Needs Study of North Dakota Roads and Bridges

Status Report

Interim Economic Impact Committee

October 8, 2013

Upper Great Plains Transportation Institute
North Dakota State University
Study Objectives

• Forecast investment needs for county and township roads and bridges over the next 20 years

• Quantify investments needed for efficient year-round freight transportation while providing travelers with acceptable roadway service
Study Results

- Infrastructure needs – county & township roads & bridges
 - Statewide (summation of all jurisdictions)
 - County level (by surface type and jurisdiction)
 - 20-year estimates reported by biennium
Study Process

• Data collection on existing roads & bridges
• Analyze data
• Project future use – volumes & types
• Develop long-term need projections
Enhanced Data Collection - Status

- County & township surveys
- Traffic counts – volume & types
- Ride quality – NDDOT Pathways van
- Structural data - falling weight deflectometer (FWD) and ground penetrating radar (GPR)
- Traffic projections – ag & oil
Data Collection - Status

• Roadway jurisdiction/ownership surveys:
 – County major collector (CMC/Federal Aid)
 – County – non-CMC
 – Township
 – Township owned, but maintained by the county
 – Private
 – Status: 50 of 53 counties have submitted maps
 – Very good progress
Data Collection - Status

• Survey of counties and townships
 o 2011-13 study: 51 county & 230 township responses
 o Current study: All counties and townships are being surveyed

• Status
 – Surveys have been sent out to the counties; awaiting response
Data Collection - Status

- Traffic counts – volume and classification data on county and township roads for travel demand models and ESAL (equivalent single axle load) calculations:
 - Joint collection - NDDOT staff and NDSU students
 - Number of counts to be taken - 1000+
 - Number of classification counts – 670
 - Data collection 98% complete
 - Remaining counts completed by November
Data Collection - Status

- Structural data - falling weight deflectometer (FWD) and ground penetrating radar (GPR)
 - Verify prior estimates on subgrade strength
 - Western ND – test all pavements not recently improved
 - Eastern ND – selected based on agricultural production facilities and other major traffic generators
 - 1560 miles tested
Data Collection - Status

• Traffic projections – ag & oil
 o Oil production
 o Multiple discussions with Oil & Gas Division
 o Data on underlying assumptions expected early October
 o Agricultural production
 o All data has been collected
 o Forecasts of crop types and yields will be developed following discussions with NDSU Extension and producer groups
Data Collection Status

– Oil locations:
 • Most locations have been obtained
 • UGPTI still needs confirmation from industry for the following locations
 – Sand locations (NDDOT and industry)
 – Transload facilities (NDDOT and industry)
Data Collection - Status

- Agriculture locations:
 - Elevator movement data has been obtained
 - Most recent 5 years of crop and production data have been processed
Data Collection – Cost Projections

- Aggregate (gravel) costs
- Gravel production techniques
- Placement costs
- Transportation costs from pit to roads
- Dust suppressant usage/costs
- Stabilization usage/costs
- Intermediate practices
 - Stabilization armor coat
 - Double chip seal/armor coat
 - Others
Data Transparency

- Traffic counts will be displayed via a website maintained by UGPTI
- Roadway condition information will be available via the Web to all stakeholders
- County level costs will be published on the UGPTI website
Traffic Model

Projections for:
• Oil
• Agriculture
• Passenger
• Manufacturing
• Through traffic
Traffic Model Goals

• Update and enhance the county and local roads traffic projection model developed for the 2011-13 Legislative study

• Expanded data sets and enhanced models will facilitate better need and cost projections
Traffic Model

• Modeling
 – The entire modeling process will utilize Cube Base, Voyager and Cargo methodology
 – Specific models for agricultural commodities and oil movements
 – Inclusion of direct passenger modeling
 – Coordination with NDDOT - network modeling necessarily includes state highways
<table>
<thead>
<tr>
<th>Oil – Drilling Process</th>
<th>Number of Trucks</th>
<th>Inbound or Outbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>100</td>
<td>Inbound</td>
</tr>
<tr>
<td>Water (fresh)</td>
<td>450</td>
<td>Inbound</td>
</tr>
<tr>
<td>Water (waste)</td>
<td>225</td>
<td>Outbound</td>
</tr>
<tr>
<td>Fracturing tanks</td>
<td>115</td>
<td>Both</td>
</tr>
<tr>
<td>Rig equipment</td>
<td>65</td>
<td>Both</td>
</tr>
<tr>
<td>Drilling mud</td>
<td>50</td>
<td>Inbound</td>
</tr>
<tr>
<td>Chemical</td>
<td>5</td>
<td>Inbound</td>
</tr>
<tr>
<td>Cement</td>
<td>20</td>
<td>Inbound</td>
</tr>
<tr>
<td>Pipe</td>
<td>15</td>
<td>Inbound</td>
</tr>
<tr>
<td>Scoria/gravel</td>
<td>80</td>
<td>Inbound</td>
</tr>
<tr>
<td>Fuel trucks</td>
<td>7</td>
<td>Inbound</td>
</tr>
<tr>
<td>Frac/cement pumper trucks</td>
<td>15</td>
<td>Inbound</td>
</tr>
<tr>
<td>Workover rigs</td>
<td>3</td>
<td>Both</td>
</tr>
<tr>
<td>Total trucks</td>
<td>2,300</td>
<td></td>
</tr>
</tbody>
</table>
Traffic Model

- Outbound Crude Oil Shipments
 - Drilling and hydraulic fracturing equipment
 - Wastewater
 - Outbound oil to transload locations or final destinations
Agricultural Analysis

Known
- Crop production

Predict
- Truck trips and routes

Known
- Elevator & plant demands

Estimate
- Segment specific traffic

Data: crop production (NASS), elevator volumes (NDPSC), in-state processors (survey), road network (NDDOT-GIS Hub), local road data (2008 survey)
Crop Production and Location
Modeling - Road Maintenance

• Life-cycle cost analysis - practices
 – Graveling and blading
 • Normal levels (e.g. regraveling every 5 years, blade once per month)
 • Increased levels (e.g. regraveling every 3-4 years, blade twice per month)
 • High levels (e.g. regraveling every 2-3 years, blade once per week)
 • Usage of dust suppressant on impacted roads
Gravel Road Analysis

- Intermediate improvements
 - Graveling and base stabilization
 - Graveling and base stabilization with armor coat
 - Others as reported at the county level
- Asphalt surface
Gravel Road Analysis

- Traffic model results segmented based on traffic levels
- County-specific practices will be used as the base maintenance practices
- Life cycle costs of each maintenance practice will be calculated (i.e. 20-year cost of graveling)
- Maintenance type/improvement selected for each AADT (annual average daily traffic) class based upon minimum life cycle cost
Pavement Analysis

• Pavement deterioration and recommended improvement process
 – Estimate remaining life given current condition and traffic levels
 • Verify past assumptions on subgrade strength
 • Apply traffic projections and present serviceability rating
 – Determine recommended improvements and costs based on width, starting condition, and future traffic estimates
Bridge Analysis

• 2,666 bridges on county/local system
 – 46% (1,232) more than 50 years old (theoretical design life)
 – 23% (595) more than 70 years old
Bridge Analysis

- Condition/appraisal data from National Bridge Inventory (NBI)
 - Structurally deficient (SD) – one or more components rated in “poor” condition (≤4 on 0-9 scale)
 - Functionally obsolete (FO) – bridge is not designed to carry modern traffic volume, speed, size or weight
 - Bridges with SD or FO status may require posting or closure
Bridge Analysis

• Current Needs
 – Rehabilitation/replacement eligibility based on FHWA criteria
 – Rehabilitation/replacement costs based on NDDOT project costs
 – Current inventory: 25% (676) deficient, 7% (190) obsolete bridges
 – Prioritize backlogged projects based on detour vehicle-miles traveled, including bridge weight restrictions
Bridge Analysis

• Preventive Maintenance
 – Maintenance activities and intervals based on county surveys, FHWA recommendations
 – Maintenance costs based on county survey
Bridge Analysis

• Bridge Deterioration Models
 – Developed empirical models to forecast deck/superstructure/substructure deterioration
 • Bridge age and age squared as continuous variables
 • Indicator variables:
 – Reconstruction history
 – ADT level (high and low)
 – Bridge material (timber, steel, and concrete)

• NBI 2012 data
Bridge Analysis

• Future Needs
 – Apply deterioration models to forecast deck/superstructure/substructure condition
 – Forecast year of rehabilitation/replacement
 – Short span bridges to be replaced by box culverts
 – Bridge closings will not be predicted
 • closings at the discretion of local road authority
NDSU-UGPTI Study Team

- Denver Tolliver – UGPTI Director
- Alan Dybing – Associate Research Fellow
 - Traffic modeling/HERS-ST modeling
- Tim Horner – Program Director
 - Pavement/bridge costing & project coordination
- Brad Wentz – Program Director
 - Pavement condition, traffic data, & county scenarios
- Andrew Bratlien – Transportation Research Engineer
 - Pavement non-destructive testing & bridge deterioration
- Jon Mielke – Program Administrator
Study Timeline

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic counts</td>
<td>June 2013</td>
<td>October 2013</td>
</tr>
<tr>
<td>Traffic modeling</td>
<td>June 2013</td>
<td>January 2014</td>
</tr>
<tr>
<td>Jurisdiction data collection</td>
<td>June 2013</td>
<td>September 2013</td>
</tr>
<tr>
<td>Road condition assessment</td>
<td>July 2013</td>
<td>September 2013</td>
</tr>
<tr>
<td>Non-destructive testing</td>
<td>July 2013</td>
<td>November 2013</td>
</tr>
<tr>
<td>Cost & practices survey</td>
<td>August 2013</td>
<td>October 2013</td>
</tr>
<tr>
<td>Assumptions data collection</td>
<td>August 2013</td>
<td>August 2013</td>
</tr>
<tr>
<td>Roadway analysis</td>
<td>Fall 2013</td>
<td>May 2014</td>
</tr>
<tr>
<td>Bridge analysis</td>
<td>Fall 2013</td>
<td>May 2014</td>
</tr>
<tr>
<td>Final report</td>
<td></td>
<td>June 2014</td>
</tr>
</tbody>
</table>
Study Outputs

- Final report – electronic and hard copy
 - Methods
 - Assumptions
 - Procedures
 - Summary of data
 - Results – needs (by biennium)
 - Roads
 - Statewide
 - By county
 - By surface type
 - Bridges
 - Statewide
 - By county
Study Outputs

• Final report – collected data available via web
 - Condition assessment
 - Traffic counts
 - Enhanced roadway data
 - Cost projections
• Significant enhancements over 2011-13 study
• Extremely complex – tight timeframe
• On schedule
Questions?

Denver Tolliver
701-231-7190
denver.tolliver@ndsu.edu

Updates and background posted at
www.ugpti.org/