County and Local Transportation Infrastructure Needs

North Dakota Transportation Coalition October 27, 2014

Denver Tolliver Director: Upper Great Plains Transportation Institute

NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

Contents

- Overview of studies
 - Roads and bridges
 - 4-county study
 - Regional railroad study
- Overview of approach
- Summary of results
- Remaining tasks and timeline

Background

- Third study for legislature and governor
- Requested to present to interim committees:
 - Economic Impact
 - Energy Development and Transmission
 - Budget Section
- Periodic updates for NDDOT

Key Factors in County Road Study

Oil and Gas	Agriculture
Number of wells	Cultivated acres
Well locations	Crop mix
Production rate/curve	Yield
Inputs/outputs	Crop densities
Gathering	Elevator
pipeline	network

Key Factors in Road Study (cont.)

Traffic	Road
Truck trips	Surface type
Truck axles/weights	Width & design
ESALs	Age & condition
Avg. Daily Traffic	Soil

Infrastructure Data Collection

- Goal: build a consistent county database across state
- Traffic counts and vehicle classifications
- Road geometry [width]
- Road structure [layers, depths, support]
- Current road condition
- Road jurisdiction/ownership
- Bridge attributes

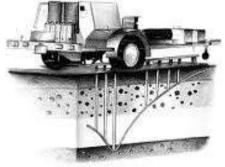
County Traffic Counts 2013

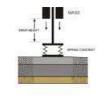
- Volume Only
- Truck Classification

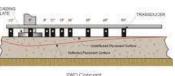
Pavement Data Collection

Objective – collect pavement distress, ride , strength and geometric information on paved county roads to determine remaining life and projected construction costs

- Condition Data Collection
 - Collect data with NDDOT pathway van
 - 5,600 miles of paved county roads
 - Will not collect short segments




- Van will provide consistent pavement distress and ride information
- Collection in July, August, Sep. 2013



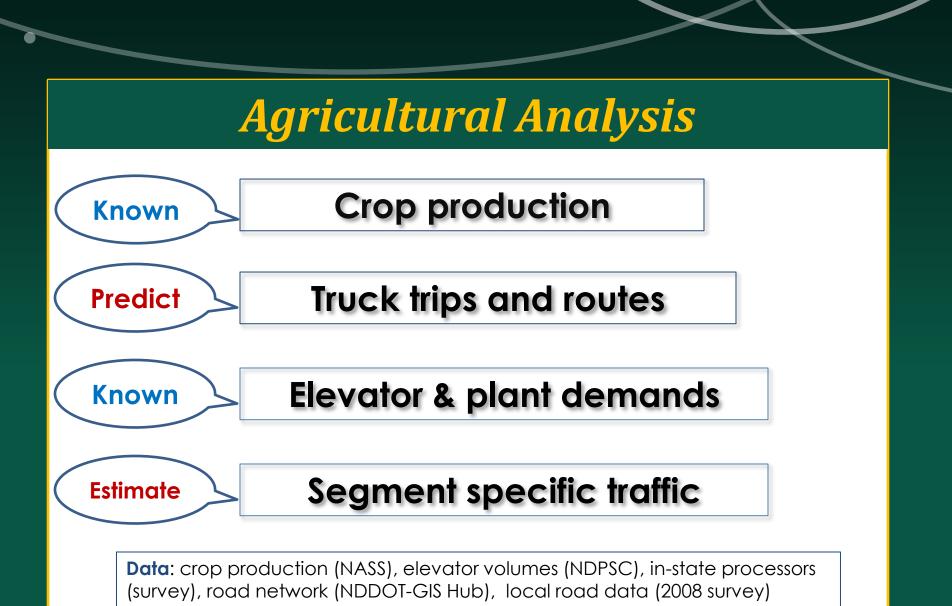
Pavement Data Collection

- Non-Destructive Testing verify prior estimates on subgrade strength
 - Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR)
 - Western ND all pavements not recently improved
 - Eastern ND selected based on agricultural production facilities and other major traffic generators
 - FWD will be done first and GPR will be done on the sites thumped with FWD

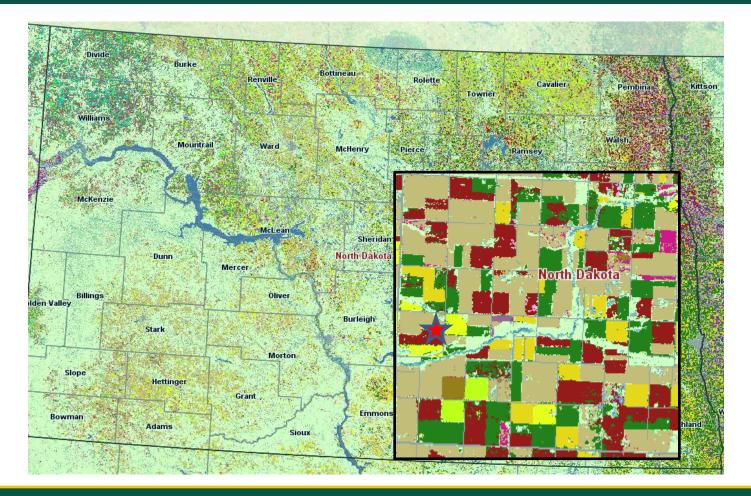
Data Collection: County Survey

- Aggregate (gravel) costs
- Gravel production techniques
- Placement costs
- Transportation costs from pit to roads
- Dust suppressant usage/costs
- Stabilization usage/costs
- Intermediate practices
 - Stabilization armor coat
 - Double chip seal/armor coat
 - Others

Model Components


- 20 year forecasts for agricultural and oil production
- Ag forecasts specific to township and crop
 - Reflect county yields and yield forecasts
 - Changing crop mix
- Oil forecasts
 - Specific to spacing unit
 - Reflect filling in over time
 - All inputs and outputs
- Baseline traffic

Drilling Related Truck Movements


NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

Slide 14

Crop Production and Location

NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

Wheat Movements

Gravel Road Analysis

- Life-cycle cost analysis practices
 - Graveling and blading
 - Normal levels (e.g. regraveling every 5 years, blade once per month)
 - Increased levels (e.g. regraveling every 3-4 years, blade twice per month)
 - High levels (e.g. regraveling every 2-3 years, blade once per week)
 - Usage of dust suppressant on impacted roads

Paved Road Analysis Process

- AASHTO 1993 Design Guide
- Predict year & type of improvement
- Improvement threshold based on pavement condition
- Year of improvement based on:
 - Existing structural capacity
 - Existing condition
 - Forecasted ESALs (Equiv. Single Axle Loads)

Paved Road Improvements/Maint.

- Improvement type
 - Overlay
 - Sliver widening
 - Reconstruction
 - Mine & blend
- Normal maintenance
 - Chip seals
 - Crack sealing and patching
 - Other

County Bridge Analysis

- Current NBI (County and Township)
 - Identified structurally deficient and functionally obsolete bridges
 - Estimate replacement unit cost from recent ND bridge projects
 - Survey counties for biennial maintenance cost
 - Forecast replacement of deficient and obsolete bridge

County and Township Bridges

- 37% are 50 years or older
- Over 20% are structurally deficient; others are functionally obsolete
- 490 bridges with capital improvement needs; almost all immediate
- \$329 million of needs (\$251 million for replacement)

Status of County Bridges

Status (2013)	Number	Percentage
Not Deficient	1,729	70.11%
Structurally Deficient	552	22.39%
Functionally Obsolete	185	7.5%
Total Bridges	2,466	100%

Projected Bridge Improvements

Treatment	Number	Subtotal
Deck Rehabilitation	4	99
Rehab. & Widening	95	
Bridge Replacement	110	200
Culvert Replacement	280	390

County and Township Roads

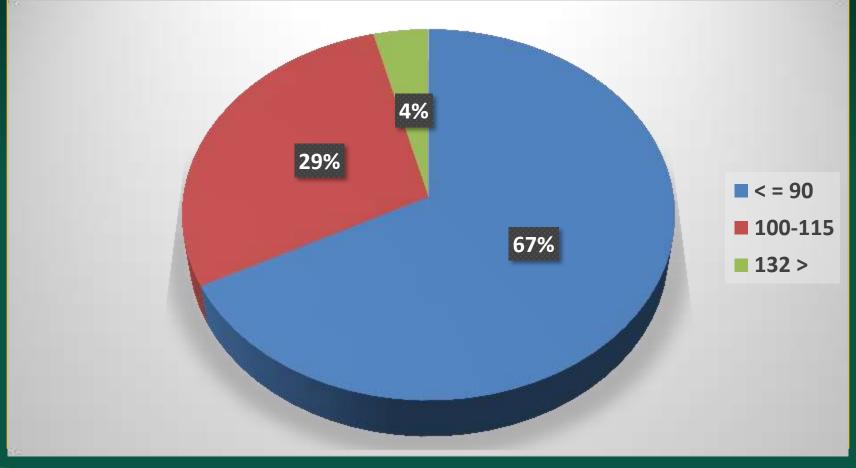
- Paved road improvement needs:
 - Resurfacing
 - Widening
 - Reconstruction
 - Preservation/ maintenance
- Unpaved road needs
 - Accelerated maintenance (graveling and blading)

County Road Investment Needs by Surface Type (\$2014 Million)

Biennium	Gravel	Paved	Total
2015-2016	\$606.40	\$395.00	\$1,001.40
2017-2018	\$547.60	\$345.60	\$893.20
2019-2020	\$547.60	\$305.33	\$852.93
2015-2034	\$5,456.60	\$2,744.15	\$8,200.75

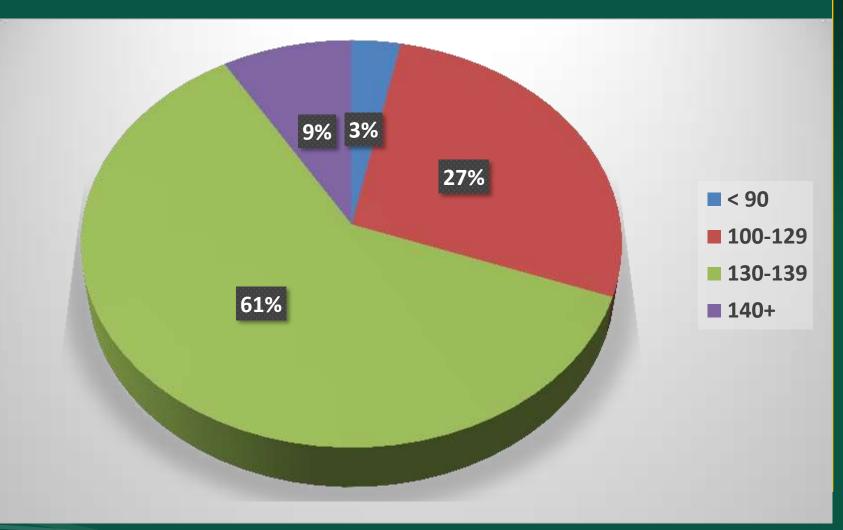
County Road Investment Needs by Region (\$2014 Million)

Biennium	East	West
2015-2016	46%	54%
2017-2018	52%	48%
2019-2020	45%	55%
2021-2022	44%	56%
2015-2034	49%	51%


Slide 26

Regional Railroad Infrastructure

- 1,200+ miles
- Inherited from Class I railroads
- Mostly light weight rails: age 100+ years
- Important to agriculture and energy
- Accumulated investment needs



Rail Weights (lb/yd) ND Regional Railroads

NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

Rail Weights: U.S. Class I Railroads

Next Steps/Timeline

- Comments on county road study
- 4-county study
- Regional railroad study
- Expected reports to legislature