

Truck Platooning Pilot Deployment on the I-10 Corridor

FHWA Truck Platooning Early Deployment Assessment Phase 2

Dr. Xiao-Yun Lu, Principal Investigator Mr. Ben McKeever, Project Manager Dr. Steven Shladover: Senior Advisor

UC Berkeley PATH May 26, 2021

Outline

- Project Overview
- Experimental Design
- Safety Considerations
- Q & A

Project Overview - Goals

- For better understanding the impacts of truck platooning on driver behavior, safety, energy consumption, other traffic and public policy
- For better understanding Cooperative Adaptive Cruise Control (CACC) or platooning practical performance
- Accelerating the deployment of CAV technologies for freight through in-service freight hauling
- Assessing the feasibility and efficiency of integrating truck platooning into fleet operations

Project Overview - Team and Partners

- Roly's Trucking Inc.
- Westat
- Cambridge Systematics
- Caltrans DRISI and CHP
- Volvo Group North America & HQ
- Bendix
- Other I-10 Corridor (Arizona, New Mexico, Texas) DOTs and Law Enforcement Agencies
- California Trucking Association

Project Overview - Test Route

- Rancho Cucamonga, CA to Fort Worth, TX 1400 miles
- Mostly rural (I-10, I-20), with a few urban metro areas (Inland Empire, CA, Phoenix, Tucson, El Paso)
- States: California, Arizona, New Mexico, Texas (3 border crossings each way)
- Mostly flat, with a few mountain passes to cross

Project Overview – Main Tasks

- Implement refined CACC capability (Level 1 automation) on 4 new Volvo trucks; 3-truck platooning and one as the reference
- Perform rigorous testing of system performance and capability on test tracks and real roads
- Train truck drivers and conduct driver acceptance test
- Recruit and train 4 cohorts of truck drivers from fleet partner Roly's Trucking
- Test for operational readiness prior to field test on I-10
- Conduct a 12-month formal field operational test of truck platooning on a multi-state corridor

Project Overview - Critical Milestones

- Project planning: Jul 2020 ~ Dec 2020
 - System design and preparation
 - Stakeholder outreach
 - Test and evaluation planning
 - Human use approval
- New truck acquisition: Dec 2020 ~ Jan 2021
- CACC/platoon implementation: Jan ~ Jun 2021
- Driver acceptance tests in CA: Aug ~ Sep 2021
- Operational readiness test in all 4 states: Oct ~ Nov 2021
- Field tests and data sharing: Nov 2021 ~ Oct 2022
- Project final report: Dec 2022 ~Jan 2023

Project Overview – The CACC System

TIGGS - T

Experimental Design

- 12 months to cover a full range of weather conditions
- Focusing on a fixed-route interstate highway with good road geometry/conditions (including grade and flat);
- Route with urban and rural traffic
- Varieties of positions in platoon, loads, time gaps, driver selections on time gaps and driving modes
- Both daytime and night-time driving, to understand driver time-gap preferences
- Obtaining objective driver drowsiness (fatigue) and attentiveness to their driving related tasks
- Incorporating structured questionnaire-based interviews with drivers and dispatchers

Safety Considerations - CC & ACC Control Logics

- Progressive and defensive driving approach
- Input: target distance, speed, acceleration
- ACC progressive coupling range with respect to D-Gap

Safety Considerations

- Active handling cut-in and cutout maneuvers:
 - **o** Relative speed/distance/acceleration
 - **O** Duration of stay in between
 - **o** GPS used for deal with multiple cut-ins
- Preliminary Fault Detection and Handling
 - Communication
 - Radar + Video camera (from X-PC); Fixed beam lidar as back up
 - Engine torque
 - Engine brake
 - Service brake

Safety Considerations – DVI: Simple & Info Rich

 DVI Design: Simple but information rich to reduce driver distraction

Safety Considerations – Driver T-Gap Selection

ACC Level	ACC Time	CACC Level	CACC Time Gap
	Gap [s]		[s]
1	1.1	1	0.6
2	1.3	2	0.9
3	1.5	3	1.2
4	1.7	4	1.5
5	1.9	5	1.8

Safety Considerations – Activation & Transision

• 3 convenient ways to activate and deactivate ACC/CACC

Safety Considerations – Driver Monitoring

• SmartCap EEG – Gold standard for fatigue

2	TYPICAL LEVEL OF ALERTNESS	No immediate action required
	ALERT WITH SOME EARLY INDICATORS	No immediate action required
	TRANSITIONING PHASE FROM 3-4 (EARLY WARNING)	Your risk of a microsleep is increasing, take action to help manage your fatigue.
4	HEIGHTENED RISK OF MICROSLEEP	You are at heightened risk of microsleep and need to take IMMEDIATE action.

- JunGo: Driver attentiveness
- Provides monitoring and warning

Safety Considerations – Driver Activated Coordinated Braking

- Driver Activated Coordinated Braking
 - Driver of the lead or the second truck manually applies service brake
 - **O Using both service brake for all trucks automatically**
 - Truck 2 & 3 using closed-loop automatic control to regulate the distance gap during the braking process
 - Quantitatively tested on Nov. 23 2019
 - Loaded 3 trucks with weight 21,000~22,000 kg
 - Truck 2 & 3 respond based on DSRC information and sensor data

Safety Considerations – Automatic Coordinated Braking

- Coordinated braking (automatically):
 - Service braking on truck 1 at: 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 [m/S²]
 - Apply above service brake command + full engine retarder to truck 1
 - DSRC Info: Service brake switch signal, vehicle actual deceleration, engine retarder command
 - Truck 2 & 3 apply the maximum deceleration + maximum engine retarder commands of front truck(s)

Safety Considerations – Bendix Collision Mitigation System (CMS)

- Warnings:
 - Frontal/side collision
 - Lane departure
- ABS
- Emergency braking: Bendix CMS to run in the background with the highest priority

Safety Considerations – Clear Operation Domain

- Avoid operation in questionable conditions
 - Setting operation speed range: e. g. 35~65 mph
 - Switching to CACC only if the driver feel comfortable
 - Limited to freeways, not for on-ramps or off-ramps
 - Limited to weather & road surface conditions: e. g. avoid slippery road, heavy snow & dust
 - Manual driving for lane changing
 - Arranging heavier vehicle in the front in a platoon
 - Platooning Indicator Light when in operation
 - **O Driver behavior video data recording**
 - Remote monitoring if driver wears SmarCap (EEG)

Safety Considerations

- **o** Manual operation for long downgrade
- Well training and practice before CACC operation
- **o** Providing convenient Driver Manual
- Determining (and train truck drivers for) abnormal situations in which driver should take over manual control

