Study Goals

• Use improved data, traffic projections, and modeling techniques to improve on prior studies

• Better forecast of statewide investment needs for county and township roads and bridges, by biennium, for next 20 years

• Complete related work by late June 2014
Study Process

- Data collection on existing paved & gravel roads and bridges
- Data analysis
- Modeling - project future use (volumes & types)
- Project short- and long-term needs and costs
Coordination

• NDDOT
• North Dakota Association of Counties
• North Dakota Township Officers Association
• Industrial Commission - Oil & Gas Division
• North Dakota Petroleum Council
• North Dakota Agricultural Commodity Groups
• Kadrmas, Lee & Jackson
• Others
Data Collection - Completed

- County & township cost surveys
- Traffic counts – volume & vehicle types
- Ride quality – NDDOT Pathways van
- Structural pavement data - falling weight deflectometer (FWD) and ground penetrating radar (GPR)
- Traffic projections – oil & agriculture
- Roadway maintenance cost projections
- National Bridge Inventory data sets
Data Collection – Traffic Counts

• Traffic counts – volume and classification data on county and township roads for travel demand models and ESAL (equivalent single axle load) calculations:
 o Joint collection - NDDOT staff and NDSU students
 o Number of counts taken - 1000+
 o Number of classification counts – 670
County Traffic Counts 2013

- Volume Only
- Truck Classification

Map showing county traffic counts with markers indicating volume only and truck classification.
Data Collection – Structural Data

• Falling weight deflectometer (FWD) and ground penetrating radar (GPR)
 o Verify prior estimates on subgrade strength and pavement/base layer thickness
 o Western ND – test all pavements not recently improved
 o Eastern ND – selected based on agricultural production facilities and other major traffic generators
 o 1560 miles tested
Data Collection – Cost Projections

- Gravel costs & production techniques
- Placement costs
- Transportation & placement costs
- Dust suppressant costs
- Intermediate practices
 - Stabilization armor coat
 - Double chip seal/armor coat
 - Others
Traffic Modeling Goals

• Update and enhance county and local roads traffic projection model developed for the 2011-13 legislative study

• Expanded data sets and enhanced models will facilitate better need and cost projections
Traffic Modeling Tools

• CUBE
 o Used to analyze impacts of various operating conditions & infrastructure improvements - study is utilizing 20 subset models

• Highway Performance Monitoring System (HPMS)
 o Used to predict road & bridge deterioration and subsequent maintenance & rehabilitation needs

• Highway Economic Requirements System (HERS-ST)
 o Identifies infrastructure deficiencies & selects most cost-effective mix of improvements
Traffic Projections

• Oil
 o Multiple discussions with Oil & Gas Division
 o Well sites, sand locations, & transload facilities

• Agriculture
 o Statewide grain elevator shipment data
 o Forecasts of crop types and yields

• Passenger
• Manufacturing
• Through traffic
<table>
<thead>
<tr>
<th>Oil – Drilling Process</th>
<th>Trucks per Well</th>
<th>Inbound or Outbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>100</td>
<td>Inbound</td>
</tr>
<tr>
<td>Water (fresh)</td>
<td>450</td>
<td>Inbound</td>
</tr>
<tr>
<td>Water (waste)</td>
<td>225</td>
<td>Outbound</td>
</tr>
<tr>
<td>Fracturing tanks</td>
<td>115</td>
<td>Both</td>
</tr>
<tr>
<td>Rig equipment</td>
<td>65</td>
<td>Both</td>
</tr>
<tr>
<td>Drilling mud</td>
<td>50</td>
<td>Inbound</td>
</tr>
<tr>
<td>Chemical</td>
<td>5</td>
<td>Inbound</td>
</tr>
<tr>
<td>Cement</td>
<td>20</td>
<td>Inbound</td>
</tr>
<tr>
<td>Pipe</td>
<td>15</td>
<td>Inbound</td>
</tr>
<tr>
<td>Scoria/gravel</td>
<td>80</td>
<td>Inbound</td>
</tr>
<tr>
<td>Fuel trucks</td>
<td>7</td>
<td>Inbound</td>
</tr>
<tr>
<td>Frac/cement pumper trucks</td>
<td>15</td>
<td>Inbound</td>
</tr>
<tr>
<td>Workover rigs</td>
<td>3</td>
<td>Both</td>
</tr>
<tr>
<td>Total trucks</td>
<td>2,300</td>
<td></td>
</tr>
</tbody>
</table>
Oil Well Shipment Projections

- Wastewater
- Outbound oil to pipeline locations or transload facilities
Oil Exploration Traffic Projections
Agricultural Shipment Projections

- **Known**
 - Crop production
- **Predict**
 - Truck trips and routes
- **Known**
 - Elevator & plant demands
- **Estimate**
 - Segment specific traffic
Crop Movement Projections - Canola
Modeling - Road Maintenance

• Life-cycle cost analysis - graveling and blading
 o Normal levels (regraveling every 5 years, blade 1/month)
 o Increased levels (regraveling every 3-4 years, blade 2/month)
 o High levels (regraveling every 2-3 years, blade 1/week)
 o Usage of dust suppressant on impacted roads
Gravel Road Projections

• Intermediate improvements
 o Graveling and base stabilization
 o Graveling and base stabilization with armor coat
 o Others as reported at the county level

• Asphalt surfacing
Gravel Road Projections

- Traffic model segmented based on traffic levels
- County-specific practices used as the base maintenance practices
- Life cycle costs calculated (i.e. 20-year cost of graveling)
- Maintenance type/improvement selected for AADT (annual average daily traffic) class based on minimum life cycle cost
Pavement Projections

- Pavement deterioration and recommended improvement process
 - Estimate remaining life given current condition and traffic levels
 - Verify past assumptions on layer thickness and subgrade strength
 - Apply traffic projections and present serviceability rating
 - Determine recommended improvements and costs based on width, starting condition, and future traffic estimates
Bridge Analysis & Projections

- 2,593 bridges on county/local system
 - 45% (1,167) more than 50 years old (theoretical design life)
 - 20% (519) more than 70 years old
Bridge Analysis & Projections

- Condition/appraisal data from National Bridge Inventory
 - 568 (22%) structurally deficient – one or more components rated in “poor” condition (not inherently unsafe, but needing attention)
 - 196 (8%) functionally obsolete – not designed to carry modern traffic volume, speed, size or weight
Bridge Analysis & Projections

• Current Needs
 o Criteria for rehabilitation/replacement based upon FHWA criteria and discussions with NDDOT personnel
 o Short span bridges to be replaced by box culverts
 o Replacement unit cost based upon recent county bridge projects
Bridge Analysis & Projections

• Preventive Maintenance
 o Project cyclical maintenance cost required for preservation of bridge investment

 o Maintenance model developed using feedback from counties, NDDOT, NCPP, and FHWA best practices:
 o Treatments
 o Intervals
 o Annualized cost
Bridge Analysis & Projections

• Future Needs
 o Apply deterioration models to forecast deck/superstructure/substructure condition
 o Forecast year of rehabilitation/replacement
 o Short span bridges to be replaced by box culverts
 o Bridge closings will not be predicted - closings at the discretion of local road authority
Study Timeline

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions data collection</td>
<td>August 2013</td>
<td>August 2013</td>
</tr>
<tr>
<td>Jurisdictional data collection</td>
<td>June 2013</td>
<td>September 2013</td>
</tr>
<tr>
<td>Road condition assessment</td>
<td>July 2013</td>
<td>September 2013</td>
</tr>
<tr>
<td>Traffic counts</td>
<td>June 2013</td>
<td>October 2013</td>
</tr>
<tr>
<td>Cost & practices survey</td>
<td>August 2013</td>
<td>October 2013</td>
</tr>
<tr>
<td>Non-destructive testing</td>
<td>July 2013</td>
<td>November 2013</td>
</tr>
<tr>
<td>Roadway & bridge analysis, modeling, & projections</td>
<td>Fall 2013</td>
<td>May 2014</td>
</tr>
<tr>
<td>Final report</td>
<td></td>
<td>June 2014</td>
</tr>
</tbody>
</table>
Study Outputs

• Needs – by biennium for next 20 years
 o Roads
 – Statewide
 – By county
 – By surface type
 o Bridges
 – Statewide
 – By county
Study Outputs

• Final report – data available via web for local road authorities, contractors, general public, etc.
 o Condition assessment
 o Traffic counts
 o Enhanced roadway data
 o Cost projections
• Significant enhancements over 2011-13 study
• Extremely complex – tight timeframe
• On schedule
NDSU-UGPTI Study Team

- Denver Tolliver – UGPTI Director
- Alan Dybing – Associate Research Fellow
 - Traffic modeling/HERS-ST modeling
- Tim Horner – Program Director
 - Pavement/bridge costing & project coordination
- Brad Wentz – Program Director
 - Pavement condition, traffic data, & county scenarios
- Andrew Bratlien – Transportation Research Engineer
 - Non-destructive testing & bridge deterioration
- Pan Lu – Associate Research Fellow
 - Bridge condition, deterioration, & forecasting
- Jon Mielke – Program Administrator
Questions?

Denver Tolliver
701-231-7190
denver.tolliver@ndsu.edu

Updates and background posted at
www.ugpti.org/