Pavement Distress & Ride Scores

Introduction

2009 DOTSC Student Seminars
July 30, 2009
I. Ride Scores

- Measurement: roughness is typically quantified using a form of either Present Serviceability Rating (PSR) or International Roughness Index (IRI).

- Present Serviceability Rating (PSR)
 - Based on individual observation
 - Defined as the judgment of an observer as to the current ability of a pavement to serve the traffic it is meant to serve.
 - Range: 5 (excellent or very smooth) to 0 (essentially impassable)

- International Roughness Index (IRI)
 - Based on the average rectified slope (ARS).
 - ARS: a filtered ratio of a standard vehicles accumulated suspension motion divided by the distance traveled by the vehicle during the measurement.
 - Metric units (m/km)
 - English units (in/mile)
II. Distress Scores

- Measurement: can be either subjective or objective
 - Subjective: may be a rating of high, medium, or low based on a brief visual inspection
 - Objective: generally more expensive to obtain, uses different types of automated distress detection equipment.

- Established rating systems that associates penalty points with specific distress type, severity, and extent combinations.
 - These points can be summed and subtracted from some upper limit or maximum value (99 in North Dakota’s case) to give an overall rating of a pavement's structural condition.
 - The equations that describe how to convert from severity and extent of a certain type to an index number, or score, vary from state to state and can rather be complex.
I. Ride Scores

- Rod and level Survey
 - A survey (performed by a survey crew) provides an accurate measurement of the pavement profile.
 - The use of surveys for large projects is impractical and cost prohibitive.

- Dipstick Profiler
 - Can be used to collect a relatively small quantity of pavement profile measurements.
 - A strip can be surveyed by a single operator in about one-half the time of a survey crew.
 - Commonly used to measure a profile for calibration of more complex instruments.
Pavement Distress & Ride Scores
Types of Equipment and Measurement Techniques

• Profilographs
 ➢ Not practical for network condition surveys
 ➢ Most commonly used for rigid pavement construction inspection, quality control, and acceptance.

• Response Type Road Roughness Meters (RTRRRMs)
 ➢ Adequate for routine monitoring of pavement network and providing an overall picture of the condition of the network
 ➢ Can provide managers with a general indication of the overall network condition and maintenance needs.
 ➢ Measures the vertical movements of the rear axle of an automobile or the axle of a trailer relative to the vehicle frame.
Pavement Distress & Ride Scores
Types of Equipment and Measurement Techniques

- Profiling Devices
 - Used to provide accurate, scaled, and complete reproductions of the pavement profile within a certain range.
 - Equipment can be expensive and complex
 - Usually installed in vans that contain microcomputers and other data handling and processing instrumentation
 - Profiles are used to calculate a mathematical measure of roughness and an estimate of rutting at specified intervals along the roadway.
II. Distress Scores

- Older Method (Visual Method)
 - Used teams of individuals who drove across every mile of pavement to be measured and visually measured the distress of the pavement.

- Newer Methods (High-Speed Video Imaging)
 - Records pavement surface video images at highway speeds using a specially equipped van.
 - Evaluation is either done manually or automatically.
 - Manually: video is played back on specially designed workstations while trained crews rate the recorded road surface.
 - Automatically: road surfaces are recorded automatically by computer software.
Pavement Distress & Ride Scores

How Does the NDDOT Derive and Use the Pavement Condition Scores?

• NDDOT Methods of Measurement
 ➢ Ride Score: Use IRI Scores and the IRI ranges to describe ride quality.
 ➢ Ride scores are listed in the Hwy Information Booklet, but pavement management is no longer using these to describe ride quality.
 ➢ Distress Score: Uses a condition rating system that associates deduct points with specific distress type, severity, and extent combinations.

• NDDOT Highway Information Booklet
 ➢ Acronyms
 ➢ Pavement Condition Rating Deduct Values

• Where to find pavement distress and Ride Scores for state and US roads in North Dakota?
 ➢ Mainframe/Rims

• Questions
Flexible Pavement
Condition Rating Deduct Values

<table>
<thead>
<tr>
<th>Condition</th>
<th>Code</th>
<th>Extent</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLIGATOR CRACKING</td>
<td>AC</td>
<td>NONE</td>
<td><10%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>BLEEDING</td>
<td>BLD</td>
<td>NONE</td>
<td><100'</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>LONGITUDINAL CRACKING</td>
<td>LC</td>
<td>NONE</td>
<td><100'</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>TRANSVERSE CRACKING</td>
<td>TC</td>
<td>NONE</td>
<td><10%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>BLOCK CRACKING</td>
<td>BC</td>
<td>NONE</td>
<td><10%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>RAVELING AND/OR WEATHERING</td>
<td>RW</td>
<td>NONE</td>
<td><5%</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>BITUMINOUS PATCHING</td>
<td>BP</td>
<td>NONE</td>
<td><1/4"</td>
</tr>
<tr>
<td></td>
<td>< 1/4 □</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>RUTTING</td>
<td>RT</td>
<td>NONE</td>
<td>0</td>
</tr>
</tbody>
</table>
INTRODUCTION

This report contains summary information of the pavement condition data collected in the fall of 2008. It is a compilation of information related to the pavement distress, IRI, traffic volumes, and construction history, of the North Dakota state highway system for the District referenced on the cover. Much of the data is presented in a more general form than its original source. While more detailed information can be obtained by going directly to individual files, this report provides an accurate overall picture of the state highway system for the referenced District. Similar books are available for the other 7 Districts.

PAVEMENT MANAGEMENT CONDITION RATINGS

<table>
<thead>
<tr>
<th>Category</th>
<th>Distress</th>
<th>IRI (in/mile)</th>
<th>Rut (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>>=98</td>
<td>0-60</td>
<td><0.25</td>
</tr>
<tr>
<td>Good</td>
<td>88-97</td>
<td>61-99</td>
<td>0.25-0.37</td>
</tr>
<tr>
<td>Fair</td>
<td>77-87</td>
<td>100-145</td>
<td>0.36-0.50</td>
</tr>
<tr>
<td>Poor</td>
<td><77</td>
<td>>145</td>
<td>>0.50</td>
</tr>
</tbody>
</table>

DISTRESS SECTION RANKING

This section contains a ranking of all highway segments for the District sorted by distress score from worst to best. Manual "scoring" is done to arrive at a distress score. A distress score of 99 is the starting point and describes a pavement with no distresses. Deduct values are assigned to distresses and are subtracted from 99 to arrive at a distress score. The lower the distress score, the worse the pavement distress condition. Sections that were not scored will have a -1 in the distress score column.

IRI SECTION RANKING

This section contains the ranking of project segments from worst to best, based on the International Roughness Index (IRI). The IRI is a measure of pavement smoothness that is calculated from the longitudinal profile of the roadway surface. The higher the IRI, the worse the pavement surface smoothness. Sections that were not scored will have a -1 in the IRI column. The IRI category ranges were modified in fall 2008.

MAINTENANCE SECTION RANKINGS

"Due to software changes to the maintenance data system in 2004, we are not able to query this data at this time"
MISCELLANEOUS INFORMATION

As stated previously, the IRI ranges were modified in fall 2003. The following chart shows the history of the IRI ranges, since there was also a revision to the IRI ranges in 2004. This is provided for informational purposes only. Any past IRI value can be compared to the current ranges.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>0-60</td>
<td>0-60</td>
<td>0-60</td>
</tr>
<tr>
<td>Good</td>
<td>61-95</td>
<td>81-129</td>
<td>61-129</td>
</tr>
<tr>
<td>Fair</td>
<td>96-132</td>
<td>130-177</td>
<td>100-145</td>
</tr>
<tr>
<td>Poor</td>
<td>>=133</td>
<td>>177</td>
<td>>145</td>
</tr>
</tbody>
</table>

The following scale is used to categorize average rut.

<table>
<thead>
<tr>
<th>Category</th>
<th>Rut (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td><0.25</td>
</tr>
<tr>
<td>Good</td>
<td>0.25-0.37</td>
</tr>
<tr>
<td>Fair</td>
<td>0.38-0.50</td>
</tr>
<tr>
<td>Poor</td>
<td>>0.50</td>
</tr>
</tbody>
</table>

Average rut (inches) is calculated as the average of the raw rut data collected for the mile. The rut deduct used in the distress score is arrived at by a severity analysis. The category, from the rut scale above, with the worst 20% of the values is used to assign the deduct.

PRPI and Ride scores are listed in this document; however pavement management is no longer using these measures to describe ride quality. Refer to the IRI score and the IRI ranges to describe ride quality.

On Line

All data found in this book is easily accessible and in more detail through the mainframe database. Contact the RIMS coordinator in your district or division or the Pavement Management and Scoping Section of Planning & Programming Division if you need help in using the mainframe.

This document was created by the Planning and Programming Division's Pavement Management and Scoping Section. Please forward any comments on this document to Jane Berger, PE, at 328-2607 or by email at jeberger@nd.gov. Further assistance pertaining to this document may also be obtained from Dirk Kienzle at 328-1219 or by email at dkienzl@nd.gov.
Reconstruction Projects

1994

Project: Roadway Improvement
Location: Washington St.

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Details</td>
</tr>
</tbody>
</table>

1995

Project: Roadway Improvement
Location: Washington St.

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Details</td>
</tr>
</tbody>
</table>

1996

Project: Roadway Improvement
Location: Washington St.

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Details</td>
</tr>
</tbody>
</table>

1997

Project: Roadway Improvement
Location: Washington St.

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Details</td>
</tr>
</tbody>
</table>

1998

Project: Roadway Improvement
Location: Washington St.

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Details</td>
</tr>
</tbody>
</table>

1999

Project: Roadway Improvement
Location: Washington St.

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Details</td>
</tr>
</tbody>
</table>

2000

Project: Roadway Improvement
Location: Washington St.

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Details</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Details</td>
</tr>
</tbody>
</table>

Notes

- **1994**
 - Dist: 90
 - Est: 90
 - Avg: 86
 - Avg: 86
 - Est: 136
- **1995**
 - Dist: 90
 - Est: 90
 - Avg: 86
 - Est: 136
- **1996**
 - Dist: 90
 - Est: 90
 - Avg: 86
 - Est: 136
- **1997**
 - Dist: 90
 - Est: 90
 - Avg: 86
 - Est: 136
- **1998**
 - Dist: 90
 - Est: 90
 - Avg: 86
 - Est: 136
- **1999**
 - Dist: 90
 - Est: 90
 - Avg: 86
 - Est: 136
- **2000**
 - Dist: 90
 - Est: 90
 - Avg: 86
 - Est: 136

Note: The table contains data on various road projects and their associated costs, distances, and estimates. The table is used to track the progress and budget of each project over the years.
The various fields of information and their sources are as follows:

D - District
Hwy - Highway
S - Suffix (900 mileage will have a B here for business loop)
D - Direction
From Ref Pt - Reference point defining start of project section
From Offset(mi) - Distance from a reference point, defining start of a project
To Ref Pt - Reference point defining end of project section
To Offset(mi) - Distance from a reference point, defining end of a project
Length - Length of project section
Left shldr width - Left shoulder width
Driving lane width - Driving lane width
Right shldr width - Right shoulder width
Surf dpth - Total pavement depth
Base dpth - Total base depth
Grad width - Graded width of section below base
Fin width - Finished width of section below pavement
TAADT - Truck Annual Average Daily Traffic - The Taadt, Aadt & Esals shown for each section is the total for all lanes. Example:
AADT - Annual Average Daily Traffic
Esals - Equivalent Single Axle Loads (18 kip) - The total would include all four or more lanes of a two direction roadway.
Pav age - The number of years since last (20 year design life) rehab
Eff pav age - The effective age of a pavement based on the design life of the last rehabilitation. See examples #1 and #2 on following pages.
Last year seal - The last year this section was sealed
Pvmt type - Flex for Asphalt, Concr for concrete and Compo for composite pavement of Asphalt over concrete
Pvmt desc - If pvmt type is Flex then pvmt desc will be Asphalt, if pvmt type is concr then pvmt desc will either be Crep or Jointed, if pvmt type is compo then pvmt desc will be Apcr(aspalt over crep) or Aoppj(aspalt over jointed)
Hwy pty sys - INT (interstate), NHS (national highway system), HL (highload), LL (lowload)
Intl cons - Year of first construction
Prev cons - Year of first rehabilitation
Lst cons - Year of most recent rehabilitation
Lst rehab - Type of latest rehabilitation (overlays, cpr, recycle...etc...)
LEGENDS

DISTRESS

DC=D CRACKING, LJS=LONGITUDINAL JOINT SPALLING, LC=LONGITUDINAL CRACKING, TC=TRANSVERSE CRACKING, TCS=TRANSVERSE CRACK SPALLING, BP=BITUMINOUS Patching, CP=CONCRETE PATCH Deterioration, BU=BLOW-UP REPAIRS, AC=ALLIGATOR CRACKING, BLD=BLEEDING, BC=BLOCK CRACKING, RW=RAVELING AND/OR WEATHERING, RT=RUTTING, CB=CORNER BREAKS, BS=BROKEN SLABS, CP=CONCRETE PATCH DETERIORATION, FLT=FAULTING,

MAINTENANCE

BPC=BLADE PATCHING COST, HPC=HAND PATCHING COST, SPC=SCOTCH PATCHING COST, CPC=CRAKE FILL COST, RFC=RUBBER FILL COST, SCC=SEAL COAT COST, SHC=SHOULDER WORK COST, CRC=CONCRETE REPAIR COST, RMC=BITUMINOUS MILLING COST, ROC=ROUTINE ROADWAY OPERATIONS COST, BOC=CONTRACT BITUMINOUS OVERLAY COST.
<table>
<thead>
<tr>
<th>RP</th>
<th>152</th>
<th>Ride</th>
<th>Distress</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>153</td>
<td>Ave.</td>
<td></td>
</tr>
</tbody>
</table>

152.892 - 153.318 = 0.426 feet total

\[
\begin{align*}
5280 \times 0.108 &= 570.24' \\
5280 \times 0.318 &= 1679.04'
\end{align*}
\]

\[
\begin{align*}
570/1679 &= 0.353 = 35.3\% \\
1679/1679 &= 1.000 = 100.0\%
\end{align*}
\]

1.71 \times 0.25 + 1.82 \times 0.75 = 1.79 Ride Score

Ave Distress Score:

\[
\begin{align*}
77 \times 0.25 + 73 \times 0.75 &= 74 \\
Ave. Rutting: 0.18 (0.25) + 0.21 (0.75) &= 0.20 in
\end{align*}
\]

Linear Cracking: 0.25(7) + 0.75(7) = 7

Transverse Cracking: 3(0.25) + 3(0.75) = 7

Alligator Cracking: 3(0.25) + 2(0.75) = 3

Bituminous Pitching: 4(0.25) + 6(0.75) = 6
Alligator cracking

Deterioration & Raveling

Bituminous Patching

Longitudinal Cracking

Block Cracking

Bleeding