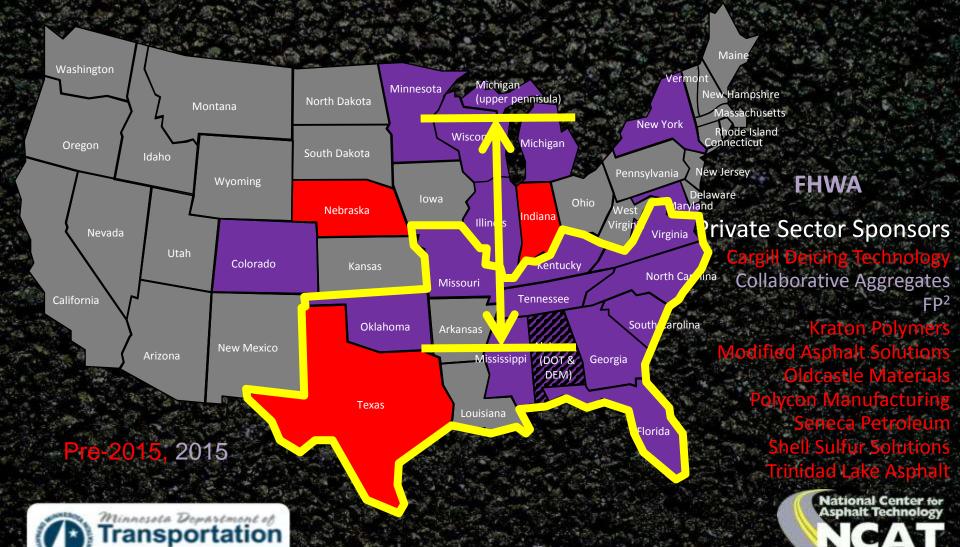
## NCAT Pavement Test Track



## NCAT


at AUBURN UNIVERSITY

Buzz Powell

Research Update at ND Asphalt Conference



## NCAT Pavement Test Track



at AUBURN UNIVERSITY

#### Content

- MnROAD Partnership
- Pavement preservation
- Laboratory cracking test(s)
- Standalone studies
- 2015 Track status report.



### NCAT+MnROAD Research Partnership

To facilitate high value pavement research that addresses national needs using full-scale pavement testing facilities in both warm and cold climates on flexible, rigid, and composite pavement structures.









### NCAT+MnROAD Research Partnership

To facilitate high value pavement research that addresses national needs using full-scale pavement testing facilities in both warm and cold climates on flexible, rigid, and composite pavement structures.









## 2015 Preservation Research

- NCAT Pavement Test Track (accelerated)
  - Thinlay, micro surface, Cape seal, scrub/chip seals
- Lee Road 159 (low ADT, high percent trucks)
  - Single/double/triple chips, scrub, FiberMat, sealing
  - Single/double micro surface, Cape x 3, sealing
    - Track thinlay, neat binder, ABR variants, CCPR base
- US-280 (high ADT, moderate percent trucks)
  - 159 + CCPR/CIR, OGFC, durable/friction micro, etc.
- Duplicate NCAT preservation sections at MnROAD.



## Cracking Group (CG) Section Surfaces

- 20% RAP control<sub>N1@20/0</sub>
- High density control<sub>N2@20/0</sub>
- Low AC/density control<sub>N5@21/0</sub>
- Control + 5% RAS<sub>N8@20/14</sub>
- Control +15% RAP with PG58-28<sub>S5@33/0</sub>
- Control with HiMA<sub>S6@19/0</sub>
- 15% RAP AZ rubber with ARB20<sub>S13@7/0</sub>.



## Cracking Group (CG) Section Surfaces

- 20% RAP control<sub>N1@20/0</sub>
- High density control<sub>N2@20/0</sub>
- Low AC/density control<sub>N5@21/0</sub>
- Control + 5% RAS<sub>N8@20/14</sub>
- Control +15% RAP with PG58-28<sub>S5@33/0</sub>
- Control with HiMA<sub>S6@19/0</sub>
- 15% RAP AZ rubber with ARB20<sub>S13@7/0</sub>.



### Standalone Research

- Use of fine/small blends
- Reduced design gyration levels
- Best use of RAP, RAS, and GTR
- Healthy (balanced) binder content
- Preventing reflective cracks.



### Fine/Small Blends

- Similar rutting performance to coarse/large
- Longer path for crack propagation
- Higher effective binder content
- Better cracking/raveling performance
- Sustainable surplus screenings stockpiles
- Pavement preservation treatment option.



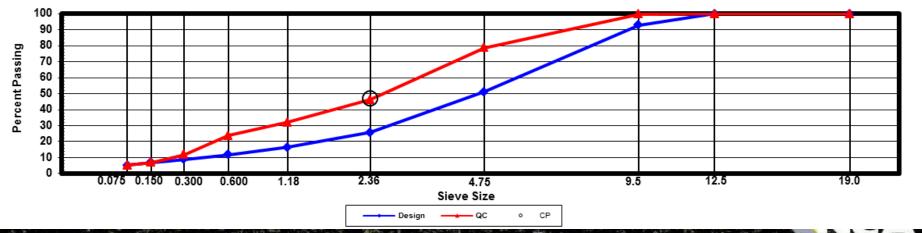
## Fine/Small Blends



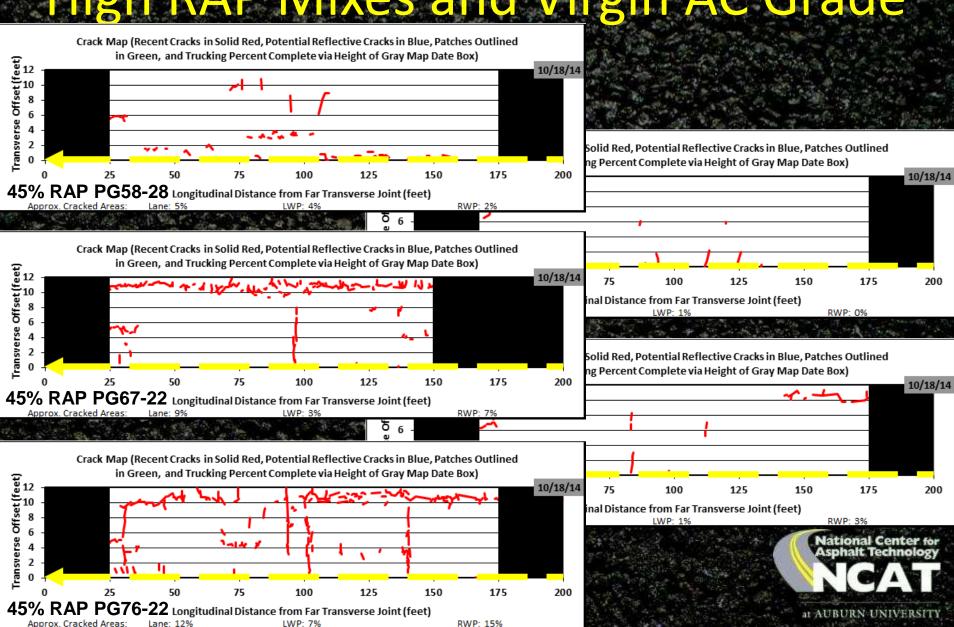


## Reduced Design Gyration Levels

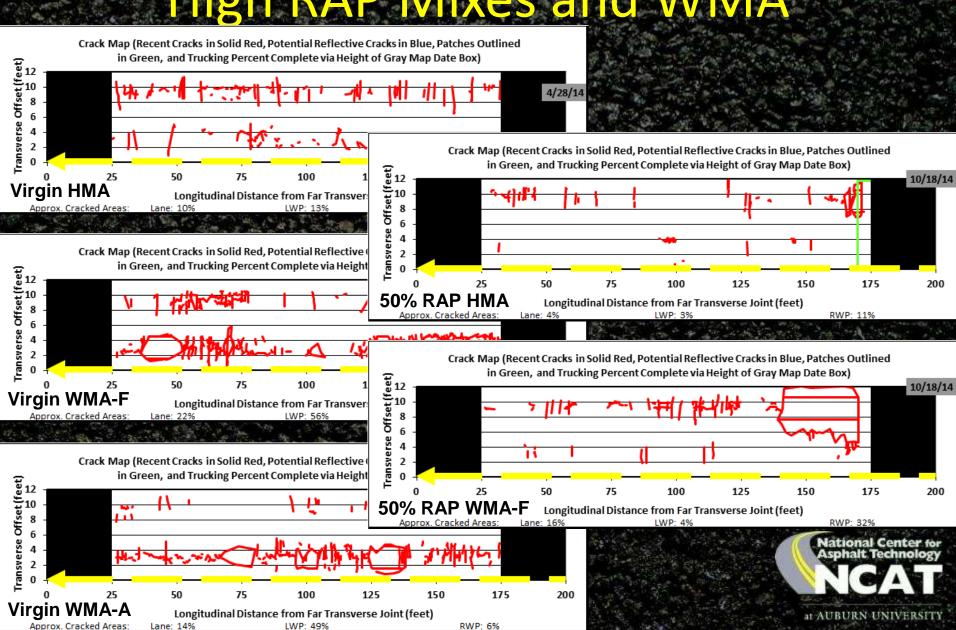
- 139 to 125 to 100 to 80 to 60 gyrations...
- "Locking point" to prevent aggregate breakdown
- Often more gyrations for higher traffic mixes
- More gyrations can mean lower binder contents
- Lowering gyrations alone is not enough
- Remember that VMA =  $V_a + V_{be}$  ( $G_{sb}$  is wildcard).




# Finer Mixes with Lower N<sub>des</sub>




## Finer Mixes with Lower N<sub>des</sub>



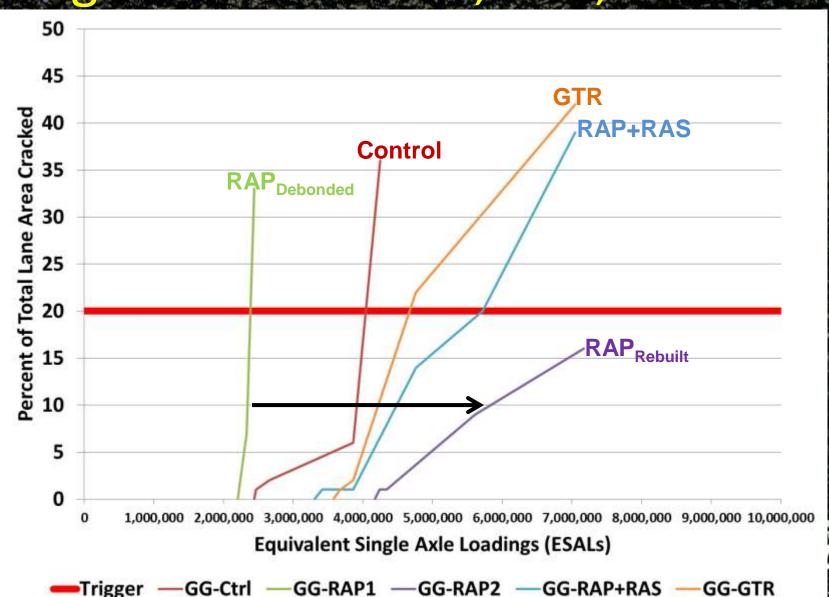



## High RAP Mixes and Virgin AC Grade



## High RAP Mixes and WMA




## Targeted Use of RAP, RAS, and GTR

| Purpose of<br>Each Layer | N5 Control            | S5 Higher RAP         | S6 RAP+RAS                | S13 Recyc Tires         |
|--------------------------|-----------------------|-----------------------|---------------------------|-------------------------|
| Durable, Rut             | 20% RAP <sub>20</sub> | 25% RAP <sub>11</sub> | 5% RAS <sub>21</sub>      | VIRGIN                  |
| Resistant Surface        | 67-22/82-16 DG        | 67-22/16-22 SMA       | 67-22/88-16 SMA           | 82-22 <sub>12</sub> SMA |
| Stiff, Strain            | 35% RAP <sub>39</sub> | 50% RAP <sub>41</sub> | 50% AGED <sub>26-24</sub> | 35% RAP <sub>37</sub>   |
| Reducing Middle          | 67-22/88-10 DG        | 67-22/82-16 DG        | 67-22/94-10 DG            | 82-22 <sub>12</sub> DG  |
| Fatigue Resistant        | 35% RAP <sub>39</sub> | 35% RAP <sub>34</sub> | 25% RAP <sub>24</sub>     | VIRGIN                  |
| Base Layer               | 67-22/88-10 DG        | 94-28/94-10 DG        | +76-22/88-16 DG           | 88-22 <sub>20</sub> AZ  |

Green = Evotherm Q1 Additive, Blue = Astec Green Foamer



## Targeted Use of RAP, RAS, and GTR





**Lanford Brothers Uses** 

#### In-Place Recyclin

on I-81 Project

Three recycling methods u in combination for the first on a project in the U.S. will Virginia both time and mor 23,000 AADT
28% Trucks
7.2 Lane Miles
CIR and
FDR+CCPR
\$7.6 Million

By Lisa Cleaver, editor



**S12** 

4-inch AC

5-inch CCPR

8-inch FDR

Subgrade

N4

4-inch AC

5-inch CCPR

6-inch Agg

Subgrade

**N3** 

6-inch AC

5-inch CCPR

6-inch Agg

Subgrade









## Cracking Group (CG) Study

- 20% RAP control<sub>N1@20/0</sub>
- High density control<sub>N2@20/0</sub>
- Low AC/density control<sub>N5@21/0</sub>
- Control + 5% RAS<sub>N8@20/14</sub>
- Control +15% RAP with PG58-28<sub>S5@33/0</sub>
- Control with HiMA<sub>S6@19/0</sub>
- 15% RAP AZ rubber with ARB20<sub>S13@7/0</sub>.



## Cracking Group (CG) Study

- 20% RAP control<sub>N1@20/0</sub>
- High density control<sub>N2@20/0</sub>
- Low AC/density control<sub>N5@21/0</sub>
- Control + 5% RAS<sub>N8@20/14</sub>
- Control +15% RAP with PG58-28<sub>S5@33/0</sub>
- Control with HiMA<sub>S6@19/0</sub>
- 15% RAP AZ rubber with ARB20<sub>S13@7/0</sub>.



# Cold Recycle in a Hot-Mix Plant



# Cold Recycle in a Hot-Mix Plant



## Cold Recycle in a Hot-Mix Plant





### Healthy Binder Content

- RAP in the past ≠ current RAP ≠ future RAP
- "Reclaimed/recycled content" is not enough
- "Aged binder ratio" (ABR) alone is not enough
- Use "RAP binder ratio" and "RAS binder ratio"
- Post consumer RAS vs manufacturing waste
- Soft asphalts, rejuvenators, richer mix designs
- Discounting contribution of RAP/RAS binders.



## Polymer Binders in Higher RAP Mixes



# Preventing Reflective Cracks



## Open Graded Interlayer (OGI)



contact CAT

JRN UNIVERSIT

## Triple Chip Interlayer



1st Treatment Applied: 7 Chip Seal
Placement Date: 8/8/2012
Emulsion Grade: CRS-2HP
Target Emulsion Rate (GSY): 0.26
Meas. Emulsion Rate (GSY): 0.28
Aggregate Type: Granite
Meas. Aggregate Rate (PSY): 23.0

2nd Treatment Applied: 89 Chip Seal
Placement Date: 8/8/2012
Emulsion Grade: CRS-2HP
Target Rate (gals / SY): 0.34
Measured Rate (gals / SY): 0.28
Aggregate Type: Granite
Meas. Agg. Rate (lbs / SY): 16.0

3rd Treatment Applied: W10 Chip Seal Placement Date: 8/9/2012

Emulsion Grade: CRS-2HP

Target Rate (gals / SY): 0.15

Measured Rate (gals / SY): 0.14

Aggregate Type: Granite

Meas. Agg. Rate (lbs / SY): 15.0



### **Preventing Reflective Cracks**

Quadrant: Section:

Quadrant: 12 Section:

#### Surface Mix and Materials

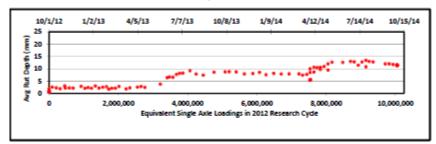
Year of Completion:

Specified Binder:

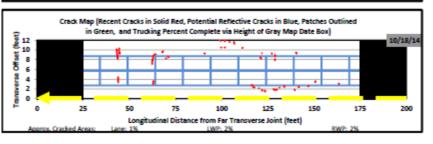
Mix Design Methodology:

Surface Mix Stockpiles:

#### Superpave PG67-22


#### Georgia Granite

#### Structural Buildup Information


| Study HMA (in): | 2       |
|-----------------|---------|
| Total HMA (in): | 24      |
| Base Material:  | Granite |
| Subgrade:       | Stiff   |

Research Objective: Reflective Crack Prevention with Triple Chip.

#### Preliminary Field Performance Data





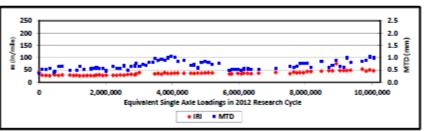


#### Surface Mix and Materials

#### Structural Buildup Information

Year of Completion: 2012 Mix Design Methodology: Superpave PG67-22 Specified Binder: Surface Mix Stockpiles: Georgia Granite

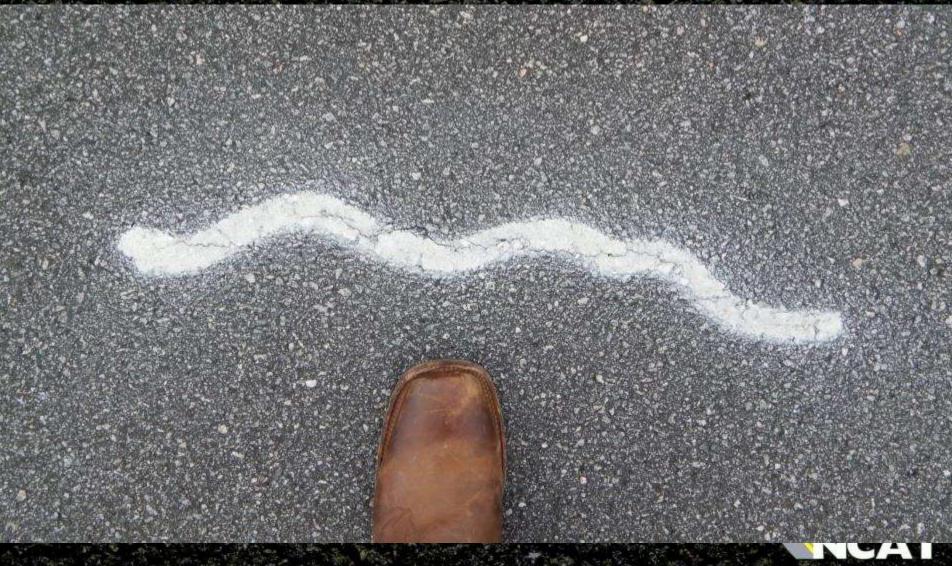
Study HMA (In): Total HMA (in): Base Material: Subgrade:


13

24 Granite

Research Objective: Reflective Crack Prevention with Open Graded Interlayer

#### Preliminary Field Performance Data








2.75

## Preventing Reflective Cracks



### Status Report

- High level of construction quality achieved
- >2 million ESALs on Track with nothing pending
- ≈½ million ESALs on LR-159 with good results
- ≈1 million vehicles on US-280 with good results
- Weekly data collection on Track, 159, & 280
- Planning for MnROAD treatments summer 2016.





### Takeaways

- Nationwide preservation with MnROAD
- Laboratory cracking test(s) with MnROAD
- Use of fine/small blends for (high ADT)
- Reduced design gyration levels (durability)
- Best use of RAP, RAS, and GTR (\$, sustainable)
- Healthy (balanced) binder content (cracking)
- Preventing reflective cracks in inlays/overlays.



## End-of-Cycle Track Conference



- High RAP/RAS balanced mix designs
- Nationwide pavement preservation
- Preventing reflective distresses
- Ontimized structural design
- Implementation



## **Pavement Test Track Conference**

March 6-8, 2018

The Hotel at Auburn University and Dixon Conference Center



www.ncat.us



www.ncat.us

#### Dr. R. Buzz Powell, PE

Assistant Director & Test Track Manager

277 Technology Parkway Auburn, AL 36830

Phone: (334) 844-6857

Cell: (334) 750-6293

Email: <u>buzz@auburn.edu</u>

Web: www.pavetrack.com

Twitter: <a href="https://www.twitter.com/pavetrack">www.twitter.com/pavetrack</a>

