

Connected Vehicle Human-Machine Interface: Development and Assessment

Mohamed M. Ahmed, Ph.D., P.E. Associate Professor Civil and Architectural Engineering

UNIVERSITY OF WYOMING

COLLEGE OF ENGINEERING AND APPLIED SCIENCE

The Problem

- 37,461 traffic fatalities in 2016 (US)
- 36% related to distraction and speeding
- Human factors are a leading cause of crashes

Table 1. Driver-, Vehicle-, and Environment-Related Critical Reasons

	Estimated				
Critical Reason Attributed to	Number	Percentage* ± 95% conf. limits			
Drivers	2,046,000	94% ±2.2%			
Vehicles	44,000	2% ±0.7%			
Environment	52,000	2% ±1.3%			
Unknown Critical Reasons	47,000	2% ±1.4%			
Total	2,189,000	100%			

*Percentages are based on unrounded estimated frequencies (Data Source: NMVCCS 2005–2007)

Table 2. Driver-Related Critical Reasons

	Estimated (Based on 94% of the NMVCCS crashes)				
Critical Reason	Number	Percentage* ± 95% conf. limits			
Recognition Error	845,000	41% ±2.2%			
Decision Error	684,000	33% ±3.7%			
Performance Error	210,000	11% ±2.7%			
Non-Performance Error (sleep, etc.)	145,000	7% ±1.0%			
Other	162,000	8% ±1.9%			
Total	2,046,000	100%			

*Percentages are based on unrounded estimated frequencies (Data Source: NMVCCS 2005-2007)

Critical Reason is "the last failure in the causal chain of events leading up to the crash"

USDOT CV Pilot Project

- Using Connected Vehicle (CV) Technology to enable equipped vehicles to transmit and receive data to other equipped vehicles and roadside infrastructure.
- New York City, Tampa, and Wyoming selected as pilot deployment sites

Wyoming Connected Vehicle Pilot

- Competitive grant opportunity
- About \$6 million funded 80% by the USDOT
- Freight focused
- DSRC based
- Intended to reduce the number and severity of crashes while improving mobility on the I-80 corridor

Connected Vehicle Pilot: Next Steps

Wyoming's I-80 Corridor

Wyoming's I-80 Corridor

Heavy Freight Traffic

Freight = over half of annual traffic

Severe Weather Conditions

- Roadway elevation
- Heavy winds, heavy snow and fog
- Severe blowing snow and low visibility

- Higher than normal incident rates
- Multi-vehicle crashes

• Fatalities

Source: WYDOT (Dec 17, 2015)

I-80 Corridor

One of the most heavily instrumented rural corridors in the United States

136 Variable Speed Limit Signs

- supported by 94 speed sensors
- 54 Electronic Message Signs
- 44 Weather Stations

52 Webcams

Interstate 80 Corridor

Interstate 80 Corridor

https://www.youtube.com/watch?v=Pe83hj8nUhl

On I-80 in Wyoming

Wyoming Connected Vehicle Pilot

- Wyoming is paving the way for rural Connected Vehicle Applications
- Need for Effective Design for CV and ADAS
- Designing a safe implementable and Effective CV HMI for all Wyoming CV stakeholders

Human Machine Interface

Forward Collision Warning (FCW) – *V2V*

Work Zones Warning (WZW) – *I2V*

Situational Awareness (SA) – *I2V*

Distress Notification (DN) – V2I & V2V

Spot Weather Impact Warning (SWIW) - *I2V*

Human Machine Interface

Driving Simulator (UW)

University of Wyoming Simulation and Human Factors Lab (WYOSAFE SIM)

Participants

23 WYDOT professional snowplow and truck drivers; all the participants were MALE. 58% High School, 34% College, 8% Postgraduate.

Work Zone & FCW

Scenario #1: Work zone with Forward Collision Warning in fog

CV Applications tested: WZW & FCW

Adverse Weather

Scenario #2: Slippery Road Surface due to snowy weather

CV Applications tested: SWIW & DN

18

Road Closure and Re-routing

Scenario #3: Road Closure due to accident in severe weather

CV Applications tested: SWIW & SA

Work Zone in Fog Scenario

Usefulness of CV under Various Driving Conditions

Participants Assessment of CV HMI

Scale Items	Mean	SE	Positive	Neutral	Negative			
(a) Readability of CV Warnings (~84% Positive)								
CV warnings easy to understand?	6.1	0.80	96.2%	3.8%	0%			
CV warnings are NOT confusing?	5.5	0.95	80.8%	19.2%	0%			
CV warnings are NOT distracting?	5.2	1.37	73.1%	15.4%	11.5%			
CV warnings clear conveyed messages?	5.7	0.93	84.6%	15.4%	0%			
(b) Usefulness of CV Technology (~71% Positive)								
CV system provided improved roadway information?	5.8	1.14	85.7%	9.5%	4.8%			
CV applications increased traffic safety?	5.9	1.14	88.5%	7.7%	3.8%			
Dependent on the CV applications?	4.2	1.61	42.3%	30.8%	26.9%			
Desirability of CV system?	4.8	1.67	65.4%	23.1%	11.5%			

Participants Assessment of Specific CV Apps

CV Applications	Readability				Usefulness					
	Mean	SE	Positive	Neutral	Negative	Mean	SE	Positive	Neutral	Negative
FCW	5.9	0.99	84.6%	15.4%	0%	6.1	1.03	88.5%	11.5%	0%
DN	6.0	1.11	88.5%	7.7%	3.8%	5.7	1.12	84.6%	11.5%	3.8%
Road Surface	6.1	0.80	96.2%	3.8%	0%	5.7	1.08	84.6%	11.5%	3.8%
Re-Routing	6.1	1.13	92.3%	3.8%	3.8%	6.0	1.10	84.6%	15.4%	0%
WZW	6.2	0.97	88.5%	11.5%	0%	5.8	1.24	80.8%	15.4%	3.8%
SWIW	5.9	0.91	92.3%	7.7%	0%	5.5	1.27	73.1%	19.2%	7.7%

W

Preliminary Findings

Summary of Preliminary Participants Assessment

- ✓CV technology was most favorable under poor-visibility driving conditions
- ✓FCW and Re-Routing were the most useful CV applications
- ✓ Approximately a quarter of the participants indicated that CV HMI might introduce distraction.

➢ Recommendations

✓ Some CV warnings should be provided during adverse weather or limited visibility conditions only (WZW).

NIVERSITY OF WYOMING

✓ User Customization Capability.

Ongoing Work

- Eye Tracking and Driving Data
- HMI/ Warning Modality (i.e., visual, auditory (voice message, beeps), or a combination of visual and auditory)

- Optimum Number of Alerts
- Early Warnings and Duration
- Warning Prioritization
- Real-world Assessment

References

- ✓ Gopalakrishna, D., V. Garcia, A. Ragan, et al. *Connected Vehicle Pilot Deployment Program Phase 1, Comprehensive Pilot Deployment Plan, ICF/Wyoming*. Report No. FHWA-JPO-16-297, U.S Department of Transportation, Washington, D.C., 2016.
- ✓ WYDOT. Wyoming DOT Connected Vehicle Pilot: Improving Safety and Travel Reliability ON 1-80 in Wyoming. Wyoming Department of Transportation, Cheyenne, WY, 2017. Available: <u>https://wydotcvp.wyoroad.info/</u>
- ✓ Accenture Consulting. Accenture Connected Vehicle Survey: What Drivers Want, 2016. Available: <u>https://www.accenture.com/us-en/insight-automotive-connected-vehicle</u>.
- ✓ Biondi, F.N., D. Getty, M.M. McCarty, R.M. Goethe, J.M. Cooper, D.L. Strayer. The Challenge of Advanced Driver Assistance Systems Assessments: A Scale for the Assessment of the Human-Machine Interface of Advanced Driver Assistance Technology. *Transportation Research Record*, 2018, <u>https://doi.org/10.1177/0361198118773569</u>.
- ✓ Engström, J., Johansson, E., and Östlund, J. Effects of visual and cognitive load in real and simulated motorway driving. *Transportation Research Part F*, Vol.8(2), 2015, pp. 97-120.
- ✓ Fitch, G.M., D.S. Bowman, R.E. Llaberas. Distracted Driver Performance to Multiple Alerts in a Multiple-Conflict Scenario. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, Vol.56(8), 2014, pp.1497-1505.
- ✓ Bao, S., D.J. LeBlanc, J.R. Sayer, et al. Heavy-truck drivers' following behavior with intervention of an integrated, in-vehicle crash warning system: A field evaluation. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, Vol.54(5), 2012, pp.687-697.

26

UNIVERSITY OF WYOMING

✓ Cumming, M.L., R.M. Kilgore, E. Wang, L. Tijerina, and D.S. Kochhar. Effects of Single versus Multiple Warnings on Driver Performance. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, Vol.49(6), 2007, pp.1097-1106.

Wyoming CV Pilot Team

M^cFarland Management, LLC

STAY CONNECTED

Mohamed M. Ahmed

Associate Professor of Civil and Architectural Engineering University of Wyoming <u>mahmed@uwyo.edu</u>

Contact for CV Pilots Program/Site AORs:

 Kate Hartman, Program Manager, Wyoming DOT Site AOR; <u>Kate.hartman@dot.gov</u>

Visit CV Pilot and Pilot Site Websites for more Information:

- CV Pilots Program: <u>http://www.its.dot.gov/pilots</u>
- Wyoming DOT: <u>https://wydotcvp.wyoroad.info/</u>

