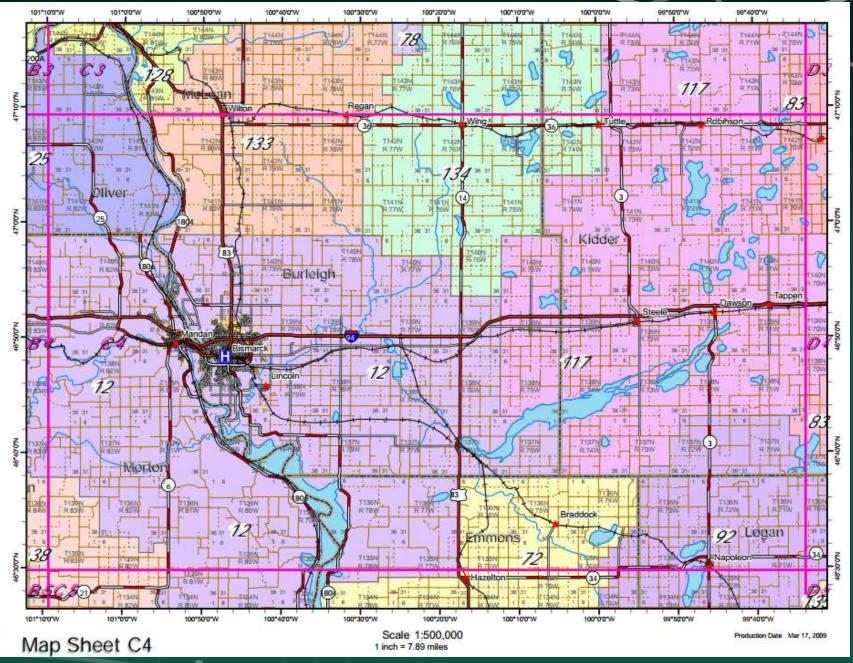
Designing Service Coverage and Measuring Accessibility and Serviceability INFORMS Annual Meeting San Francisco, CA November 9-12, 2014

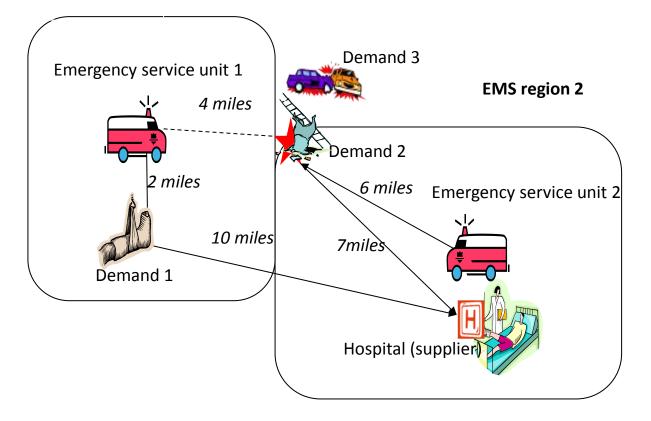
EunSu Lee, Ph.D., GISP, CPIM, CSCP

NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE


Agenda

- Introduction
- Objectives
- Previous Studies
- Model Development
 - Potential Accessibility
 - Potential Serviceability'
 - Service Coverage
- Conclusions
- Q & A

- Planning of Emergency Medical Service (EMS)
 - Urban Area
 - Congestion
 - Rural Area
 - Road condition
 - Service distance
- Equality and Quality of Life



Source of the map: https://www.ndhealth.gov/EMS/pdfs/Map_Book/Map%20Book%20Web%20Version2.pdf

DSUUPPER GREAT PLAINS TRANSPORTATION INSTITUTE

EMS region 1

- Challenges of rural EMS
 - Insufficient revenue
 - Difficulty in recruiting ambulance service employees and volunteers
 - Natural barriers
 - Changing demographics
- In need of collaboration and efficient operations

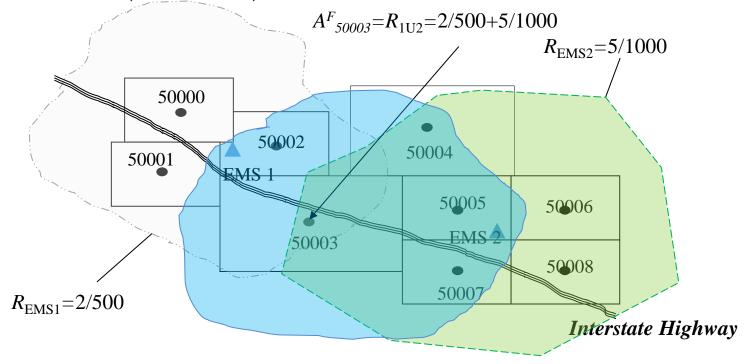
- Unlikely to provide equal service and response time throughout heterogeneous service areas
- Needs of Scientific planning
 - Rationalizing service coverage plans and response prediction
 - Providing effective public service
 - Ensuring disadvantaged groups and impaired individuals receive appropriate emergency responses

Objectives

- Designing service coverage
 - GIS-based spatial analysis
 - Analytical models to measure
 - Potential accessibility with demand-covered-ratio
 - Potential serviceability with ambulance-coveringratio
- Location planner and service designer to assess and provide rational service coverage
 - Continuous improvement

Objectives

- how well the coverage matches the population distribution
- how quickly the ambulances serve the demands
- to provide maximum coverage with a fixed number of facilities.


Previous Studies

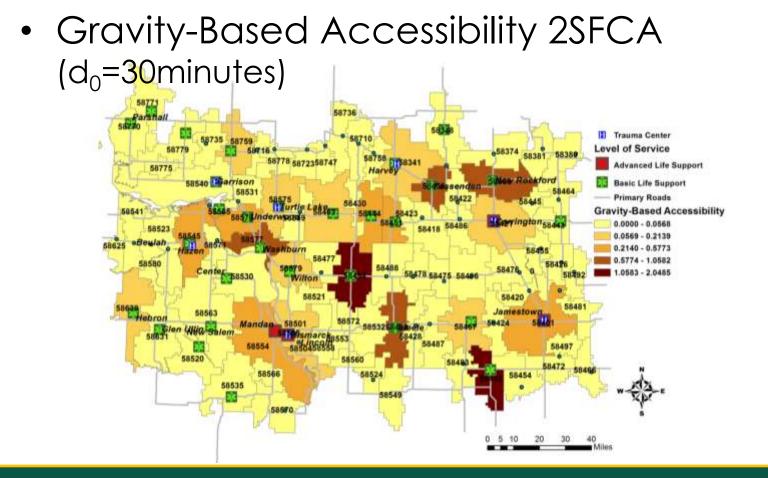
- Finding shortest path from emergency service units to crash locations
- searching service coverage based on the population of zip codes
- minimizing the required number of facilities and EMS regions using a location set covering model
- maximum coverage with a fixed number of facilities.

Previous Studies

• Illustration of the two-step floating catchment method (2SFCM).

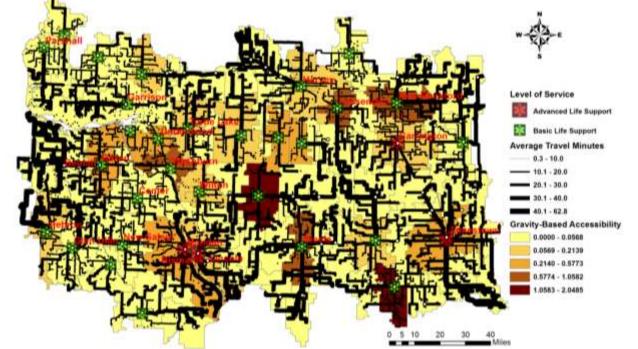
Model Development

- Data Sources
 - Roads Network
 - Population Data
 - Zip codes Polygons
 - EMS Locations
 - Advanced Life Support
 - Basic Life Support



Model Development

Population density and roads



NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

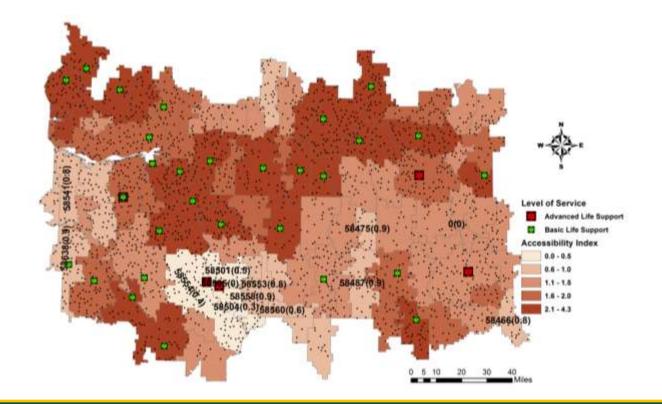
Response Time

 Fastest Routes from Ambulance to random Incidents

Note: Some regions will show bias from the real practices due to unconnected roads links used in the study

Potential Accessibility

Average response time to a zip code


$$\overline{T}_{z} = \frac{\sum_{i \in z, j \in w_{i}} t_{ji}}{N_{i \in z}} \qquad \forall i \in M$$

Potential Accessibility

$$A_{z} = \frac{t_{0}^{z}}{T_{z}}$$

• Potential Accessibility Index

NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

Potential Accessibility

Demand-covered-ratio

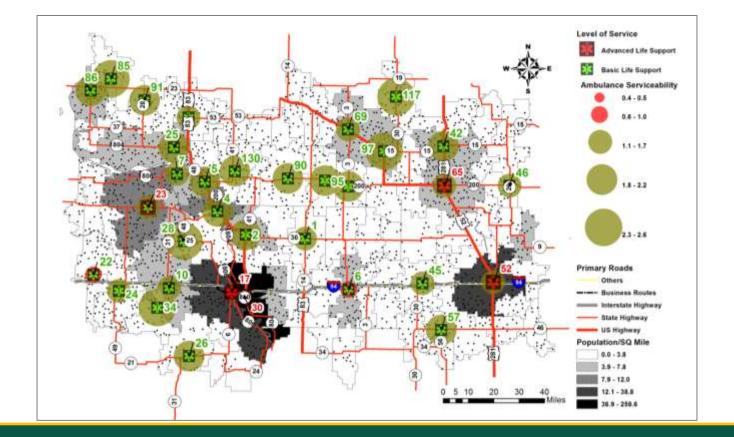
$$C_{z}(\%) = \frac{N(t_{ji} \le t_{0}^{z})}{N_{i}} \times 100$$

 $\forall i \in z, i \in M, j \in W_i$

Potential Accessibility

Accessibility and Coverage Ratio

ZIP	Required	# of	# of	Travel Distance (miles)			Response Time (minutes)			Accessibility	Demand-
code	service time (t ^z ₀)	Random events	events within t_o^z	Mean	Min	Max	Mean	Min	Max	(A_z)	Covered- Ratio (<i>C_z</i>)
58504	9	26	4	18.2	2	37.7	20	2.2	46.7	0.4	15.38%
58554	9	97	17	15.4	0.9	35.5	17	0.9	36.1	0.5	17.53%
58501	9	28	5	12.4	0.8	19.7	13.6	0.8	22.3	0.7	17.86%
58560	20	7	4	30.8	25.1	36.1	31	26.6	38.8	0.6	57.14%
58541	30	24	6	40.1	24.3	51.4	44.2	26.5	52.3	0.8	25.00%
58466	30	20	3	37.2	25.5	47.9	36.8	24.4	48	0.8	15.00%
58553	20	6	1	25.9	14.4	35.7	26.3	12.1	38.4	0.8	16.67%
58625	30	13	2	38.4	33	48.3	46.4	40.5	50.4	0.9	15.38%
58475	30	11	5	29.2	20.9	38.9	32.5	25.1	42.1	0.9	45.45%
58638	20	55	28	17	2.9	44.9	22.9	3.2	58.9	0.9	50.91%
58487	20	23	9	21.3	13.6	30.1	22.8	12.7	33.8	0.9	39.13%


 Ambulance's average response time to serve the community without restrictions by the service boundary

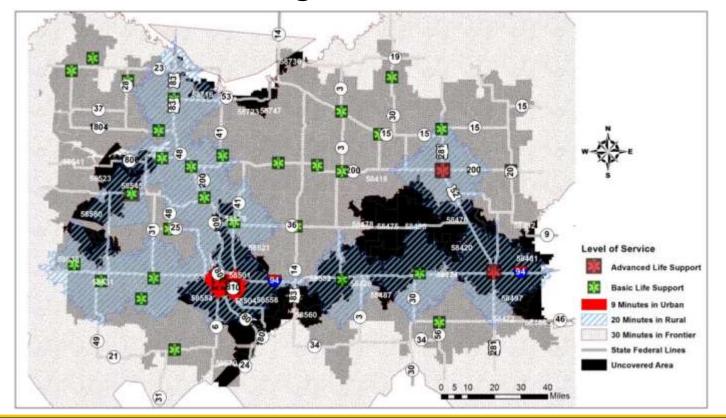
$$\overline{T}_{j} = \frac{\sum_{i \in M_{j}} t_{ji}}{N_{i \in M_{j}}}$$

• Serviceability index for a location

$$S_{j} = \frac{t_{o}^{j}}{\overline{T}_{j}}$$

NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

• Ambulance-Covering-Ratio


$$C_{j}(\%) = \frac{N_{(i \in M_{j}, t_{ji} < t_{0}^{j})}}{N_{i \in M_{j}}} \times 100$$

Ambulance Location	Required service time (t_o^j)	# of Random events	# of events within t ^j _o	Travel Distance (miles)			Response Time (minutes)			Serviceability	Ambulance-
				Mean	Min	Max	Mean	Min	Max	(S_j)	Covering- Ratio (<i>C_j</i>)
30	9	83	19	17.4	0.8	37.7	18.8	0.8	46.7	0.5	22.89%
17	9	93	29	15.6	0.9	35.5	17.1	0.9	36	0.5	31.18%
31	20	146	82	20.3	3.3	50.4	22.4	3.3	62.8	0.9	56.16%
22	20	45	28	14.7	2.9	33	19.9	3.2	47.1	1	62.22%
6	20	133	77	18.2	3.1	35.1	19.7	3.6	37.4	1	57.89%
52	20	175	143	18.4	0.7	47.9	18.9	0.7	48	1.1	81.71%
45	20	87	71	15.9	0.5	38.9	17.5	0.6	42.1	1.1	81.61%
24	20	89	66	13.7	0.7	34	16.5	0.7	52.4	1.2	74.16%
137	20	78	75	13.5	3.6	33.8	14.5	3.6	36.7	1.4	96.15%
23	20	15	15	12.1	2.2	17.6	14.4	2.2	23.9	1.4	100.00%
65	20	93	93	13.5	3.3	28.3	14.4	3.7	29.2	1.4	100.00%
1	30	73	54	18.2	1.2	38.1	20.6	1.2	38.8	1.5	73.97%
46	30	102	92	19.1	2.7	36.2	20.6	4.1	37.7	1.5	90.20%
10	20	63	47	11.5	0.3	23.6	12.9	0.3	24.6	1.5	74.60%
69	30	117	103	16.8	0.7	39.9	17.7	0.8	39.7	1.7	88.03%
7	20	16	16	9.6	0.9	13.6	11.9	0.9	17.6	1.7	100.00%

Service Coverage

• Service Coverage Estimated

Conclusions

- Developed Public Communications tool
 - for Residents
 - Potential accessibility with Relative demandcovered-ratio
 - for Ambulance Service Provider
 - Potential serviceability with Relative ambulancecovering-ratio
- Created Service coverage
 - For Continuous improvement

Future Research

- Transportation
 - Finer Traffic Analysis Zone
 - Using the Census Block 2010
 - Utilize Navigable Roads Network
- Statewide analysis
- Dynamic impacts
 - considering seasonal effects
 - Considering first respondents response time to reach ambulance in rural area

Q & A

Reference and contact information

Systems 2014, 2, 34-53; doi:10.3390/systems2010034

OPEN ACCESS

Article

Designing Service Coverage and Measuring Accessibility and Serviceability of Rural and Small Urban Ambulance Systems

EunSu Lee

Upper Great Plains Transportation Institute, North Dakota State University, 1616 12th Ave. N. #210E, Fargo, ND 58102, USA; E-Mail: eunsu.lee@ndsu.edu; Tel.: +1-701-205-1525; Fax: +1-701-231-7067

