to compare those 

measurements to subjective perceptions of roughness. Therefore, the objectives of this research were to: 

1. Develop a new method of objectively measuring the total ride quality (TRQ) of transit services as 

they operate normally at non-uniform speeds  

2. Identify and measure the TRQ of four bus transit segments with distinct differences in roughness 

levels 

3. Survey the perceived level of ride quality on select segments of the bus routes 

4. Assess the level of importance of a smooth bus ride 

5. Develop a theory that explains the relationships observed between the perceived levels of 

roughness and the objective measurements 

Figure 1.1 provides an overview of the study approach. A smartphone aboard the buses collected inertial, 

velocity, and geospatial position data. A post-processing algorithm converted the data into the roughness 

components needed to compute the total ride quality (TRQ). The roughness components are road impact 

factors (RIFs), driver impact factors (DIFs), and vehicle impact factors (VIFs). Quantification of the VIF 

requires data collection from a reference vehicle, such as a passenger sedan. 

 

 

Figure 1.1  Overview of the Transit Ride Quality Study 

The approach is transferrable to connected vehicles by using the same method to analyze their inertial, 

velocity, and geospatial position data. Practitioners can use this framework to visualize the data by 

overlaying color-coded TRQ values onto maps of the routes by using any suitable geographic information 

system (GIS) platform. Hence, transit agencies can use such a tool to help optimize bus maintenance 

timing and driver training programs. As part of the smart cities mindset, transit agencies can provide links  
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to the data sources so that roadway agencies can use the ride quality data to forecast maintenance needs 

and to prioritize road repairs. 

The remainder of this report is organized into 5 additional sections. Section 2 summarizes the literature 

review that focused on methods of ride quality characterizations. Section 3 establishes the theory of ride 

quality characterizations, describes the data collection and processing methods, and explains the design 

and execution of the ride quality perception surveys. Section 4 presents the case study that describes the 

test segments, the test vehicles, and the procedure for data collection and data preparation. Section 5 

presents the results, establishing that smoothness matters to the bus users, and that some users would 

consider alternative modes of transportation when the ride is too rough. Subsection 5.2 presents statistics 

of the roughness measurements for the buses and the reference sedans that establishes high confidence in 

the convergence of the mean. Subsection 5.3 quantifies the total ride quality and vehicle impact factors 

based on the mean values measured in the previous section. Subsection 5.4 compares the perceptions of 

roughness levels to the objectively measured quantities and validates a theory that riders adapt to the 

roughness experienced. Finally, Section 6 provides the conclusions and outlines the future work. 
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2. LITERATURE REVIEW 

This section provides a definition and a historical overview of ride quality characterizations. The section 

describes both subjective and objective methods of roughness characterizations that are currently in use. 

Subjective methods utilize panels of observers to rate ride quality. Conversely, objective methods use 

instrumented vehicles to measure roughness levels. Subjective methods engage the human perception of 

roughness and, therefore lacks consistency. On the other hand, objective methods are more consistent but 

few studies have linked the roughness scale to levels of transit ride comfort or discomfort. This section 

exposes both the advantages and limitations of the prevailing methods, and introduces a theory of 

perception acclimation based on the tendency of humans to adapt. 

2.1. Definition of Ride Quality 

Practitioners use the term ride quality to indicate the degree to which a vehicle protects its occupants from 

factors that decrease ride comfort. Hence, factors that affect ride quality are numerous. They are 

summarized in Figure 2.1. The road impact factors (RIFs) are road surface unevenness and anomalies 

such as potholes, cracks, joints, and utility covers. The driver impact factors (DIFs) are operator behaviors 

such as abrupt braking, rapid acceleration, weaving, and speeding around curves. As shown in Figure 1.1, 

the RIFs and the DIFs can produce motions and noises that cause rider discomfort. The vehicle impact 

factors (VIFs) affect how riders perceive those disturbances. VIF depends mainly on vehicle suspension 

and handling characteristics. However, it is possible to include factors such as furniture design, interior 

aesthetics, and other features that are not within the scope of this study. Together, the RIF, DIF, and VIF 

result in the total ride quality (TRQ) experienced. 

Roughness induced from uneven road surfaces adversely affects ride quality (Deusen 1967) (Brickman, et 

al. 1972). The ASTM E867 standard defines road roughness as “the deviation of a surface from a true 

planar surface with characteristic dimensions that affect vehicle dynamics and ride quality” (ASTM 

1997). Manufacturers design vehicle suspension systems to attenuate vibrations at frequencies that could 

cause human discomfort or affect handling safety. Humans are most sensitive to vibrations between 4 and 

8 Hertz (Griffin 1990). Hence, nearly all suspension systems attenuate vibrations in that frequency range 

(Jazar 2008). This leads to a similarity in the dynamic responses of vehicles. Hence, variations in road 

roughness, driver behaviors, vehicle handling, and suspension design could result in peak vibration levels 

that induce significant levels of discomfort for some riders. 

Highway agencies regularly assess the performance of highway pavements by characterizing their ride 

quality. Regular assessments guide resource allocation strategies and maintenance scheduling.  

To characterize ride quality, agencies consider only the RIF (R. Bridgelall 2014). The RIF is primarily a 

function of the vertical accelerations produced from the vehicle body bounces. The VIF varies with 

vehicle classification and primary function. Therefore, highway agencies use a fixed quarter-car called the 

Golden Car to standardize the VIF used to produce the IRI. Subsequently, the IRI ignores acceleration 

components from DIF and the actual vehicle handling characteristics. Hence, the IRI cannot adequately 

represent the TRQ. Section 3 of this report develops a theoretical foundation of the TRQ that considers all 

aspects of roughness generation and suppression at non-uniform speeds. 
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Figure 2.1  Impact Factors in Ride Quality 

 

2.2. History of Roughness Measurements 

From the earliest times of the first paved roads, society pursued the development of devices to produce 

objective, consistent, and repeatable measures of road roughness. Most of the early developments 

emphasized the RIF while ignoring the DIF and VIF. Surface roughness measurement tools have evolved 

from simple hand-held devices such as straightedge levels to sophisticated onboard computers and lasers 

that can measure elevation profiles at highway speeds. Prior to the 1900s, the sliding straightedge, called 

a Viagraph, was one of the first devices invented to measure surface roughness. It recorded the vertical 

deviations of a center piston (Hveem 1960). The Viagraph was the only instrument available until 1922 

when the State of Illinois invented the Profilometer. It was essentially a straightedge on wheels. All 

straightedge type devices measure the depths below peaks of the roadway that touch the base of the 

device as it slides along the surface. Hence, measurements with such devices are slow and tedious. 

With the introduction of faster moving vehicles, agencies soon became aware that motorists were more 

concerned with ride roughness than actual profile roughness. Around 1926, the State of New York 

developed the Via-Log to measure roughness. A stylus mounted to the front-axle recorded its movements 

relative to the body of the vehicle by marking its relative position on a turning roll of paper. 

Manufacturers later implemented the same concept in different ways through a combination of 

mechanical and electronic methods. Thereafter, practitioners named the category response-type road 

roughness measuring systems (RTRRMS). For repeatable measurements, manufacturers produced trailers 

with standardized mass-spring suspensions such as the Bureau of Public Roads (BPR) Roughometer 

introduced in 1941, and the Mays Ride Meter introduced in the 1960s. Soon thereafter, agencies 

discovered that the mechanical filtering action of a vehicle’s suspension masked some of the RTRRMS 

roughness indicators that straightedge devices would normally report. This discrepancy led to additional 

investigations for improved methods. 

During the early 1960s, the General Motors Research Laboratory (GMRL) produced the first contactless, 

high-speed device that incorporated basic principles of the straightedge (Spangler and Kelley 1966). 

Contactless depth measuring sensors replaced the center piston and the center wheels of straightedge 
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devices. Acoustic sensors initially provided the depth measurement but manufacturers eventually replaced 

those with lasers in the 1990s. The GMRL device became a template for engineers to improve accuracy 

and reduce cost. An important shortcoming, however, was that the tire and suspension system differences 

of vehicles required some method of regular calibration. This challenge spurred considerable research to 

find the best means of calibrating devices to measure ride roughness (T. D. Gillespie 1992). 

In 1982, the World Bank sponsored a series of experiments in Brazil to establish standard processes for 

calibrating and reporting roughness measurements. This event led to the definition of the IRI. The 

standardizing body selected a fixed speed of 80 km/h (about 50 mph) to simulate the responses of a fixed 

quarter-car to the digitized elevation profile (Gillespie, Sayers and Queiroz 1986). Subsequently, 

characterizing ride quality in non-uniform speed environment such as local and urban roads becomes 

impractical (Karamihas 2016). Researchers and organizations has since proposed many other statistics to 

characterize ride roughness. However, the IRI remained the most widely used (ASTM 2015). 

2.3. Subjective Methods of Roughness Characterizations 

The American Association of State Highway and Transportation Officials (AASHTO) conducted road 

testing from 1956 to 1961 in Ottawa, Illinois to define a present serviceability index (PSI). It became the 

first single-number summary of pavement roughness (Carey and Irick 1960). The researchers defined the 

PSI as a regression relation between the output of a roughness-measuring device and the average ratings 

of ride quality from a panel of observers. Purdue University researchers found that at fixed speeds, the 

method provided excellent correlation with panel ratings for rigid pavements but not for flexible 

pavements (Nakamura and Michael 1963). The Kentucky Department of Highways (KDOH) repeated the 

Purdue University experiments at different speeds. They found that the method was nonlinear with speed 

and that the indices for flexible and rigid pavements were uncorrelated (Rizenbergs 1965). 

2.3.1 Perceptions of Roughness 

Researchers have long conducted studies to determine correlations between perceptions of roughness and 

the objective measures of roughness from various devices. For example, researchers found that the root-

mean-square vertical acceleration (RMSVA) obtained from a Mays Ride Meter, which is the difference 

between adjacent slope measurements, was useful in equipment calibration, but unreliable as a predictor 

of panel ratings (Hudson, et al. 1983). Generally, the lack of agreement between various roughness 

measuring devices circumvented the definition of a uniformly accepted single-index characterization of 

roughness until the World Bank defined the IRI in 1982 as a standard, objective measure of roughness 

(Gillespie, Sayers and Queiroz 1986). 

The international standard on human exposure to mechanical vibration and shock (ISO 2631) 

characterizes the effects of roughness on Whole-body vibration (WBV) to create awareness of vibration 

health risks (ISO 2631-1 1997). The standard suggests vertical acceleration limits that others (Cantisani 

and Loprencipe 2010) have translated into road roughness limits in terms of the IRI. However, the 

simplified quarter-car model of the IRI excludes roughness from lateral and longitudinal directions. A 

model that has many more degrees of freedom can simulate roughness is all directions that the user 

experiences (Zhang, Zhao and Yang 2014), but they are also more complex to apply and utilize. In 

general, there is a gap in methods to characterize roughness in all directions as a vehicle travels at non-

uniform speeds (Múčka 2015). 

2.3.2 Perception Acclimation Theory 

Differences in human physiology result in a range of sensations that cause different perceptions of 

comfort levels. A comprehensive literature search did not locate a study that compares perceived ride 
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roughness with the actual level of roughness experienced. However, adjacent fields that study thermal 

comfort found that the perception of neutrality acclimates to the environment (Spagnolo and Dear 2003). 

In particular, the perceived thermal neutrality of outdoor settings was significantly higher than that of 

indoor settings. Thermal adaptation in humans result in a gap between the actual and the perceived 

temperature levels (Sharmin and Steemers 2015). Therefore, the authors of this study posit that roughness 

neutrality will exhibit a similar gap between the levels perceived and those measured with objective 

means. That is, the roughness neutrality level will expectedly acclimate to the average roughness of the 

ride. As a perception acclimation theory does not yet exist for roughness, the authors will call this the 

roughness acclimation theory. 

2.4. Objective Methods of Roughness Characterizations 

The IRI is the most widely accepted method to characterize ride quality objectively from road impact 

factors. It is the accumulation of the absolute rate differences between the sprung- and unsprung-mass of 

a reference quarter-car moving at a fixed speed of 80 km/h (T. D. Gillespie 1981). Producing the IRI 

requires special instrumentation to measure the elevation profile of a wheel path, and simulation software 

to transform that data into the index (Janoff 1990). Nearly all highway agencies use inertial profilers to 

collect road profile data (The Transtec Group 2012). A reference procedure later transforms the digitized 

road profile samples into the IRI or the PSD. Inertial profilers integrate a laser and position sensitive light 

sensor to measure the elevation profile while traveling at highway speeds. Although standards have since 

been in place to specify their functionality and performance (AASHTO 2010), inertial profilers differ in 

the quality of the data that they report (Ksaibati, et al. 1999), (Dyer, Boyd and Dyer 2005). The method of 

sampling the road profile is a primary reason for the differences in data quality. Laser-based height 

sensors record the distance from the base of the vehicle to the pavement surface. Accelerometers above 

the height sensors record the vertical acceleration of the sensor to correct for reference plane bounces. In 

theory, double integration of the vertical acceleration signal would recover the vertical displacement of 

the vehicle. Practically, however, noise and initial conditions tend to create additional issues that limit 

their use in urban and local roads where the profiling vehicle must travel at low speeds and accommodate 

stop-and-go conditions (Karamihas 2016).  

Although reports (NCHRP Report 334) indicate that most agencies now use inertial profilers (Hyman, et 

al. 1990), the literature has very little information about their cost to acquire, operate, and maintain. One 

study reported the contracted pavement profile data collection and analysis costs ranged from $2.23/mile 

to $10.00/mile, with an average of $6.12/mile (McGhee 2004). However, the reported costs did not 

include overhead such contract administration, equipment maintenance, and equipment depreciation. In 

general, the relatively high expense and labor requirements of existing approaches prevent agencies from 

monitoring large portions of their roadway network more often than once annually. 

The application of elevation profile measurements to a fixed and simplified vehicle model, and the 

assumption of a fixed speed results in some significant limitations of the IRI. As such, researchers 

cautioned against using the IRI by demonstrating that profiles with distinctly different roughness features 

can produce the same IRI (Kropáč and Múčka 2005). Agencies worldwide found that the IRI masks 

wavelengths that produced roughness for both local roads and highways (Brown, Liu and Henning 2010). 

Given those limitations, researchers revisited the accelerometer-based method in the late 1980s to provide 

a more sensitive indicator of truck operating costs and cargo damage than the IRI (Todd and Kulakowski 

1989). Studies found that the suspension system vertical acceleration was the largest contributor to the 

dynamic axle loads that heavy trucks generate (Papagiannakis 1997). Consequently, researchers proposed 

a new index based on the Power Spectral Density (PSD) of the body vertical acceleration of a reference 

truck model. The reference speed and segment length was 80 km/h and 0.5 km, respectively. The truck 

roughness index is the square root of the area under the PSD from zero to 50 Hertz. The researchers found 

that the new index is uncorrelated with the IRI. 
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The limitations of the IRI extend to this study. The first limitation is that the simulation of a fixed quarter-

car does not reflect the vibration modes induced in the actual vehicle. The second limitation is that the 

fixed simulation speed of 80 km/h does not reflect the effects of road roughness at other speeds. The third 

limitation is that the IRI does not reflect roughness from driver impact factors. Furthermore, most transit 

agencies do not have the budget and expertise required to obtain and operate the special instrumentation 

needed to measure the elevation profile of the selected bus routes.  

Additional approaches have evolved based on mobile computing (Hyman, et al. 1990) and other 

automated data collection techniques that involve more complex sensors (McGhee 2004).  In more recent 

developments, researchers have been investigating alternative methods of roughness data collection that 

use accelerometers and speed sensors aboard connected vehicles (R. Bridgelall 2014). The seemingly 

unbounded increase in performance levels and cost reduction of smartphones has continually enticed 

researchers to revisit techniques that involve transformations of the accelerometer data to produce single 

indices of roughness. However, the findings continue to demonstrate that unless calibrated with the 

responses of individual vehicles at fixed speeds, correlation with the IRI remains poor. Transformations 

of the smartphone accelerometer signal include the root-mean-square (RMS) (Dawkins, et al. 2011), the 

full-car vibration power (Katicha, Khoury and Flintsch 2015), the Fourier Transform magnitude 

(Douangphachanh and Oneyama 2013), the magnitude weighted Short-Time Fourier Transform (Yagi 

2013), and linear regression of the power spectral density (Du, et al. 2014). As the need to calibrate 

transformations of the accelerometer data from individual vehicles does not provide any substantial 

improvement over the RTRRMS methods, the IRI has prevailed as the most common representation of 

road roughness. In fact, many proposals for new indices involve a modification of the IRI procedure 

(Múčka 2015). 
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3. METHODS OF THIS RESEARCH 

The high cost of deploying specially instrumented vehicles to produce the IRI limits ride quality 

characterizations to relatively small portions of the highway network. Hence, roughness data is generally 

not available for the local and urban roads that bus transit uses. Furthermore, transit agencies do not 

generally measure ride quality. In previous research, the authors developed a connected vehicle method to 

provide continuous RIF measurements for all roadways, including local and unpaved roads (R. Bridgelall 

2014). This research will extend that method to produce the TRQ by integrating the RIFs, DIFs, and 

VIFs. This section first defines new directional roughness indices that make up the RIFs and DIFs. 

Subsections describe the setup for data collection, the smartphone app used to collect the inertial and 

geospatial position data, the data processing, statistical characterizations of the measurements, and the 

survey preparation. 

3.1. Theory of Ride Quality 

This section develops the model to quantify ride quality in terms of all the relevant roughness impact 

factors. The TRQ is defined as the resultant vector magnitude of the Road Impact Factor and Driver 

Impact Factor. The impact factors are in turn derived by integrating accelerations in the three orthogonal 

directions of three-dimensional space. The Vehicle Impact Factor (VIF) is defined relative to the vibration 

suppression ability of a reference four door sedan. Figure 3.1 illustrates the mathematical transformation 

of the signal samples from the accelerometer, gyroscope, velocity sensor, and timer to directional 

referenced roughness indices that in turn produce the impact factors that lead to a final quantification of 

the ride quality experienced. The next sections define the signal transformations that produce the 

directional roughness indices from the resultant accelerations in three dimensions, and the roughness 

impact factors. 

3.1.1 Directional Roughness Transforms 

The author previously developed a directional roughness transform that summarizes ride roughness in the 

vertical, lateral, or longitudinal directions relative to a traversal trajectory (R. Bridgelall 2014). The 

Vertical Roughness Index (VRI) is a summary of the roughness energy density in the resultant vertical (z-

axis) direction such that 
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Equation (1) expresses the VRI, denoted 
L

zR  as the average g-force magnitude experienced per unit of 

longitudinal distance L traveled. Accelerometers and speed sensors produce samples n of the measured 

vertical acceleration gz[n] and the instantaneous traversal speed vn, respectively. For an average sample 

period of δt, the average spatial resolution achievable is δL = vn δt. Bridgelall (2014) demonstrated that 

the VRI is directly proportional to the IRI for any fixed traversal speed. 
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Figure 3.1  Transformation from Roughness Measurements to Total Ride Quality 

Directional roughness indices are similarly defined for accelerations in the resultant lateral (x-axis) and 

the resultant longitudinal (y-axis) directions, respectively. The Lateral Roughness Index (LRI) 
L

xR  is 

defined as 
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and the Longitudinal Roughness Index (ORI) 
L

yR  is defined as 
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It is important to note that the VRI is directly proportional to the IRI only for a fixed speed. However, 

unlike the IRI, the VRI reports directly the actual roughness experienced at any speed because it 

integrates the instantaneous velocity changes. Therefore, the VRI is applicable to traffic situations where 

the speed profile changes continuously. The VRI is also distinguishable from the RMS. Although similar 

in formulation, the RMS is a time average of vibration responses. Therefore, unlike the VRI, the RMS 

will produce non-zero values even when the vehicle is parked. The VRI produces a zero for vehicles that 

are not in motion. 
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The choice of resolution lengths L is a function of the application. For example, some applications may 

seek only a summary of the ride quality for 1000-meter segments of a road. In such a situation, the analyst 

would set L = 1000. Other applications may seek to localize anomalies within a resolution of a few 

meters. In such situations, the analyst may select L = 1, for example, to distinguish among closely 

positioned potholes or to locate a specific pavement joint (Bridgelall, et al. 2016). The minimum possible 

resolution length setting is δL and the maximum is the length of the entire road segment for which data is 

collected. A hybrid approach is also possible that both localizes anomalies and provides a roughness 

measure for entire segment lengths. That would be the mean of an index for smaller L-length segments. 

For instance, the batch mean of the LRI is denoted L
xR  and defined as 
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where K is the number of L-length segments across the entire segment. For this application, the authors 

use a resolution length of L = 10 meters. This choice facilitates an integer increment for visualizing and 

plotting roughness. It also represents an integration of roughness energy during the time that a typical 30- 

to 40-feet bus (circa 9 to 12 meters) crosses a particular roadway anomaly. 

3.1.2 Directional Resultant Accelerations 

When secured to a flat surface, their embedded accelerometers of a typical smartphone can measure linear 

vibration intensities in three directions. Their embedded gyroscopes can measure the orientation changes 

of the surface in three angular directions. Smartphones also contain global positioning system (GPS) 

receivers, timers, and velocity sensors that can produce the data needed to calculate the three directional 

roughness indices (VRI, LRI, ORI) defined in Equations (1) to (3). Previous research by the authors 

determined the minimum sample rate settings for each sensor type to be 64 Hertz (R. Bridgelall 2014). 

Achieving a higher sample rate increases the fidelity of the signal relative to noise. 

Figure 3.2 provides an overview of the measurement and the data processing procedures. 

 

Figure 3.2  Overview of Roughness Measurements and the Data Processing 

Operator behaviors such as braking and acceleration, and road surface conditions such as bumps and 

potholes excite the suspension systems of each wheel assembly. The forced and transient responses of the 

individual wheel assemblies produce vibrations in the lateral (x), longitudinal (y), and vertical (z) 
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directions relative to the travel direction. The vehicle dynamic responses also contain rotations about the 

x-, y-, and z-axis. Figure 3.3 illustrates the reference orientations when the front of the smartphone 

measuring device points in the direction of travel. 

The resultant vertical acceleration is determined by multiplying the linear acceleration from each sensor 

axis (x, y, z) by the magnitude of the respective directional components of a z-unit vector rotated in the 

Cartesian plane by the measured pitch, roll, and yaw angles. 

 

Figure 3.3  Reference Orientations for the Smartphone Data Collection Application 

The rotation of a unit vector Πxyz is 
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where θx, θy, and θz are the pitch, roll, and yaw angles produced by the gyroscope integrated in the 

smartphone. The z-unit vector uz = [0 0 1]T and the unit vectors for the x and y directions are ux = [1 0 0]T 

and uy = [0 1 0]T, respectively. The notation T represents the vector transpose matrix operator. Therefore, 

the resultant vertical acceleration gz as a function of the sensor orientation is 

     2zzyxzxyzz

2

yzyxzxyzy

2

xzyxzxyzxzyxz ),,,(),,,(),,,(),,(  uauauag   (6) 

where axu, ayu, and azu are the accelerations registered for the individual sensor axis and the subscript z of 

the rotated vector is the vertical acceleration component. The resultant accelerations in the lateral and 

longitudinal directions are similarly obtained by multiplying the sensor values from the individual rotated 

accelerometers by the lateral and longitudinal components x and y respectively, of their rotated unit 

vectors. That is, 

     2zzyxxxyzz
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and 
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3.1.3 Roughness Impact Factors 

The RIF, denoted LIroad  includes accelerations from both the vertical and the lateral directions. Vertical 

accelerations result from traversing bumps and depressions along the road surface. Lateral accelerations 

tend to arises when only the left side or right side wheel assembles traverse from road surface unevenness. 

Hence, the RIF is the vector sum of the VRI and the LRI such that 
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The mean RIF measured from traversing the entire roadway segment is 
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The DIF, denoted LIdriver  integrates driver-induced accelerations and decelerations in the longitudinal 

direction. The operator may also introduce some gradual lateral acceleration by speeding around curves. 

However, the asymmetric wheel-path traversals of roadway unevenness tend to dominate the lateral 

accelerations. Therefore, the mean DIF is primarily the mean ORI such that 

.driver
L
y

L RI   (11) 

Subsequently, the TRQ, denoted LQride  is the vector sum of the mean RIF and the mean DIF such that 

   2driver
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The VIF is a function of the vehicle types. Differences in their suspension system behaviour result in 

different amounts of roughness suppression of the RIF and DIF that produces the TRQ. Therefore, this 

research defines the VIF relative to a reference passenger sedan and driver. Subsequently, the VIF of a 

bus will be the ratio of the TRQ measured from the reference car traversals to the TRQ measured from the 

bus traversals across the same route, and under similar driving patterns of speeds and dwell times. The 

VIF is denoted as LIVIF  and defined as 
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With this formulation, it would be possible for transit agencies to determine the transit ride quality of any 

new test vehicle relative to that of a reference vehicle and driver of their choice. The reference vehicle 

may also be another bus that has known handling capabilities and suspension performance, and a trained 

operator with known behaviours. In general, an impact factor greater than unity would indicate that the 
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test vehicle provides a smoother ride than the reference vehicle, with all other factors being equal. In 

other words, the reference vehicle selected should ideally represent an acceptable or desirable ride quality 

for a majority of the passengers. 

3.2. Data Collection and Processing Methods 

The case study will characterize the TRQ for at least two transit routes of distinctly different levels of 

roughness. A survey of the riders on those routes will reveal the relationship between their subjective 

perceptions of roughness and the objective levels measured. The survey will also reveal any influences 

from the actual roughness level experienced to the stated level of its importance. 

3.2.1 Setup for Data Collection 

The device used for data collection was an iPhone® 4S. Figure 3.4 shows a top view of the smartphone 

installation on the bus. Figure 3.5a illustrates a side view of the platform that held the smartphone in 

place. 

 

Figure 3.4  Top View of Data Collection Planform Installation on the Bus 

 

 

Figure 3.5 Data Collection Platform a) Arrangement and b) Picture of Setup 

The device was positioned towards the center of the bus and on top of a passenger seat. Therefore, the 

device measured the roughness that a typical seated passenger would have experienced. While the bus 

was parked, the researchers used a leveling application on the smartphone to adjust the platform until it 

was flat. The front of the smartphone pointed in the direction of travel. Figure 3.5b shows an actual 
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installation. The sign on the seat back informed passengers that the roughness data collection was in 

progress. 

Using the same device for all measurements obviated the need to characterize any gain errors of the 

embedded accelerometers. That is, obtaining a relative measure of roughness from the same device 

sufficed for these experiments. However, if future experiments use multiple smartphone devices, some 

effort should be incurred to characterize any differences in sensitivity or gain among the sensors of the 

data logging devices. Subsequently, any significant differences in sensor parameters should be accounted 

for in a calibration procedure. 

A possible limitation of this installation is that it measures roughness from a nominal location near the 

center of the bus. Hence, these single point measurements may understate roughness that is more intense 

towards the front or rear of the bus, particularly at locations closer to the axles. Another possible 

limitation is the consistent vertical position of the sensor. Locating the device on the seat of a bus may 

adequately characterize the intensity of vertical accelerations but understate the effects of lateral or 

longitudinal accelerations induced closer to the rider’s head. In particular, lateral accelerations from road 

disturbances such as potholes that impact only one side of the bus could produce lateral accelerations that 

result in head tossing. Subsequently, future experiments to more accurately characterize ride roughness 

should consider merging measurements from multiple vertical and horizontal sensor locations on the 

same bus. 

3.2.2 Tool for Data Collection 

The data collection app is called PAVVET. It is available from the Apple Store. The GPS receiver on the 

smartphone provided an update rate of 1 Hz and the accelerometer was set to sample at 128 Hz based on 

recommendations from prior studies (R. Bridgelall 2014). The app logged inertial and geospatial position 

data as the vehicle traversed the routes. Figure 3.6 is a screen shot of the app recording accelerometer, 

gyroscope, GPS, and timer data. 
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Figure 3.6  Screen Shot of the Smartphone Data Collection Application 

The app produces output files in a comma separated value (CSV) file format that is organized as shown in 

Table 3.1.  

Table 3.1  Format of the Smartphone Application Data Log 

Time Gz Lat Lon Vel Pitch Roll Yaw Gx Gy 

21.347 -0.98 46.88096 -96.7701 1.42 8.19 1.51 -25.61 0.05 -0.13 

23.956 -1.02 46.88096 -96.7701 1.42 8.17 1.51 -25.63 0.05 -0.14 

26.118 -0.99 46.88096 -96.7701 1.42 8.17 1.51 -25.63 0.02 -0.15 

37.812 -1.03 46.88096 -96.7701 1.42 8.17 1.50 -25.64 0.05 -0.12 

48.627 -0.97 46.88096 -96.7701 1.42 8.17 1.50 -25.64 0.08 -0.14 

59.410 -1.02 46.88096 -96.7701 1.42 8.16 1.55 -25.67 0.00 -0.16 

123.741 -0.95 46.88096 -96.7701 1.42 8.20 1.47 -25.73 0.02 -0.13 

134.777 -1.05 46.88096 -96.7701 1.42 8.20 1.47 -25.73 0.04 -0.15 

 

The first row contains a header with labels for each column of data sampled from the inertial and 

geospatial sensors on the smart phones. The integrated timer provides the “Time” data in milliseconds. 

The integrated GPS receiver provides the latitude (Lat) and longitude (Lon) data in decimal format, and the 

ground speed (Gspeed) in m/s. The integrated inertial sensor provides the accelerator values for the g-forces 

sensed in the vertical, lateral, and longitudinal directions as “Gz”, “Gx”, and “Gy”, respectively and 

normalized to 9.81 m/s2. The integrated gyroscope produces the “Pitch,” “Roll,” and “Yaw” for the sensor 

orientation angles in degrees, respectively. 
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3.2.3 Data Processing 

After data collection via the smartphone app, the researcher taps a screen icon to upload the logged files 

to a server. The app utilizes any of its available wireless connection to communicate with a server. The 

universal resource locator (URL) for the server is entered in the app setup screen. After the raw data files 

become available on the server, offline processing utilizes Equations (1) to (3) to generate the directional 

roughness indices (VRI, LRI, ORI). Figure 3.7 illustrates the data flow, the computational process, and 

some details of the procedure that calculates the directional roughness indices. Future versions of the app 

will integrate the offline portion of the computational process so that the app could directly display the 

ride quality indices during data collection process. 

 

Figure 3.7  Calculation Procedure to Produce the Directional Roughness and Ride Quality Indices 

Figure 3.8a is a plot of the of the directional roughness indices for consecutive 10-meter sections of a 

relatively smooth sample segment.  

 

Figure 3.8  Data Sample from a Relatively Smooth Ride 
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The directional roughness indices are referenced to the left axis. The vertical acceleration data samples, gz 

are shown for comparison. Those signal samples are referenced to the right axis of the chart. It is evident 

that the directional roughness transform integrates many acceleration samples to produce a single index 

summary of the roughness experienced across the 10-meter segments of the traversal path. As this study 

focuses on summarizing roughness that a passenger experiences between their entry and exit stops, the 

analysis will use the mean of the RIFs and DIFs derived from their respective 10-meter directional 

roughness indices. The remainder of this document will refer to the mean of the 10-meter RIFs and DIFs 

as simply the traversal RIF and DIF, respectively. Statistically, each traversal will produce a different 

mean RIF and mean DIF. 

Figure 3.8b is a plot of the orientation changes sensed and the longitudinal speed of the vehicle in miles 

per hour (MPH). As previously described, the rotation model of Equation (5) utilizes these roll, pitch, and 

yaw values to compute the three directional accelerations of each sample. The directional roughness 

transforms use the instantaneous speed samples to compute the directional roughness indices. In this 

application, the speed sensor updated the speed at a rate of 1 Hertz. An ability to use the speed sensor 

directly from the vehicle’s information bus, as in a connected vehicle application, will produce even more 

accurate characterizations of roughness (R. Bridgelall 2015). To visually compare the magnitudes of 

directional roughness indices, Figure 3.9a plots them for a relatively rough segment. It is clear that the 

directional roughness indices, particularly for the vertical direction, are on average larger in magnitude for 

the rough segment. The speed changes indicate the acceleration and deceleration patterns of the bus as it 

traverses the segment. 

 

 

Figure 3.9  Data Sample from a Relatively Rough Ride 
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3.2.4 Statistical Characterizations 

Statistical distributions of the RIF- and DIF-indices obtained for each route segment is tested for a fit with 

the Gaussian and Student-t distributions (Agresti and Finlay 2009). Scale and translation parameters are 

introduced into each normalized distribution to best fit a histogram of the RIF- and DIF-indices. The 

Gaussian model Dg(ξ) estimates the distribution of a variable ξ such that 
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where αg, μg, and σg are estimates of the amplitude, mean, and standard deviation parameters, respectively. 

Similarly, the modified Student’s t-distribution Dt(ξ) is 
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where tdf(ξ) is the normalized Student’s t-distribution, which is a gamma function of ξ and df degrees of 

freedom. The parameters αt, μt, and σt are estimates of the amplitude, mean, and standard deviation 

parameters, respectively. 

To test the distribution fit, the chi-squared value (χ2 Data) is calculated as 
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where Ok are histogram values observed in bin k and Ek are the expected values from the hypothesized 

distribution. The chi-squared distribution value for 5% significance ( = 5%) is the largest value expected 

within 95% of the cumulative distribution. Hence, the significance percentage is the probability of 

observing a chi-squared value at least as large as the value computed from Equation (16). The chi-squared 

degrees of freedom, df, are determined as one less than the number of histogram data elements n, minus 

the two independent distribution parameters estimated, namely the amplitude and the standard-deviation, 

the latter being dependent on the estimate of the mean. 

To assess the adequacy of the sample size (Agresti and Finlay 2009), the experiments computes the 

margin-of-error (MOE) for a (1-)% confidence interval with significance  where 
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The variable N is the sample size, which is the traversal volume in these experiments. The variable t1-/2,df 

is the t-value where the cumulative t-distribution of df degrees of freedom evaluates to (1-). The 

literature generally recommends a sample size of at least 30 for statistical significance (Agresti and Finlay 

2009). If statistical tests cannot reject a hypothesis that the data is normally distributed, then increasing 

the sample sizes will tend to further reduce the MOE. This is anticipated from equation (17) because the 

sample size is in the denominator. 
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3.3. Survey of Riders 

The main objectives of the survey were to characterize the importance of ride smoothness to bus users, 

and to determine their potential for selecting alternative transportation options when a ride is considered 

too rough. Another objective was to assess the subjective ratings of ride roughness for each of the 

segments, and to compare those ratings with the objective measurements. 

3.3.1 Institutional Review Board (IRB) Compliance 

This research method complied with the standard Institutional Review Board (IRB) procedures for a 

category 2 exemption. All researchers on the team completed the required IRB training. Hence, the survey 

did not collect any identifying information about the passengers. In fact, the approval process required 

that the back side of the survey contain the informed consent statement shown. 

3.3.2 Design of Survey Instrument 

The design of the survey focused on a few simple questions to encourage patron’s willingness to complete 

it within 5 minutes while riding the short segments. Therefore, there were only 5 questions as illustrated 

in Figure 3.10. The first question asked bus passengers to circle their description of the ride. The 

qualitative descriptors were “very smooth,” “smooth,” “neutral,” “rough,” and “very rough.” This 

question intended to elicit a subjective rating of the roughness experienced while riding the segment of 

the bus route. 

 

Figure 3.10  Front and Back Side of the Survey Card Used in the Study 
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The second question intended to determine the proportion of riders who would consider other modes of 

transportation because they felt that the bus ride was too rough. The next two questions intended to 

determine the level of importance of a smooth ride and, when considered very important, their primary 

reason. This question also helped to isolate the specific disutility of a rough ride for bus users who would 

consider other modes of transportation because the ride is too rough. 

The final question intended to reveal the proportion of bus users who were captive riders for each 

segment, and the degree of opportunity for the city to retain or increase the frequency of passengers 

choosing bus mode. 

3.3.3 Execution of Survey 

To adequately cover the ridership characteristics of each route, the researchers conducted surveys during 

different parts of the day, and over a three-month period lasting from October 2015 to December 2015. 

The research assistant (RA) distributed surveys during the morning, midday, and afternoon services for 

each bus route. To best normalize other conditions of the bus ride, there were no surveys conducted with 

ground precipitation from rain or snow. There were no significant service changes or incidents during the 

surveys. Therefore, it is possible that the consistency of the ride conditions may have influenced 

perceptions of ride smoothness. Hence, one limitation of this study is that it does not examine the degree 

of any possible correlation between other convenience factors and the perception of ride smoothness. 

To setup the roughness measurement apparatus and to prepare for conducting the survey, the RA entered 

the bus while it was parked. Upon arriving at the beginning of each segment, the RA randomly invited 

passengers to complete the survey and stopped after two to three passengers committed to return 

responses before they disembarked. When a passenger returned the completed survey, the RA ensured 

that all of the information was filled out, including the time, date, stop entered, and stop exited. The RA 

then annotated the survey with the route and bus number. Upon completion of the route, the RA entered 

the survey information into a spreadsheet by coding the responses numerically. 
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4. CASE STUDY 

The research team partnered with the Fargo Transit Administration of the City of Fargo to measure the 

ride quality on the MATBUS public transportation system and to conduct surveys of their bus riders. The 

next sections describe the route selections and the segments tested, the vehicles used for the case study, 

and the methods of data collection and data processing. 

4.1. Routes Selected 

The case study included four segments from two bus routes that serve the South Fargo and West Fargo 

areas of North Dakota. Two of the segments overlapped to allow for comparison of objective and 

subjective assessments of the ride quality. Figure 4.1 illustrates the bus routes and highlights the four 

analysis segments labeled S1, S2, S3, and S4 at their starting points. The routes terminate at two transfer 

points where passengers can take other buses. One of the transfer points is called the Ground 

Transportation Center (GTC), which is a bus terminal that facilitates connections to 11 bus routes that 

service residential and business regions around Fargo. The second transfer point is a bus hub at the Mall 

that facilitates connections among four other routes. As a reference, the North Dakota State University 

(NDSU) and the Fargo downtown area are two of the largest attraction points in Fargo, and they are 

located a few miles northwest of the GTC. 

Segment 3 is a 1.4-mile section of route 15 that begins at a stop located near the intersection of 13th 

avenue and University Drive, and ends at the GTC bus terminal. This segment overlaps with segment 2 

for a majority of the bus ride. The average travel time for segment 2 was 6 minutes. Survey respondents 

for segment 3 entered the bus at prior stops that include the Mall. 

Segment 4 is a 2.4-mile loop of route 15 that begins at the mall and has intermediate stop on the way to 

Wal-Mart (WMT) and back. The average travel time for the Mall-WMT loop was 14 minutes. Survey 

respondents for segment 4 entered the bus at prior stops that include the GTC. Hence, they may have 

transferred from other buses on their way to WMT. 

Table 4.1 lists the length and average travel time of the four analysis segments. Segment 1 is a 3.2-mile 

section of route 14 that begins at a stop near Essentia Hospital (EH) and ends at the Mall bus hub. The 

average travel time for segment 1 was 12.3 minutes, including traffic, stop signs, traffic lights, and other 

flow interruptions. Survey respondents entered the bus at the EH or at prior stops near businesses such as 

the Family Fare supermarket, K-Mart, the YMCA, Hornbachers Supermarket, or residences near 

University Drive and 32nd avenue. 

Segment 2 is a 1.3-mile section that is also part of route 14. The segment begins at a stop before the 

intersection of 13th avenue and University Drive, just north of Sanford Hospital (SH). It ends at the GTC 

bus terminal. The average travel time for segment 2 was 5.7 minutes. Survey respondents entered the bus 

at prior stops that include the Mall. 
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Figure 4.1  Overview of the Ride Segments Selected and the Bus Routes 

Segment 3 is a 1.4-mile section of route 15 that begins at a stop located near the intersection of 13th 

avenue and University Drive, and ends at the GTC bus terminal. This segment overlaps with segment 2 

for a majority of the bus ride. The average travel time for segment 2 was 6 minutes. Survey respondents 

for segment 3 entered the bus at prior stops that include the Mall. 

Segment 4 is a 2.4-mile loop of route 15 that begins at the mall and has intermediate stop on the way to 

Wal-Mart (WMT) and back. The average travel time for the Mall-WMT loop was 14 minutes. Survey 

respondents for segment 4 entered the bus at prior stops that include the GTC. Hence, they may have 

transferred from other buses on their way to WMT. 

Table 4.1 Routes and their Characteristics 
Segment Label Distance 

(miles) 

Travel Time 

(Minutes) 

Description 

1 R14 EH-Mall 3.2 12.3 Route 14 from Essentia Hospital to the Mall 

2 R14 SF-GTC 1.3 5.7 Route 14 from Sanford Hospital to the GTC 

3 R15 13a-GTC 1.4 6 Route 15 from 13th avenue to the GTC 

4 R15 WMT-Loop 2.4 14 Route 15 from the Mall to Wal-Mart and back 
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4.2. The Test Vehicles 

The MATBUS agency deployed a mix of diesel and hybrid buses manufactured by GILLIG Corporation 

and New Flyer Industries (Figure 4.2). The bus passenger capacity ranged from 30 to 80. The spread in 

ride quality is expected to increase with the number of different buses used, and also potentially with 

weight differences due to loading differences. All segments used 9 different buses except for the second 

segment which used 12 buses. During the time of the surveys, the typical bus carried less than half of its 

capacity of passengers for all traversals and all routes. Therefore, the bus loads were consistent and 

similar. As part of their normal operations, the transit agency assigned some of the same buses to each of 

the different segments throughout the data collection period. Incidentally, this mixed bus assignment 

helped to further randomize the data and remove any potential bias in the VIF when measuring the 

roughness indices on different segments. Table 4.2 lists the bus number identifiers for the buses deployed 

on each segment. 

 

 

Figure 4.2  Sample of the Buses used in the Case Study (Courtesy: Matbus.com) 

For a case study to establish a VIF for the buses, the research staff used a 2005 Pontiac Grand Prix as the 

reference sedan. The selection was based purely on cost, convenience, and availability. With an extended 

project scope and time, the authors envision future research that would investigate a variety of criteria for 

selecting reference vehicles. Transportation agencies will be important partners in such research. For 

example, some agencies may elect to use a particular bus based on additional ride quality survey 

responses, or based on bus manufacturer or independent third-party tests. 

For a limited ride quality comparison among possible reference sedans, the authors also selected a slightly 

newer sedan. It was a 2014 Dodge Avenger and the data collected was substantially less. To maintain DIF 

consistency, the same driver operated both reference sedans across all routes. He also attempted to 

approximate the speed profile of the buses that traversed each test segment. 

Table 4.2 Buses Deployed on each Segment 
Segment Label Bus Identifiers 

1 R14 EH-Mall 1126, 1139, 1140, 1142, 1175, 1176, 1185, 1195, 1199 

2 R14 SF-GTC 1126, 1127, 1139, 1140, 1142, 1174, 1175, 1176, 1185, 1195, 1198, 1199 

3 R15 13a-GTC 1125, 1126, 1176, 1198, 1200, 1201, 1220, 1221, 1124 

4 R15 WMT-Loop 1125, 1126, 1176, 1198, 1200, 1201, 1220, 1221, 1124 
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4.3. Data Collection and Processing 

Statisticians commonly recommend a sample size greater than 30 to compare histograms with a Gaussian 

distribution (Agresti and Finlay 2009). Therefore, the RA collected data for 31 trips across each of the 

four segments. Some survey respondents entered cross streets or landmarks as their exit stops. Therefore, 

when entering transferring the survey data to a spreadsheet, the RA translated the information entered to 

the code selected for identifying each bus stops. 

The data processing included the following manual steps: 

1. Rename all data files with their date and timestamp. After the app uploaded the files, the 

receiving server timestamped them with the time of receipt. Therefore, this step helped to later 

identify data collection files in the time order that the app recorded them. Cross referencing time 

stamps helped to match the data collection time to the passenger survey times. 

2. Produce the directional roughness indices from each traversal. This step required software to 

execute the directional roughness transforms, to generate the plots, and to verify the route by 

examining the trajectory from the GPS receiver output on a map. 

3. Match the survey response to the directional roughness index measured. This step required 

integrating the directional roughness indices between the starting point of the segment, and the 

stop where the survey respondent disembarked the bus. Calculating the roughness that each 

survey respondent actually experienced was important for assuring the accuracy of the 

experiment. 
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5. RESULTS AND DISCUSSIONS 

This section establishes the ridership characteristics of each route and provides details of the objective 

roughness measurements. The first subsection reports on the perceptions of the ride quality and 

characterizes its level of importance to the transit users. The second subsection establishes statistics of the 

ride quality measured for the buses and for a reference sedan. The third subsection compares statistics of 

the total ride quality ratio for the buses and two reference sedans to establish the bus VIF. The final 

subsection compares the perception of roughness relative to the objective measurements. 

5.1. Ridership Characteristics 

This section reports on the survey results for each route. In general, the surveys revealed that the bus users 

are mostly captive and that ride smoothness is important primarily for comfort. The objective measures of 

roughness revealed that segment 1 is the roughness, followed by segments 2, 3 and 4. The next sections 

provide a details. 

5.1.1 Mostly Captive Riders 

There were a total of 334 surveys returned. Table 5.1 summarizes the sample sizes for each segment. The 

table also lists the proportion of bus users who has access to transportation alternatives for each of the 

segment. The results indicate that a majority (approximately 82%) of the users across the evaluated routes 

are captive riders. However, a noteworthy proportion (18%) of the riders has access to alternative modes 

of transportation. 

Table 5.1 Portion of the Bus Passengers with Access to Ride Alternatives 

Segment Samples Has Alternative 

1 76 23.68% 

2 75 16.00% 

3 76 19.74% 

4 107 12.15% 

Mean  17.89% 

 

The next section (Table 5.5) establishes that the average measures of roughness decreases uniformly from 

segment 1 to segment 4. From the survey, the roughest route had the most users (nearly 25%) with access 

to a ride alternative at, whereas the smoothest route had the fewest (approximately 12%). This suggests 

that the ridership impact would be significant if users select alternative modes because the ride is too 

rough. Therefore, programs that encourage mode shift to bus transit would also likely retain non-captive 

riders. 

5.1.2 Ride Smoothness Matters 

Ride smoothness mattered to a majority (nearly 63%) of the bus users across all routes. As listed in Table 

5.2, those included responses where a smooth ride is either “very important” or “somewhat important.” 

Ride smoothness did not matter for only about approximately 9% of the passengers. A smooth ride was of 

neutral value for the remainder of the users. The proportion for which ride smoothness mattered increased 

from 50% to 69.2% as the measured route roughness decreased. This phenomenon suggests that as bus 

users become acclimated to the smoother ride, their perception of riding on rougher routes will become 

less favorable. For example, riders become more aware of jolts and bounces that are sudden or infrequent. 

The high level of importance of ride smoothness combined with the fact that the roughest route had the 
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highest proportion of users (24%) with ride alternatives suggests that programs aimed at ride quality 

enhancements could potentially result in a greater proportion of frequent-riders. 

Table 5.2  Importance Level for a Smooth Ride 

 Importance Level  Smoothness 

Route Very Somewhat Neutral Not  Matters Doesn’t Matter 

1 19.74% 30.26% 36.84% 13.16%  50.00% 13.16% 

2 22.67% 38.67% 28.00% 10.67%  61.33% 10.67% 

3 31.58% 39.47% 22.37% 6.58%  71.05% 6.58% 

4 25.23% 43.93% 24.30% 6.54%  69.16% 6.54% 

     Mean 62.89% 9.24% 

 

5.1.3 Users Emphasize Ride Comfort 

For each route Table 5.3 lists the portions of users reporting the reasons that smoothness matter. Across 

all routes, the desire for ride comfort was the primary reason (nearly 75%) that ride smoothness mattered. 

The ability to read and/or text message ranked second at approximately 22%. Riders reported health as a 

reason only for the second route.  

Table 5.3  Reason for Smoothness Being Very Important 

 Reason Smooth Very Important 

Route Comfort Health Read/Text 

1 80.00% 0.00% 20.00% 

2 58.82% 11.76% 29.41% 

3 75.00% 0.00% 25.00% 

4 85.19% 0.00% 14.81% 

Mean 74.75% 2.94% 22.31% 

 

The second route is the only one where a significant proportion of the riders reported that health is a 

reason for ride smooth importance. This is perhaps not surprising because the route starts at a major 

healthcare park that hosts the facilities of Sanford Health, Essentia Hospital, and various other medical 

offices. It is well known that vibration exposure, for example, from riding farming equipment such as 

tractors has been linked to chronic back pain and low back symptoms (Mayton, et al. 2008). Therefore, it 

is possible that some riders who board the bus at that location were concerned about the physiological 

effects of roughness on the condition for which they sought medical services. 

5.1.4 The Utility of Ride Comfort 

For each route Table 5.4 lists the proportions of users who would consider other modes because the ride 

was too rough. It is evident that a majority of the bus users (79%) who perceived the ride to be “rough” 

would not consider other modes of transportation because of the roughness. However, a noteworthy 

proportion (approximately 21%) would consider other modes because of the roughness. Of that group, 

there were no responses that a smooth ride was “Not Important,” thus validating that roughness was a 

significant factor in their response. 
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Table 5.4  Portion of the Bus Riders Who Would Consider Other Modes 

Route No Yes 

1 78.57% 21.43% 

2 85.71% 14.29% 

3 100.00% 0.00% 

4 100.00% 0.00% 

 

Secondly, the proportion who would consider other modes diminished rapidly as the measured route 

roughness decreased. Thirdly, the roughest segment has the least captive riders. These three findings 

provide strong evidence that roughness is a significant factor in the sustainability of selection bus transit, 

and probably also in mode shift to bus transit. 

5.2. Roughness Measurements 

This section characterizes the statistics of the roughness measurements across each of the four segments. 

The histogram plots for all bus traversals and those of the reference sedan are tested against a Gaussian 

distribution. The tests assess the measurement consistency to establish the margin-of-error within which 

the mean will converge with increasing traversal volume. 

5.2.1 Bus Data 

Figure 5.1a and Figure 5.1b plots histograms of the mean bus RIFs and DIFs, respectively, for all 

traversals of each of the segments. The least-squares fit of Gaussian distributions overlay the histograms 

for visual comparison. Table 5.5 and Table 5.6 lists the associated parameters for the fitted distributions 

of the RIFs and DIFs, respectively. The tables also list the statistics of the data, including the means, 

standard deviations (Std. Dev.) and margins-of-error in the 95% confidence interval (MOE95). 

Statisticians generally reject a null hypothesis that the data follows a tested distribution if the significance 

level at the computed chi-squared value (χ2 Data) is less than 5%, or equivalently, if the computed chi-

squared value calculated from Equation (16) is greater than the theoretical chi-square distribution value at 

a 5% significance level. It is evident that for all of the RIF distributions tested, the computed chi-squared 

values are substantially smaller than the theoretical chi-squared values at 5% significance. In fact, the 

significance percentages are substantially greater than 5%; they ranged from 22.5% to 48.4%. The test 

results are similar for the DIF distributions. The segment 1 DIF distribution produced a fairly narrow 

spread within only three bins. Hence, the df was insufficient to complete a chi-squared test. However, the 

significance of the tests for the DIF distributions of the remaining segments ranged from 34.5% to 58.6%, 

which is much greater than 5%. Therefore, the hypothesis that the distributions are Gaussian cannot be 

rejected. Subsequently, this result provides a high degree of confidence in the data quality, and that the 

variance of their mean will diminish with higher levels of vehicle traversals. 

Table 5.5 shows a decrease in the RIF from segment 1 to segment 4. The RIF for the roughest 

segment was 0.178 g-force m-1 and that of the smoothest segment was 0.138 g-force m-1. The MOE95 is 

below 9% for this relatively small data set, thereby indicating a high consistency in the traversals and the 

measurements. The measurements from segments 1, 3, and 4 exhibited an MOE95 that was less than 5% 

on average. Segment 2 exhibited the largest MOE95. However, this is anticipated because there were 12 

buses versus 9 for the other segments. Table 5.6 shows that the mean DIF-indices are consistent across all 

segments. This result indicates that all of the operators handled their vehicles in a consistent manner.  
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Figure 5.1  For each segment, the a) RIF and the b) DIF distributions from the bus traversals 

Even with only 31 measurements for each segment, the average MOE95 for all DIF measurements was 

6.5%. 



30 

 

Table 5.5  RIF statistics and parameters of the distribution fit 

 Road Impact Factors 

Buses Segment 1 Segment 2 Segment 3 Segment 4 

Traversals 31 31 31 31 

Number of Buses 9 12 9 9 

Data Mean 0.178 0.168 0.143 0.138 

Data Std. Dev. 0.023 0.041 0.018 0.021 

MOE95 4.729 8.961 4.608 5.639 

Distribution Fit     

df 1 1 3 1 

χ2 (α = 5%) 3.841 3.841 7.815 3.841 

χ2 Data 1.472 0.49 2.489 1.33 

χ2 Significance % 22.507 48.391 47.728 24.882 

Amplitude 0.992 1.578 0.41 0.853 

Mean 0.171 0.154 0.141 0.137 

Std. Dev. 0.026 0.053 0.019 0.026 

 

Table 5.6  DIF statistics and parameters of the distribution fit 

 Driver Impact Factors 

Buses Segment 1 Segment 2 Segment 3 Segment 4 

Traversals 31 31 31 31 

Number of Drivers 9 12 9 9 

Data Mean 0.056 0.054 0.049 0.054 

Data Std. Dev. 0.011 0.014 0.007 0.007 

MOE95 7.22 9.33 5.138 4.493 

Distribution Fit     

df 0 1 4 4 

χ2 (α = 5%) N/A 3.841 9.488 9.488 

χ2 Data N/A 0.297 4.487 3.369 

χ2 Significance % N/A 58.586 34.415 49.811 

Amplitude N/A 0.522 0.14 0.133 

Mean N/A 0.053 0.049 0.056 

Std. Dev. N/A 0.016 0.007 0.008 

 

This result along with high confidence that the data is normally distributed indicates that the means are 

consistent estimates of the DIFs. Hence, the relatively narrow DIF spread at these low traversal volumes 

further indicates that the vehicle operators maintained high consistency in their collective acceleration and 

deceleration actions throughout the stop-and-go and highly unpredictable conditions of the urban setting. 

Subsequently, a conclusion that all operators performed in a consistent manner is justifiable because the 

data set contained no significant outliers. However, this result does not necessarily suggest a reason for 

the consistent behaviors among drivers. For example, it is not possible to tell whether or not the drivers 

changed their normal behavior because they were aware of the ride roughness measurements. The 

researchers did not interview the bus operators in any of these tests. The transit agency made all bus 

operators aware that researchers were conducting surveys of the route roughness. 
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5.2.2 Sedan Data 

From the theory established via Equation (13), calculating the VIF of the buses requires TRQ 

measurements from a reference vehicle. Using a single driver limited the number of traversals afforded 

per segment to significantly fewer than those of the buses. Figure 5.2a plots the histograms and fitted 

Gaussian distributions of the traversal RIFs measured from the 2005 Pontiac Grand Prix. The segment 

labeled 2 or 3 are common subsets of the overlapping second and third bus segments. Figure 5.2b shows 

the corresponding plots for the DIF. 

 

 

Figure 5.2  For each segment, the a) RIF and the b) DIF distributions of sedan traversals 

Table 5.7 and Table 5.8 lists the statistics and parameters of the chi-squared tests for the RIF and DIF 

distributions, respectively. Similar to the bus traversals, the chi-squared tests indicate that a hypothesis 

that the tested distributions for segments 1-3 are Gaussian cannot be rejected. For segment 4, there were 

only three histogram bins, thus limiting the minimum df needed for chi-squared testing. However, the 

relatively small MOE95 from only 10 data points provided high confidence that the mean was a consistent 

estimate of the segment roughness. The average MOE95 for the RIFs and DIFs across all segments was 

4.4% and 6.4%, respectively. Again, the less than 5% margin-of-error in a 95% confidence interval for so 

few data points provide strong evidence that with additional traversals, the mean will converge to the true 

roughness that riders experience. 
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Table 5.7  RIF statistics parameters of the Gaussian fit 

 Road Impact Factors 

Pontiac Sedan Segment 1 Segment 2/3 Segment 4 

Traversals 10 16 10 

Data Mean 0.146 0.121 0.116 

Data Std. Dev. 0.009 0.011 0.006 

MOE95 4.493 4.883 3.753 

Distribution Fit    

df 1 2 N/A 

χ2 (α = 5%) 3.841 5.991 N/A 

χ2 Data 1.518 1.416 N/A 

χ2 Significance % 21.789 49.272 N/A 

Amplitude 0.16 0.166 N/A 

Mean 0.148 0.123 N/A 

Std. Dev. 0.017 0.011 N/A 

 

Table 5.8  DIF statistics and parameters of the Gaussian fit 

 Driver Impact Factors 

 Segment 1 Segment 2/3 Segment 3 

Traversals 10 16 10 

Data Mean 0.052 0.048 0.056 

Data Std. Dev. 0.004 0.007 0.005 

MOE95 5.589 7.727 5.835 

Gaussian Fit    

df 2 2 1 

χ2 (α = 5%) 5.991 5.991 3.841 

χ2 Data 0.878 5.908 0.076 

χ2 Significance % 64.462 5.213 78.31 

Amplitude 0.033 0.106 0.137 

Mean 0.052 0.047 0.062 

Std. Dev. 0.003 0.004 0.014 

 

Figure 5.3 compares the mean of the RIFs measured from the bus traversals with those measured from the 

reference sedan traversals of the same segments. Segment 2 represents the common segment 2/3. Two 

immediate observations are that a) the selected reference sedan suppressed roughness more than the 

buses, and b) their measurements generally agree in the relative differences of roughness among 

segments. The DIF for all bus traversals (Table 5.6) and sedan traversals (Table 5.8) were consistent. The 

consistency in DIFs for buses and the reference sedan indicates that overall, the sedan operator 

successfully mimicked the velocity patterns of the buses. Subsequently, the RIFs dominated the total ride 

quality for both the buses and the reference sedan.  
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Figure 5.3  Average of the RIFs for the buses and the reference sedan 

 

5.3. Ride Quality Assessment 

Given the statistical confidence in estimating the RIF and the DIF from their mean values, based on the 

normality of their distributions established in the previous section, this section formulates the TRQ and 

the VIF for each segment. 

5.3.1 Total Ride Quality 

For each segment, Table 5.9a, Table 5.9b, and Table 5.9c lists the means of the RIFs and DIFs measured, 

and the TRQs from all buses, the 2005 reference sedan, and the 2014 reference sedan, respectively. 

Table 5.9  Route Ride Quality from (a) All Buses (b) Pontiac Sedan (c) Dodge Sedan 

(a) All Buses (b) 2005 Sedan (Pontiac) (c) 2014 Sedan (Dodge) 

Segment N RIF DIF TRQ  N RIF DIF TRQ  N RIF DIF TRQ 

1 31 0.178 0.056 0.187  10 0.146 0.052 0.155  3 0.138 0.049 0.146 

2 31 0.168 0.054 0.176  16 0.121 0.048 0.130  5 0.161 0.061 0.172 

3 31 0.143 0.049 0.151  - - - -  - - - - 

4 31 0.138 0.054 0.148  10 0.116 0.056 0.129  3 0.115 0.050 0.125 

 

In all cases, the DIFs were much lower than the RIFs. Additionally, as established in the previous section, 

the average DIF for the buses and the references sedans were consistently similar. Subsequently, the RIFs 

dominated in all cases. Not surprisingly for a transit urban environment, this study concludes that 

roadway anomalies that produce roughness were most influential in the overall ride quality experienced. 

  



34 

 

5.3.2 Vehicle Impact Factor 

To examine the statistics of the VIF distribution, Figure 5.4c plots the Gaussian distribution that best fits 

the histogram of the DIF. Figure 5.4a and Figure 5.4b also examines the distributions of the two VIF 

components, which are the ratios of the sedan-bus RIFs and DIFs, respectively.  

 

 

Figure 5.4  For all segments, a) Car/Bus RIF ratios b) Car/Bus DIF ratios and c) VIF distributions 

The ratios are formed from a random subset of bus traversals that is the same sample size as all of the 

available traversals from the reference Pontiac sedan. That is, the VIF sample size is constrained by the 

available Pontiac sedan traversals, which equals 10 + 16 + 10 = 36. The random subset of 36 bus 

traversals is taken from the available pool of 31 × 4 = 124 bus traversals. It is evident that the mean of the 

RIF ratios was less than unity and that the mean of the DIF ratios was close to unity. This result matches 

the observation in previous sections that on average, the reference sedan suppressed road roughness more 

than the buses. However, in a few cases, the buses provided more roughness suppression than the 

reference sedan as indicated by the right-side tail of the distribution. This result also matches the 

observation that the bus and reference sedan DIFs were similar. 
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Across all segments, the mean RIF for each reference sedan was consistently lower than those for the 

buses. This indicates that on average, the reference sedans filtered roughness from roadway surface 

anomalies more than the buses did. This fact is not surprising given the substantial mass differences 

between buses and sedans, and their different design considerations. Based on Equation (13), Table 5.10 

lists, for each segment, the VIF of the buses relative to the two reference vehicles. These results indicate 

that on average, the reference vehicles provide 15% more overall roughness suppression. 

 
Table 5.10  Bus VIFs relative to the reference vehicles 

  Bus VIFs 

Segment  Pontiac Dodge 

1  0.83 0.78 

2  0.74 0.98 

3  N/A N/A 

4  0.87 0.85 

Average 0.81 0.87 

 

Table 5.11 summarizes the statistics and the parameters of the fitted Gaussian distributions. As in the 

previous chi-squared tests, the significance values of the fits ranged from 19% to 58.9%, which is much 

greater than 5%. Therefore, a hypothesis that the VIFs are normally distributed cannot be rejected. The 

VIF margin-of-error in a 95% confidence interval for only 36 samples is 5.2%, which is relatively low.  

Table 5.11  Car/Bus statistics and fit of parameters with theoretical Gaussian distributions 

Car/Bus Ratios RIF DIF VIF 

Traversals 36 36 36 

Data Mean 0.824 1.04 0.846 

Data Std. Dev. 0.124 0.221 0.13 

MOE95 5.106 7.205 5.201 

Gaussian Fit    

df 2 1 2 

χ2 (α = 5%) 5.991 3.841 5.991 

χ2 Data 2.817 1.704 1.059 

χ2 Significance % 24.448 19.171 58.885 

Amplitude 4.446 9.441 4.664 

Mean 0.804 1.041 0.828 

Std. Dev. 0.119 0.225 0.129 

 

Hence, this result presents a high degree of confidence that as the sample size increases for the tested bus 

fleet, their VIFs will converge to the true value that is estimated by the means indicated in the second row 

of the table. 

It is important to note that for these case studies, measuring the bus VIFs relative to the selected reference 

sedans in no way suggests that the sedans produce adequate ride quality. VIFs are an objective means to 

compare the roughness suppression ability of one vehicle relative to another. Future experiments are 

necessary to establish the maximum acceptable TRQ level from a reference vehicle traversing roads at 

acceptable levels of smoothness and handling. Only then will the VIFs take on meaning in terms of the 

adequacy of the ride quality provided. 



36 

 

5.4. Ride Quality Perceptions 

Figure 5.5 graphically shows the proportion of bus users rating the ride roughness at each of the 

qualitative levels shown, for each of the segments. It is clear that as the objective measurements of 

roughness among the segments decreased, a smaller proportion of the survey respondents rated the ride as 

being rough. Conversely, a greater proportion of the bus users rated the ride as “very smooth” as the 

objective measurements of roughness among the segments decreased. In fact, no one traveling on 

segment 1, which was measured as the roughest, rated the ride as very smooth. Similarly, a greater 

proportion of the bus users rated the ride as smooth for the smoother segments than for the rougher 

segments. Segment 3 was measured at an intermediate roughness level, and it had the largest proportion 

of ratings at a neutral roughness level. These results are all consistent with expectations. 

 

Figure 5.5  For each Segment, Portions of Passengers Providing Ratings at Each Roughness Level 

For all trips on each segment, Figure 5.6a plots the average TRQ measured objectively for each of the 

subjective ratings provided. In this chart, levels 1 through level 4 corresponds to the subjective scale from 

“very smooth” through “rough,” respectively. For example, for the level 2 (smooth) subjective ratings 

received for all traversals of a segment, the plot indicates the average TRQ measured objectively from 

those traversals. Figure 5.6b plots the average TRQ measured objectively for each segment. The average 

TRQ coincided for the two smoothest segments, namely segment 3 and segment 4. However, the 

measured TRQ at the first three rating levels consistently increased as the segment roughness increased. 

In other words, the average subjective rating threshold for a given level of roughness perception increased 

as the average objective measurements of roughness for a segment increased. In particular, for this case 

study, the threshold for neutral roughness increased with the actual roughness levels measured. This 

finding validates the roughness acclimation theory posited in section 2.3.2. That is, the rider’s perception 

of neutrality seemed to have acclimated to the segment roughness that they typically experienced. This 

result, therefore, leads to an observation that bus riders who use a set of routes regularly, particularly 

captive riders such as those of this case study, would tend to acclimate to its nominal roughness level. 
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Figure 5.6  For each Route (a) Average TRQ measured at Each Rating b) Average TRQ Measured 

The roughness acclimation phenomenon further indicates that subjective evaluations of road condition, 

vehicle handling, or operator performance could lead to non-uniform ratings and significant biases. This 

is a significant and important finding that may encourage practitioners to revisit the effectiveness of 

subjective methods to characterize ride quality. 
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6. CONCLUSIONS 

The notion of transit ride quality could encompass a broader variety of factors beyond road disturbances, 

operator behaviors, and vehicle dynamic systems. Highway agencies generally focus on vertical 

accelerations induced from road unevenness because those measurements directly affect roadway 

maintenance decisions. This study added lateral and longitudinal accelerations to account for roughness 

induced from asymmetrical road roughness and operator behaviors. Therefore, the scope of the ride 

quality characterizations for this study was to assess the degree to which roughness experienced in all 

directions affects the ride experience on bus transit. 

In a case study of the small urban environment of Fargo, North Dakota the authors surveyed the bus riders 

to classify their qualitative perception of the roughness intensity on four bus-route segments. The survey 

validated the objective measurements of roughness differences among the segments. Hence, this research 

provides transit agencies with a cost-effective tool and framework to quantify the total ride quality (TRQ) 

of transit routes. The ride quality theory developed in this research isolated roughness impacts from road 

unevenness, operator behavior, and vehicle responses. These factors are respectively the RIFs, DIFs, and 

VIFs defined earlier. A smartphone app collected the inertial and speed data, and the roughness 

characterization models transformed the data into the three impact factors, and then integrated them to 

produce the TRQ. 

6.1. Ride Quality Measurements and Perceptions 

This section summarizes those conclusions that relate to the objective measurements of ride quality, the 

perception of roughness levels experienced, and other characteristics of the ridership. 

1) The measurements of all factors that affect TRQ were consistent among all the road segments 

tested. A hypothesis that the factors were normally distributed could not be rejected. Therefore, 

the mean values are consistent estimates of the true roughness experienced. The low margins-of-

error in a 95% confidence interval together with the normal distribution of at least 30 samples 

anticipates that the variance of the mean will continue to diminish with higher levels of vehicle 

traversals. 

2) The RIFs were consistent across all segments tested for both the buses and the reference sedans. 

The RIFs dominated the TRQ in all cases. This result indicated that roughness from roadway 

anomalies or roadway unevenness dominated the TRQ. 

3) Previous studies have determined that vertical vibrations cause human discomfort. Given the fact 

that the RIFs dominated the vibration levels experienced, the RIFs alone may be used to quantify 

the discomfort level of a ride. 

4) The DIFs were consistent with relatively narrow spreads across all segments tested. They were 

comparable among buses and the reference sedans. There were also no outliers in the data set. 

This result indicated that the operators handled their vehicles in a similar and consistent manner, 

including their velocity profile patterns. However, this result does not necessarily suggest a 

reason for the consistent behaviors among drivers. For example, it is not possible to tell whether 

or not the drivers changed their normal behavior because they were aware of the ride roughness 

testing. 

5) The VIF measurements were consistent across all segments tested. On average, the reference 

vehicles provided 15% more roughness suppression than the buses. However, this fact is not 

surprising because of the substantial mass differences between the buses and the sedans, and their 
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different design considerations. Furthermore, these results do not suggest that the reference 

sedans provided adequate ride quality because the VIFs provide only an objective comparison of 

the relative vehicle responses to inertial excitations. 

6) A majority of the riders were captive. However, a noteworthy proportion (18%) had access to 

alternative ride modes. That is, the proportion of passengers with access to ride alternatives 

ranged from approximately 12% to 24%, with an average of 18% across all routes. This suggests 

that there is an opportunity to encourage more bus users to select bus transit as their primary 

mode of transportation by addressing factors that would increase the attractiveness of public bus 

transit. By extension, therefore, programs that encourage mode shift to bus transit would also 

likely retain non-captive riders. 

7) Ride smoothness mattered to a majority (63%) of the passengers across all routes. Their 

responses indicated that a smooth ride is either “very important” or “somewhat important.” Ride 

smoothness did not matter for only about 9% of the passengers. The response was neutral for the 

remainder (28%) of the passengers. 

8) The proportion of respondents for which ride smoothness mattered increased from 50% to 69.2% 

as the objectively measured segment roughness decreased. This phenomenon suggests that as 

passengers adapted or acclimated to the smoother rides, their perception of ride roughness will 

become more negative.  

9) Comfort was the top reason (75%) that smoothness mattered. Other reasons provided were the 

ability to read or text (22%), and health reasons (3%). 

10) A majority of the passengers (79%) who perceived the ride to be “rough” would not consider 

other modes of transportation because of the roughness. However, a significant proportion (21%) 

would consider other modes when the ride is too rough. Of that group, there were no responses 

that a smooth ride was “Not Important,” thus validating that roughness would be their primary 

reason for considering other modes. 

11) The proportion of riders who would consider other modes diminished rapidly as the measured 

segment roughness decreased. 

12) The previous two findings provide strong evidence that excessive roughness is a factor in mode 

choice for a significant portion of the riders, at least in this case study. 

6.2. Roughness Acclimation Theory 

In addition to the above conclusions, this study presented and validated a roughness acclimation theory. 

Passengers assigned a mid-range roughness rating to the average roughness measured objectively for any 

segment. Therefore, the value of the mid-range ratings increased with segment roughness and visa-versa. 

However, within a segment, perceptions of roughness levels that were below and above the mid-range 

values corresponded to the objective measurements of lower and higher values, respectively. In essence, 

passengers as a group tended to translate the mid-range of the perceived roughness scale to values that 

matched the average roughness measured for a given segment. 

These findings indicate that humans adapt to roughness levels because the thresholds for their subjective 

perception of a given roughness intensity increases with the roughness that they typically experience. This 

phenomenon is likened to temperature acclimation. For example, the temperature that residents of cold 

climates would perceive as “hot” is typically lower than the corresponding value for residents of warmer 
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regions. The implication of the roughness acclimation theory, therefore, is that subjective measures of 

ride quality could result in non-uniform ratings and significant biases. However, the authors recommend 

additional case studies in other settings and demographics to evaluate further the roughness acclimation 

theory. For instance, a study that surveyed the same riders across routes of different roughness levels 

should remove some of the acclimation effects. The ride duration may also affect the rate of roughness 

acclimation. 

6.3. Recommendations 

The results of this research provides a low-cost framework for agencies to use for ride quality assessments 

of their services. Ride quality assessments can inform decisions about operator training, equipment 

maintenance, and ridership enhancement programs. However, to use the framework in a practical setting, 

agencies should consider investing in technology transfer that would standardize the data collection app, 

and also standardize the data transform methods developed. Practical solutions that utilize the framework 

will require development of data warehousing scheme, data visualization tools, and decision-support 

platforms that are tailored to the specific applications and business processes. For example, when only the 

DIF is needed to help optimize operator training programs, the design of the decision-support platform 

could be simplified for broader appeal to all personnel. Similarly, the design should support a 

standardized application programmer’s interface (API) to provide easy and secure access to the ride 

quality data so that other agencies could benefit. The system should be capable of accessing ride quality 

data by the dates and times collected to isolate or eliminate data that corresponds to the timing of specific 

events, for example, rain or snow. 

6.4. Limitations and Future Research 

It is possible that the captive ridership of this single case study may have produced some biases relating to 

the stated importance of a smooth ride. Another limitation of this study is that the authors make no 

attempt to examine the degree of any possible correlation between other convenience factors and the 

perception of ride smoothness. It is possible that the results would vary with the proportion of frequent 

riders. It is also possible that the vehicle operators may have behaved differently if they were aware of the 

ride quality testing underway. The nominal sensor position on a seat near the center position could have 

resulted in the underestimation of roughness closer to the front or rear axles. Also, the sensor may have 

missed roughness from lateral vibrations above the seat level that produced head tossing. Also, riders may 

have perceived differently the roughness produced from the same road unevenness based on the degree of 

road noise isolation from the variations in VIFs. Hence, the results of this study represent a nominal 

perception of roughness that was linked to the fleet deployed in this small urban setting. 

As mentioned previously, additional research and experiments are recommended in different settings, 

with multiple lateral and horizontal sensor positions, and across routes with greater roughness variations. 

Extending the sample size to achieve a lower margin-of-error will further characterize the rate at which 

the precision of measurements would improve with data volume. Connected vehicle environments 

promise enormous data volume. Hence, provisioning for the appropriate data transfers from inertial and 

speed sensors aboard vehicles will become a critical enabler for this application. The authors also 

recommend future research that will establish the ride quality adequacy of reference vehicles. Such a 

study could establish a standard TRQ value that is used to determine the VIF for any vehicle, without 

requiring TRQ measurements from some arbitrary reference vehicle. 
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