Estimating Ridership of Rural Demand-Response Transit Services for the General Public

TRB 96th Annual Meeting
January 9, 2017

Jeremy Mattson
Small Urban and Rural Transit Center
Upper Great Plains Transportation Institute
North Dakota State University
Objective

Develop a model for estimating demand for rural demand-response transit services for the general public
Previous Demand Models

TCRP Report 161: *Methods for Forecasting Demand and Quantifying Need for Rural Passenger Transportation*

- General public rural passenger transportation
- Passenger transportation specifically related to social services or other programs
- Fixed-route transit in micropolitan areas
- Commuter services from rural counties to urban centers

ADA Paratransit Research

- Goodwill and Joslin (2013) *Forecasting Paratransit Services Demand - Review and Recommendations.*
 National Center for Transit Research, University of South Florida.
TCRP Report 161: Demand for rural general public, non-program-related service

• Two methods
 – Peer data
 • Passenger trips per capita, passenger trips per vehicle mile, passenger trips per vehicle hour
 • Calculate mean, median, and ranges for systems in similar settings
 – Demand function developed based on 2009 rural NTD data
 • Based on the assumption that older adults, people with mobility limitations, and people without access to a vehicle represent the main users of these services

\[
\text{Non-program Demand (trips per year)} = (2.20 \times \text{Population Age 60+}) + (5.21 \times \text{Mobility Limited Population Age 18-64}) + (1.52 \times \text{Residents of Household Having No Vehicle})
\]
Factors Affecting Ridership

• Demand for the service
 – Population
 – Demographics

• Level of service provided/Service characteristics
 – Days per week
 – Hours per day
 – Advance reservation requirements
 – Both demand-response and fixed-route?
 – Overlap in service area?
 – Regional or cultural differences, tribal transit?

• Cost of the service
Population and Demand-Response Transit Ridership
Models

• Two models
• Data sources
 – Model #1
 • Rural National Transit Database, 2013
 • American Community Survey (ACS) 2009-2013 5-year estimates
 – Model #2
 • Survey of rural transit agencies
Model #1

• Ridership is determined by:
 – Demand factors
 • Service area population
 • Demographic characteristics of service area
 – Percentage older adult (65 or older)
 – Percentage without a vehicle
 – Percentage with a disability
 – Service characteristics
 • Operates both fixed-route and demand-response
 • Service area overlaps
 • Serves only a municipality
 – Fare level
 – Other
 • Tribal transit
 • Region

• Data for 731 agencies for 2013
Limitations of Rural NTD Data

• Incomplete and imprecise service area information
• No data:
 – Hours per day
 – Days per week
 – Advance reservation requirements
 – Type of service provided
Survey of Transit Agencies

• Previous study conducted in North Dakota and Florida
Survey of Transit Agencies

• Collected detailed information
 – Geographic service area
 – Span of service
 – Advance reservation requirements
 – Service eligibility and type

• Additional surveys conducted nationwide

• Data collected for 68 rural demand-response transit agencies
Model #2

• Ridership is determined by:
 – Service area population
 – Hours of service per day
 – Days of service per week
 – Advance reservation time
 – Operates both fixed-route and demand response
 – Fare level
<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Estimated coefficient</th>
<th>Standard error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(Population)</td>
<td>0.83</td>
<td>0.02</td>
<td>0.000</td>
</tr>
<tr>
<td>Percentage elderly</td>
<td>7.99</td>
<td>0.99</td>
<td>0.000</td>
</tr>
<tr>
<td>Percentage with no vehicle</td>
<td>21.15</td>
<td>5.65</td>
<td>0.000</td>
</tr>
<tr>
<td>Percentage with disability</td>
<td>-0.46</td>
<td>1.20</td>
<td>0.703</td>
</tr>
<tr>
<td>Fixed-route</td>
<td>-0.65</td>
<td>0.11</td>
<td>0.000</td>
</tr>
<tr>
<td>Percentage overlap</td>
<td>-0.41</td>
<td>0.10</td>
<td>0.000</td>
</tr>
<tr>
<td>Municipality</td>
<td>0.77</td>
<td>0.10</td>
<td>0.000</td>
</tr>
<tr>
<td>Tribal</td>
<td>0.30</td>
<td>0.31</td>
<td>0.333</td>
</tr>
<tr>
<td>Ln(Fare)</td>
<td>-0.24</td>
<td>0.04</td>
<td>0.000</td>
</tr>
<tr>
<td>Region 1</td>
<td>-0.60</td>
<td>0.33</td>
<td>0.071</td>
</tr>
<tr>
<td>Region 2</td>
<td>-0.57</td>
<td>0.42</td>
<td>0.170</td>
</tr>
<tr>
<td>Region 3</td>
<td>-0.56</td>
<td>0.25</td>
<td>0.027</td>
</tr>
<tr>
<td>Region 4</td>
<td>-0.81</td>
<td>0.19</td>
<td>0.000</td>
</tr>
<tr>
<td>Region 5</td>
<td>0.50</td>
<td>0.20</td>
<td>0.012</td>
</tr>
<tr>
<td>Region 6</td>
<td>-0.15</td>
<td>0.22</td>
<td>0.480</td>
</tr>
<tr>
<td>Region 7</td>
<td>-0.36</td>
<td>0.19</td>
<td>0.057</td>
</tr>
<tr>
<td>Region 8</td>
<td>0.09</td>
<td>0.19</td>
<td>0.628</td>
</tr>
<tr>
<td>Region 9</td>
<td>0.16</td>
<td>0.25</td>
<td>0.523</td>
</tr>
</tbody>
</table>
Results: Model #1

- **Population** has a positive effect on ridership.
 - A 1% increase in population leads to a 0.83% increase in ridership.

- **Demographics** impact ridership.
 - Areas with a higher percentage of older adults or households without access to a vehicle have higher levels of ridership.
 - If the percentage of the population that is aged 65 or older increases by one percentage point, ridership increases by 8%.
 - If the percentage of the population without a vehicle increases by one percentage point, ridership increases by 21%.
Results: Model #1

• Agencies that provide both fixed-route and demand-response service have lower levels of demand-response ridership than agencies that provide just demand-response service, after accounting for all other variables.

• Agencies that serve areas where more than one transit provider is available have lower levels of ridership.

• Demand-response providers that strictly serve a municipality have higher levels of ridership than those serving a larger geographic area, after accounting for population and other factors.
Results: Model #1

- **Fares** have a negative impact on ridership. A 1% increase in fares leads to a 0.24% reduction in ridership.

- There are some **regional differences** in ridership not accounted for by these variables. Notably, region 5 agencies have higher levels of ridership, and agencies in regions 3 and 4 have lower levels.
Out-of-Sample Validation

- Results from the model were used to predict ridership for 2014
- Predicted ridership was compared to actual ridership

<table>
<thead>
<tr>
<th>Population</th>
<th>Model #1</th>
<th>TCRP 161 Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population under 100,000 (n=688)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>55,579</td>
<td>73,941</td>
</tr>
<tr>
<td>MAE</td>
<td>23,506</td>
<td>28,669</td>
</tr>
<tr>
<td>Population under 50,000 (n=544)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>48,231</td>
<td>71,439</td>
</tr>
<tr>
<td>MAE</td>
<td>19,536</td>
<td>26,027</td>
</tr>
</tbody>
</table>
Results: Model #2

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Estimated Coefficient</th>
<th>Standard Error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(Population)</td>
<td>0.69</td>
<td>0.07</td>
<td><.0001</td>
</tr>
<tr>
<td>Percentage population with 6 or 7 days</td>
<td>1.65</td>
<td>0.80</td>
<td>0.0439</td>
</tr>
<tr>
<td>Percentage population with 5 days</td>
<td>1.41</td>
<td>0.69</td>
<td>0.046</td>
</tr>
<tr>
<td>Percentage population with 12 or more hours</td>
<td>0.50</td>
<td>0.43</td>
<td>0.2545</td>
</tr>
<tr>
<td>Percentage population with less than 5 hours</td>
<td>-0.40</td>
<td>1.20</td>
<td>0.7397</td>
</tr>
<tr>
<td>Same-day reservation</td>
<td>2.01</td>
<td>0.55</td>
<td>0.0006</td>
</tr>
<tr>
<td>Prior-day reservation</td>
<td>1.24</td>
<td>0.56</td>
<td>0.0321</td>
</tr>
<tr>
<td>Fixed-route</td>
<td>-0.65</td>
<td>0.39</td>
<td>0.1013</td>
</tr>
<tr>
<td>Ln(Fare)</td>
<td>-0.12</td>
<td>0.07</td>
<td>0.0843</td>
</tr>
</tbody>
</table>
Results: Model #2

• **Population** has a positive effect on ridership.
 – A 1% increase in population leads to a 0.69% increase in ridership.

• Ridership is impacted by the **number of days that service is available**.
 – As the percentage of service area population with service 5 days per week increases by one percentage point, ridership increases 1.41%.
 – Ridership increases 1.65% as the percentage of service area population with service 6 or 7 days per week increases by one percentage point.
Results: Model #2

- **Advance reservation time** has a negative impact on ridership.
 - Compared to agencies that require reservation two or more days in advance, ridership is 124% higher for providers that require reservation one day in advance and 201% higher for agencies that allow same-day service.

- Agencies that provide both fixed-route and demand-response service have lower levels of demand-response ridership than agencies that provide just demand-response service, after accounting for all other variables.

- **Fares** have a negative impact on ridership.
 - A 1% increase in fares leads to a 0.12% reduction in ridership.
Applications

• Forecast demand for new service
• Estimate the impact of service changes
 – Geographic coverage
 – Span of service
 – Fares
 – Reservation requirements
• Project future ridership based on population and demographic changes
Conclusions

• **Demographic characteristics** are important
 – Older adults
 – People without access to a vehicle
• **Geographic characteristics** of service are important
• **Fare** elasticity estimated at -0.12 to -0.24
• **Availability of service/quality of service** impacts ridership
 – Agencies providing more days of service had higher levels of service
 – Advance reservation time is important
Conclusions

• Two new tools for estimating ridership
• A greater number of variables and more specific service information improves the performance
• Limited by data availability
• Identify high-productivity systems
• Many factors specific to each agency and community not captured by the model
Thank you!

Questions?

jeremy.w.mattson@ndsu.edu

www.surtc.org