
Rebecca S. McDaniel, PE, PhD Technical Director North Central Superpave Center Purdue University

North Dakota Asphalt Conference, April 4, 2019

OBJECTIVES

- Define what perpetual pavements are.
- Explain the concept of perpetual pavements.
- o Identify applicable design methods.
- Recognize suitable/unsuitable candidates.
- Consider potential benefits of perpetual pavements.

First

•What is a perpetual pavement?

- Flexible pavement built to last indefinitely (>50 years).
- Needing only occasional surface renewal.
- New construction or existing pavement.

EXISTING PAVEMENTS

- Recognition that some existing pavements had lasted for 35 to 70 years.
- Minimal surface repair.
- Not intentionally designed to be perpetual.
- Asphalt Pavement Alliance coined term "perpetual pavements" ~2000.
- APA began awards program in 2001.
 - No more than 4 inches added thickness.
 - Overlays at least 13 years apart.
 - More than 126 awarded since 2001.

HOW DO THEY LAST SO LONG?

- Asphalt pavements with high enough strength will not exhibit structural failures even under heavy traffic.
- Distresses will initiate at the surface, typically in the form of rutting or cracking.
- Surface distresses can be removed/ repaired relatively easily and quickly,
 - Before causing structural damage,
 - Leaving most of pavement in place, performing well.

FLEXIBLE PAVEMENTS

- Made up of multiple, fairly thin layers.
- Pavement deflects under load.
- Each layer distributes load over larger area of layer below.
- Typically asphalt.
- Easily and routinely recycled.
- Typical lives 15-20 years (to first rehab).

WHAT CAN GO WRONG?

RUTTING AND INSTABILITY

In asphalt layers or foundation.
Poor mix design.
Inadequate compaction.

THERMAL CRACKING (TOP DOWN)

Contraction at low temperatures.
Typically transverse, sometimes block.
Control by binder grade selection.

REFLECTIVE CRACKING

- Also transverse, but bottom up.
- Over joints and cracks in lower layer (usually overlay over concrete).
- Crack and seat or rubblize concrete/ reclaim asphalt.

LONGITUDINAL CRACKING

• Construction or traffic related.

- Paver segregation, joint construction.
- Beginnings of fatigue cracking?

MOISTURE DAMAGE

• Water enters pavement, disrupts bond.

o Drainage.

• Moisture resistant materials or antistrips.

FATIGUE CRACKING

- Alligator cracking.
- Excessive deflections poor structure/foundation or high traffic.

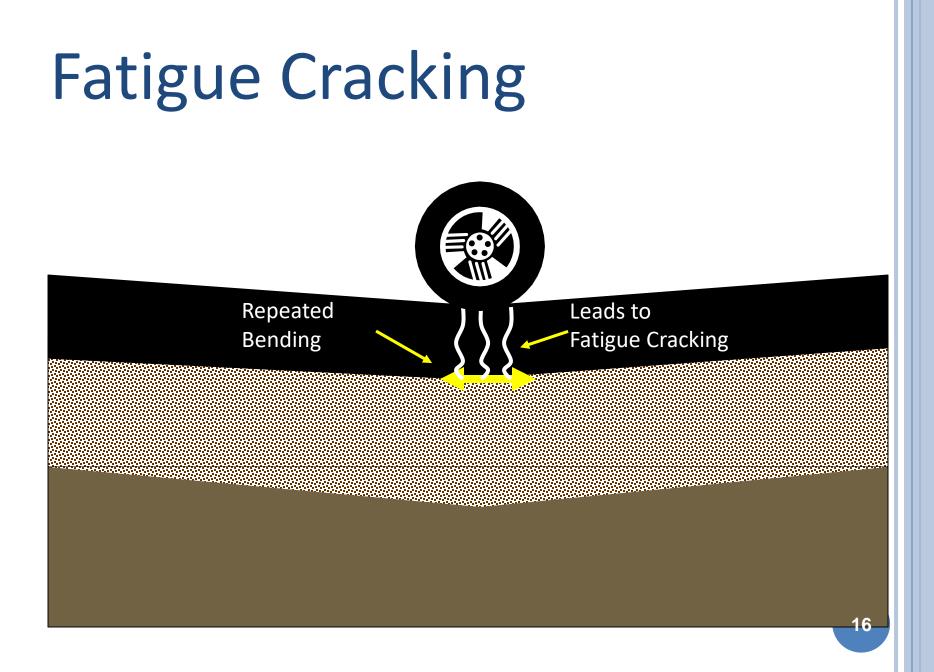
HOW CAN WE ACHIEVE LONG LIFE?

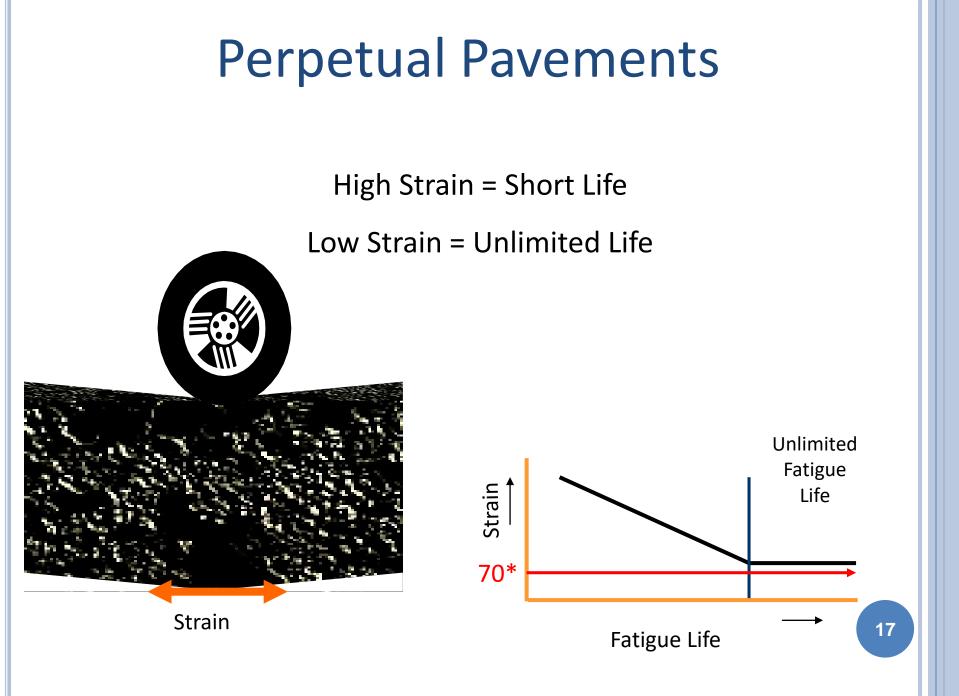
• Preventing fatigue cracking is key to long-life.

• Rutting, cracking or moisture damage in lower layers can contribute to structural issues.

• Confine distress to surface layer(s).

- Rutting Proper material selection, mix design and production/construction.
- Thermal cracking appropriate binder selection for climate.


SURFACE RENEWAL


- o Every 15-20 years. o Quick.
- o Cost effective.

- Repair surface distresses before they become structural.
 - Mill and fill
 - Thin overlay

o Keep most of pavement in place

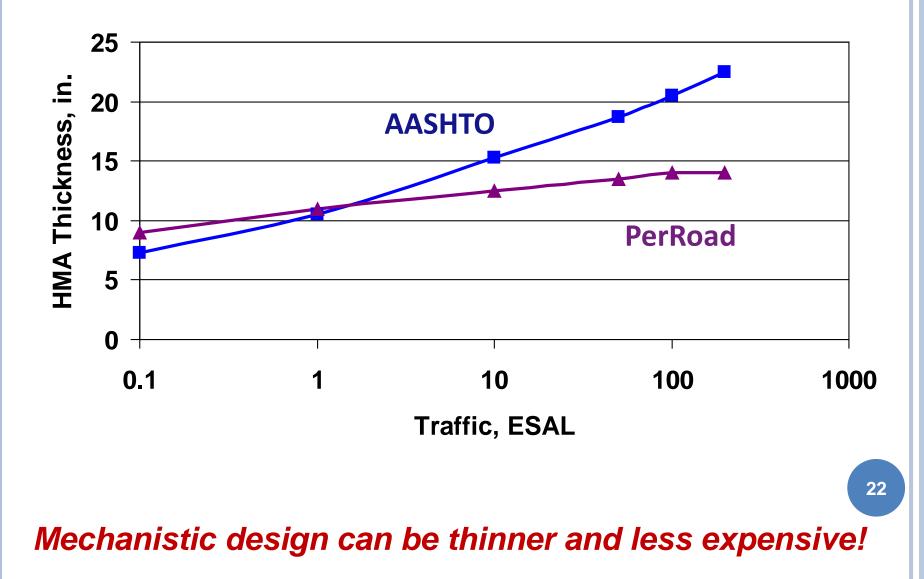
FATIGUE ENDURANCE LIMIT (FEL)

- Strain level below which fatigue damage does not occur
 - 500 million loads over 40 years, Prowell et al., 2010
- Varying levels have been reported
 - 70 μ E Monismith and McClean, 1972
 - 150-200 µ€ − Mishizawa et al., 1996
 - 70-100 µE conservative Willis, 2009
 - 75-200 µ€ − Prowell, et al., 2010
 - 100-250 µ€ − MEPDG/Pavement ME

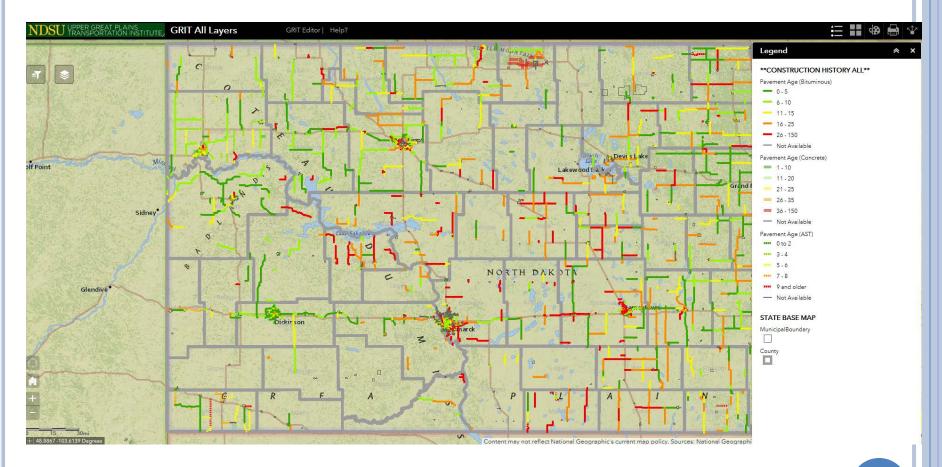
PERPETUAL PAVEMENT FEATURES

- Each layer designed to resist specific distresses.
- Base resist fatigue and moisture damage.
 - Thick enough conventional base; lower voids, rich bottom base; high modulus/stiff base.
- Intermediate/binder durable and rut resistant.
- Surface resistant to surface initiated distresses (top-down cracking, rutting, other).

PERPETUAL PAVEMENT DESIGN OPTIONS


New construction

- Design and build to be perpetual.
- Stage construction
 - Plan for added thickness at later date.
- Make existing pavements perpetual.
 - Where structure is adequate or nearly so
 - SHRP2 report, Using the Existing Pavement in Place and Achieving Long Life
 - Existing asphalt or concrete pavements


Perpetual Pavements Sound Expensive

- Not necessarily.
- Pavement thickness may be comparable to or even less than conventional.
- Existing pavements may be or could become perpetual.
- Costs for later rehabilitation are lower.
- User delay costs are lower.
- Safety is improved.

PERPETUAL PAVEMENT VS. CONVENTIONAL DESIGN

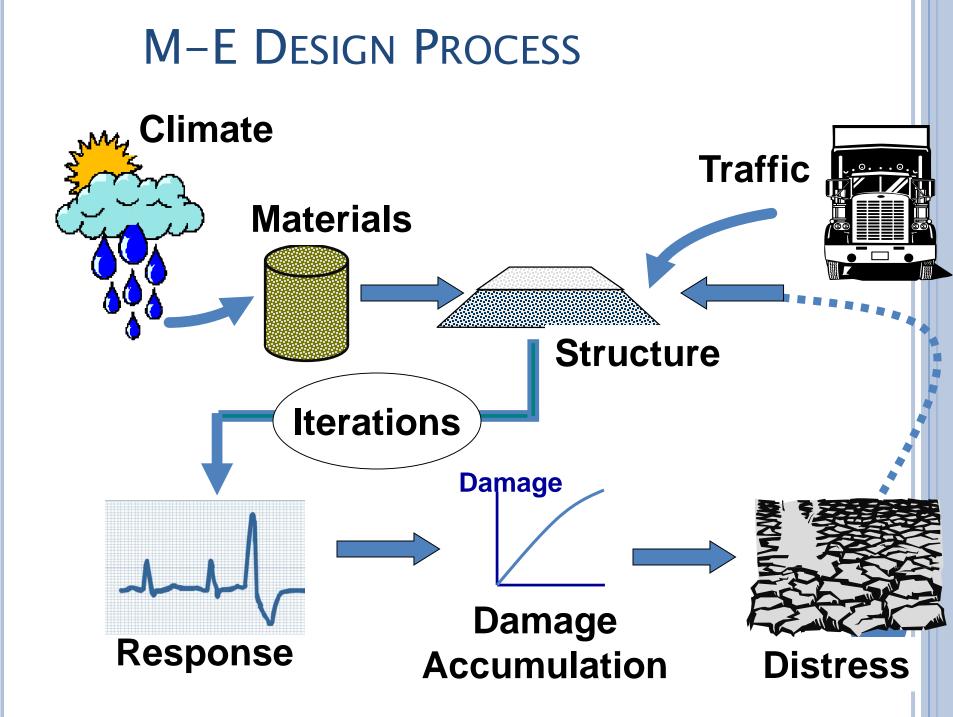
GEOGRAPHICAL ROADWAY INVENTORY TOOL (GRIT)

ORANGE 16-25 years; RED >26 years

23

PAVEMENT DESIGN METHODOLOGIES

o Empirical


- Statistical models from road tests (AASHO)
- AASHTO 1993

o Mechanistic-Empirical (M-E)

- Calculation of pavement responses, i.e., stresses, strains, deformations
- Empirical pavement performance models
- Pavement ME, PerRoad, PerRoad Xpress

o Mechanistic – not there yet.

PAVEMENT DESIGN RESOURCES

- Perpetual Pavement Design Software asphaltroads.org/PerRoad
 - PerRoad 4.4
 - M-E framework requiring multiple inputs
 High volume roadways
 - PerRoadXpress 1.0
 - Simplified
 - Low to medium volumes
- Pavement ME <u>me-design.com/</u>
 - AASHTOWare software

SUITABLE CANDIDATES – EXISTING ASPHALT

For overlay or mill and fill

No or limited full depth cracking.

- Repair limited full depth cracking.
- Mill to remove surface cracking.
- Good foundation/subgrade.
 - No structural issues.

• No stripping in lower layers.

• Remove upper layers if stripped.

• Adequate drainage.

SUITABLE CANDIDATES – EXISTING ASPHALT

• Asphalt pavements with deeper distresses.

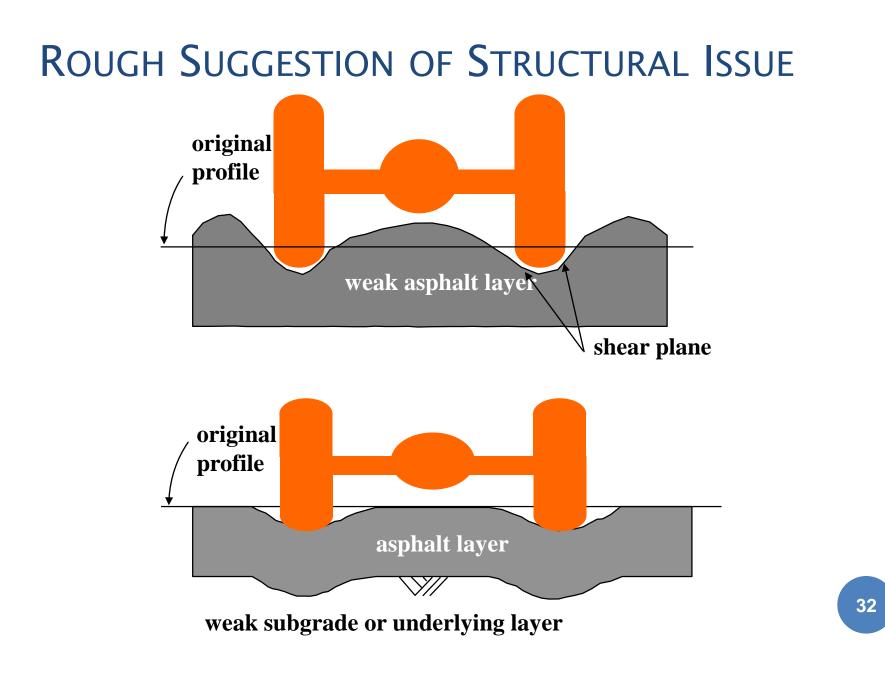
- Moisture damage, deep block cracking, >15% fatigue cracking.
- Reclaim existing asphalt layers (CIR, HIR, FDR).
- Smooth and compact.
- Disadvantage now counts as base, not asphalt layer; requires thicker overlay.

SUITABLE CANDIDATES – HMA OVER CONCRETE

- Good foundation/subgrade.
- Adequate drainage.
- No pumping.
- Risk of reflective cracking could crack and seat or rubblize.
- Over CRCP
 - Good bond between asphalt and concrete.
 - Absence of or few repaired major defects.

Unsuitable Candidates

Making existing pavements perpetual may not be best choice:


- If deep problems (cracking, rutting, moisture damage) are too extensive.
 - Reclamation may be less cost effective (thicker overlay).

If there are subgrade problems requiring repair.
If there is risk of reflective cracking.

• Cracking and seating or rubblizing increases cost.

IS IT STRUCTURALLY SOUND?

- Ideally, evaluate with cores or trenches, FWD, DCP.
- No evidence of stripping (cores).
- No wide ruts/evidence of deformation in lower layers.
- No or limited alligator cracking.

DESIGN THICKNESSES

- Depend on existing pavement or base modulus, subgrade modulus and traffic.
- Higher pavement modulus \rightarrow thinner lift.
- o Higher subgrade modulus → somewhat thinner lift.
- Higher traffic \rightarrow thicker lift.

RANGE OF TOTAL DESIGN THICKNESSES

- 5.5 in. for low-medium traffic with strong subgrade and existing pavement stiffness/ modulus.
- 14 in. for very high traffic with low base and pavement moduli.
- Subtract depth of asphalt in place (minus milled pavement) from total design thickness to get thickness of new asphalt

BENEFITS OF PERPETUAL PAVEMENTS

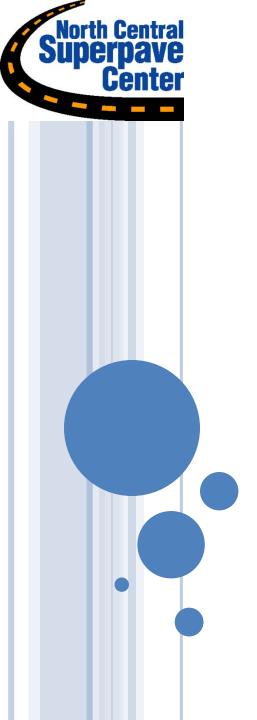
- Sustainability/Environmental Benefits
- Better use of resources.
- The ultimate in recycling.
- \circ Reduced CO₂ emissions.
- Reduced energy consumption.

BENEFITS OF PERPETUAL PAVEMENTS

Economics

- Lower life cycle costs.
- Reduced user delays and costs.
- No structural repairs means lower cost rehab.
- Little to no added thickness preserves curb and gutter elevations, overhead clearance.

PERPETUAL ASPHALT PAVEMENTS


- Sustainable pavement lasting more than 50 years with periodic surface renewal.
- Environmental and societal benefits.
- Design tools available.
- Experience on different traffic roads in different climates and condition.
- Conventional construction.
- History of successful use.

NRRA

- National Road Research Alliance (NRRA) Upper Plains Transportation Institute joined
- North Dakota DOT and NDSU are partners
- NRRA Pavement Workshop 2019
- o MSP, May 21-23, 2019
- Flexible and rigid pavements, preservation, geotech, intelligent construction, rejuvenators, and more.

USEFUL REFERENCES

- SHRP2 Using Existing Pavements in Place and Achieving Long Life, http://www.trb.org/Publications/Blurbs/171517.aspx
- TRB Circular 503, Perpetual Bituminous Pavements, 2001, http://www.trb.org/Publications/Pages/256.aspx
- APA Perpetual Asphalt Pavements: A Synthesis
- Proceedings of International Conferences on Perpetual Pavements, https://www.ohio.edu/icpp/

REBECCA S. MCDANIEL

Technical Director North Central Superpave Center Purdue University West Lafayette, IN 765/463-2317 ext 226 rsmcdani@purdue.edu

> Lyles School of Civil Engineering

