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Railroad Accident Analysis by Machine Learning and Natural 

Language Processing 

Abstract 

The evolving complexities of railroad systems also increase their vulnerability to failure from 

human error. This study compared the outcomes of two workflows that incorporated 11 different 

machine learning techniques to identify characteristics of railroad operations that are generally 

associated with human-caused accidents. The first workflow engineered features from the fixed 

attribute fields of a large railroad accident database and the second applied natural language 

processing to extract features from the unstructured accident narratives. Both workflows applied 

a Shapely game-theoretic model to rank the importance of features based on their marginal 

contribution towards predicting accident cause. Among several interesting findings, some of the 

most unexpected were that human-caused accidents are generally not associated with high train 

speeds nor derailment type accidents, and that shoving cars is riskier than pulling cars. Those, 

and other findings, from this study can inform management decisions, planning, and policies to 

minimize the risk of human-caused accidents. 

Keywords: data cleaning; feature engineering; game theory; machine learning; risk 

management; text mining 
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1 Introduction 

Human factors have consistently been the dominant cause of railroad accidents. Analysis of the 

U.S. Federal Railroad Administration (FRA) equipment accident database revealed that humans 

caused more than 35% of all the reported accidents from 2009 to 2019. The next dominant factor 

was track- and roadbed-related problems, which caused 23% of the accidents during the same 

period. A few high-profile accidents that resulted in disastrous derailments and fatalities were 

due to excessive train speeds or operators leaving track switches in the wrong position. Those 

accidents dominated media attention and inspired a federal rule mandating railroads to deploy a 

positive train control (PTC) system to help prevent these types of accidents (Zhang, Liu, & Holt, 

2018). Hence, it is tempting to expect that PTC will eliminate all human-caused accidents. 

However, exploratory data analysis of the FRA accident database revealed that there are many 

human-caused accidents that result from factors that PTC does not address (Figure 1). Therefore, 

the research question is: What aspects of railroad operations are generally associated with 

human-caused accidents? An objective of this research is to determine how machine learning 

(ML) and natural language processing (NLP) techniques compare in answering the research 

question. 

The contributions of this research are: 

• Two data mining workflows to compare the performance of ML and NLP techniques in 

predicting human-caused accidents (Section 3). 

• A ranking of factors associated with human-caused accidents by applying a game 

theoretic model (Section 4). 

Other than Section 3 and Section 4 mentioned above, the next section (Section 2) reviews 

related works in railroad accident analysis that applied NLP or ML techniques. Section 5 
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discusses the analysis outcome and provides an interpretation of the findings. Section 6 recaps 

the methodological approach and findings to conclude the work and point to future research. 

 
Figure 1: Causes and types of railroad accidents by a) frequency and b) proportion. 

2 Literature Review 

Analysts found that degraded human performance remains a major contributing factor in railway 

incidents (Kyriakidis, Simanjuntak, Singh, & Majumdar, 2019). There were a handful of studies 

to characterize factors in human error that caused railroad accidents. Catelani et al. (2021) 

incorporated the concept of Eustress in simulations to estimate the impact of stress on railroad 

operator performances based on the Yerkes-Dodson empirical relationship between pressure and 

performance (Catelani, Ciani, Guidi, & Patrizi, 2021). In a more general study, Shin et al. (2021) 

assessed the relative importance of components in human–system interactions that can lead to 

control system hazards (Shin, Lee, Shin, Jang, & Park, 2021). 
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Some accident records contain both structured and unstructured data. The former are fixed 

field attributes that record information such as dates, types of equipment involved, weather 

conditions, infrastructure characteristics, and location features. Unstructured data is mainly in the 

form of short narratives that attempt to describe the accident (Suh, 2021). A 2018 review paper 

found that only one study on railroad accident analysis applied text mining to the unstructured 

data (Bala & Bhasin, 2018). Brown (2016) conducted that study by applying text mining to 

narratives in the FRA accident database to predict the cost of extreme railroad accidents (Brown, 

2016). The main finding was that keywords in the accident narratives provided insights that the 

structured attributes could not. Later, Williams and Betak (2019) compared the performance of 

latent semantic analysis (LSA) and latent dirichlet allocation (LDA) in railroad accident topic 

classification (Williams & Betak, 2019). They found that the two topic modeling techniques 

were complementary and that both identified tractor-trailer trucks as a problem at rail grade 

crossings (RGCs). More recently, Soleimani et al. (2021) added text mining and spatial analysis 

to identify RGCs that should be closed to prevent accidents (Soleimani, Leitner, & Codjoe, 

2021). In a related study, Wali et al. (2021) applied text mining to narratives of railroad 

trespassing accidents and confirmed that fatal injuries tend to occur after suicide attempts and 

during the use of headphones or cellphones (Wali, Khattak, & Ahmad, 2021). Most recently, 

Song et al. (2022) estimated freight train derailment severity with both structured and 

unstructured data by applying LDA to extract critical topics from the accident narratives (Song, 

Zhang, Qin, Liu, & Hu, 2022). 

Studies that applied ML to the structured attributes of the FRA database were more common 

than those that applied NLP to the unstructured attributes. Liu and Khattak (2017) used 

geospatial modeling to determine that RGC gate violations were more highly associated with 
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two-quadrant than four-quadrant gates (Liu & Khattak, 2017). Zhou et al. (2020) found that 

random forest was better than decision trees at predicting accidents at highway rail grade 

crossings because it could better accommodate unbalanced data (Zhou, Lu, Zheng, Tolliver, & 

Keramati, 2020). Gao et al. (2021) found that combining convolution neural network (CNN) and 

resampling to reduce data imbalance provided the best accident prediction accuracy among deep 

learning, random forest, and decision tree methods (Gao, Lu, & Ren, 2021). Panda et al. (2022) 

found that the gradient boosting ML method provided the best accuracy in predicting railroad 

accident severity (Panda, Mishra, Dash, & Nawab, 2022). 

 Haleem and Gan (2015) applied a mixed logit model to RGC crash data and found that the 

likelihood of injury increased with higher train speeds and older drivers (Haleem & Gan, 2015). 

Saunders et al. (2019) used associative data mining to discover that the addition of passive 

signage yielded only a slight improvement in compliance with rules designed to vacate the 

dynamic envelope zone when stopping at a RGC (Saunders, Mousa, & Codjoe, 2019). 

Iranitalab and Khattak (2020) found that the random forest model outperformed logistic 

regression, naïve Bayes, and support vector machine ML methods in predicting hazardous 

material releases (Iranitalab & Khattak, 2020). Noguchi et al. (2020) applied network theory to 

the fusion of transport accident network and transport environmental factors to illustrate the 

complex process of hazardous material releases from railroad accidents (Noguchi, Hienuki, & 

Fuse, 2020). Liu et al. (2017) found that signalized territories and tracks rated at higher classes 

were associated with fewer train derailments (Liu, Saat, & Barkan, 2017). Data mining by Wang 

et al. (2020) confirmed that reductions in broken rails, irregular track geometry, and wheel-

related equipment defects can reduce derailment-type accidents (Wang, Barkan, & Saat, 2020). 
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Overall, there is a gap in the literature about studies applying the same ML techniques to 

both structured and unstructured data to gain insights from railroad accidents. Our work 

compared the efficacy of two distinct workflows employing the same 11 machine learning 

techniques to identify critical attributes linked to human-caused accidents in railroad operations. 

We could not find any other work that applied a Shapley value-based game-theoretic model to 

rank the significance of features according to their marginal contribution in predicting railroad 

accident causality, using features extracted from both structured and unstructured data. 

3 Methodology 

Figure 2 and Figure 3 show the four-layer workflow developed to process the structured and 

unstructured data, respectively. The first two layers of each workflow are unique, whereas the 

last two are similar. An important characteristic of these workflows is the logic test that enables 

looping back to previous layers. In so doing, the processes converge to maximize the predictive 

performance of each model type. 
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Figure 2: The workflow for fixed field machine learning. 

 
Figure 3: The workflow for text mining and machine learning. 
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3.1 Data 

The FRA dataset contained more than 26,000 accident records from January 1, 2009, to June 30, 

2020, each containing 145 fields (FRA, 2011). The Topologically Integrated Geographic 

Encoding/Line (TIGER/Line™) shapefiles from the U.S. Census Bureau encoded polygon 

boundary representations of all U.S. counties (USCB, 2019). The associated data tables of the 

TIGER database contained 11 fields that listed information about each of the 3,108 counties on 

the continental United States, such as their names, state, geospatial coordinates of their centroid, 

land area, and water area. The procedures of Figure 2 extracted structured features after 

combining fixed fields from both datasets. The procedures of Figure 3 aggregated accident 

narratives from the FRA database and applied natural language processing (NLP) to extract 

features. The extracted features from both workflows fed the ML procedures. 

3.2 Models from Structured Data 

The following subsections describe the data processing and feature extraction procedures applied 

to the structured portion of the data. 

3.2.1 Data Processing 

The data processing layer of the workflow consisted of a set of procedures to clean the structured 

(fixed attribute) data and extract relevant features. The data filtering procedure removed 

attributes that were too sparse, redundant, or irrelevant. Sparse attributes had a considerable 

proportion of missing or zero values, which means that they would contribute little or no 

information toward predicting the target class. Redundant attributes are highly correlated with 

other attributes, so they also provide no new information to improve predictive performance. 

Irrelevant attributes such as railcar, track, and county identifiers add complexity or noise to the 

ML models. 
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The feature engineering procedure reduced features and categories by fusion and 

transformation to increase information and reduce noise. An example of feature fusion was the 

combining of fields containing the hour, minute, and AM/PM flag into a 24-hour continuous 

variable. An example of category fusion was the reduction of 14 types of equipment stored in the 

“CONSIST” field to just 6 categories, based on their functional similarities. The resulting 

categories were “freight,” “passenger,” “work train,” “yard equipment,” “cars” and 

“locomotives.” 

The data imputation procedure filled missing values of a feature to enable the operation of 

ML models that are intolerant of missing data. For example, ML models such as decision trees 

and naïve Bayes can work with attributes that have missing values, but others, such as neural 

networks and logistic regression, cannot. The most popular and effective imputation methods fill 

missing values with the mean, most frequent value, or the value of their nearest neighbor in 

feature space (Abidin, Ismail, & Emran, 2018). The rationale for using such methods is that 

common values will prevent the affected data instances from biasing the predictions toward any 

one class without affecting the ability of non-missing values of its other features to contribute 

meaningfully towards predictions.  

The geospatial data cleaning procedure used a geographic information system (GIS) to 

compare the county associated with the reported geospatial coordinates (latitude and longitude) 

to the county reported for the accident. The procedure then replaced the geospatial coordinates of 

any mismatched instances with the centroid coordinates of the reported county from the TIGER 

shapefile. The spatial join procedure of the GIS assured consistency between the reported county 

name, the reported FIPS code, and those of the joined geospatial location. 
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3.2.2 Feature Extraction 

The attribute transformation procedure converted the attribute values of highly skewed 

distributions to improve their symmetry. The shifted natural logarithm, LN(1 + x), transform and 

the squared, x2, transform reduced the skew of right and left skewed distributions, respectively. 

The rationale for skew reduction is that some ML models assume normally distributed features 

or operate better with less skewed distributions (Manning & Mullahy, 2001). Another 

transformation was to replace absolute values with proportional values to improve comparability 

among ML models. For example, the procedure converted the position of cars on trains to a 

relative position with respect to the train length. That is, the feature encodes whether the 

involved cars were toward the front, center, or rear of a train of any length. 

The numerical normalization procedure converted all values to the [0, 1] range. The rationale 

for normalization was that ML models work with comparable values when applying weights to 

features. Also, some algorithms that compute a gradient in multiple dimensions work best when 

all attributes have the same range (Géron, 2017). 

The one-hot-encoding procedure created a new binary feature for each value of a categorical 

attribute. This transformation assures the operation of ML algorithms that use numerical data 

only (Géron, 2017). Treating binary values as numerical values also makes them comparable to 

the normalized numeric features. Table 1 summarizes the data processing procedures and their 

actions. 
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Table 1: Data Processing Procedures 

Procedure Actions 

Filter Missing Remove attributes with a large proportion of missing values or constants. 

Filter Irrelevant Remove irrelevant or highly correlated attributes. 

Feature Engineering Combine attributes and categories to increase information or reduce noise. 

Data Imputation Fill missing values using the mean, most frequent, or the mean value of a nearby location. 

Geospatial Cleaning Repair low-resolution or erroneous geospatial coordinate entries. 

Transformation Reduce the skew of attribute distributions. 

Normalization Convert the values of all attributes to the [0, 1] range. 

One-Hot-Encoding Convert categorical variables to numerical features. 

3.3 Models from Unstructured Data 

The following subsections describe the data processing and feature extraction for the 

unstructured portion of the data. 

3.3.1 Data Processing 

The first workflow that operated on the structured portion of the data reduced the dataset by 

eliminating some features and instances. The second workflow then operated on the remaining 

data by extracting the accident narratives. The resulting text documents, without the fixed field 

attributes, became the corpus on which to apply the text mining procedures. 

3.3.2 Text Mining 

NLP is a branch of machine learning that focuses on the communication interface between 

computers and the natural human language forms that include text, speech, vocalizations, 

signing, images, and body language (Aggarwal, 2015). Text mining is a subset of NLP that seeks 

to extract meaning from text documents only. The workflow of Figure 3 used a collection of 

procedures to extract features from the corpus of accident narratives. The first step was to reduce 

word redundancy by transforming all characters to lowercase. The next step was to filter out 

punctuations and digits that conveyed no linguistic meaning. The third step was to tokenize by 

extracting words into an array. 
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Stemming is a normalization procedure that reduces feature redundancy by transforming all 

inflected forms of a word to the lexical stem of its root word. For example, a stemming algorithm 

would map the words “damaged”, “damaging”, “damages”, and “damage” to the word stem 

“damag”. The stemming procedure of this workflow used the Porter stemmer for the English 

language, based on its popularity in NLP and search engine design (Jones & Willett, 1997). 

Stop words facilitate correct usage of grammar but they do not convey information that 

distinguishes one document from another. Examples of stop words include “the,” “on,”, “at,” 

“which,” “and,” “but,” and any other word that a data scientist wishes to define as such to 

improve the performance objective. The feedback loop from the ML layer provides a means to 

modify the stop words list while evaluating the predictive performance of the ML models. The 

feedback loop also provided a means for the analyst to validate the meaning of a stop word based 

on the context in the text narrative. 

Outlier words can create noise in the data because of their sparsity across documents. 

Similarly, words that appear in most of the documents, for example more than 90%, can create a 

bias on the corpus that adds no information to individual instances. Hence, the outlier filter 

removed seldom used and frequently used words with threshold adjustments accommodated 

through the feedback loop to improve predictive performance. 

Text embedding is a procedure that converts word arrays to numbers that become features of 

the ML models. Among text embedding methods, the bag-of-words (BOW) model is one of the 

most effective and easiest to implement. The BOW model is a simplified representation of a 

narrative as an array of unordered words from the union of documents analyzed (Aggarwal, 

2015). The BOW hyperparameters allow for various numeric representations of a document such 

as the word count or a binary flag indicating the word presence. Another hyperparameter is 
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feature normalization by a weight equal to the inverse document frequency (IDF). The IDF of a 

term is the logarithm of the inverse proportion of documents containing the term. Hence, the 

product of the term frequency (TF) and the IDF (TF-IDF) reduces the importance of common 

words in the corpus to minimize bias. A regularization hyperparameter allows for normalizing 

the length of each vector either to the sum of the elements (L1-norm) or the sum-of-squares of 

the elements (L2-norm). 

3.4 Machine Learning 

Both workflows compared the predictive performance of 11 different ML model types because 

no single model works best on all types of datasets. Table 2 summarizes the models selected and 

provides a brief description of their fundamental theory of operation. The references provided 

expand on the details of their mathematical formulation and their practical implementation in a 

programming language such as Python. 

Hyperparameter tuning is the process of iteratively adjusting various model parameters to 

maximize the predictive performance. Models that have regularization parameters allow for 

adjustments to generalize on new data by preventing overfitting to the training data. Examples of 

hyperparameters for tree-based models include the number of attributes to select for partial tree 

growing and the minimum number of data instances in a leaf node when growth stops. The ML 

and output layers of the two workflows are identical, except for the hyperparameter tuning of the 

BOW model in the feedback loop of the second workflow. 
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Table 2: Machine Learning Implemented in the Workflows 

Model Description Reference 

Logistic Regression (LR) Fits the data to a logistic function of the linear 

combination of attributes to estimate the 

probability of a binary class. 

Géron (2017) 

(Géron, 2017) 

Support Vector Machine (SVM) Finds a hyperplane in multidimensional feature 

space that maximally separates the classes. 

Géron (2017) 

(Géron, 2017) 

Stochastic Gradient Descent (SGD) Fits a linear multivariate function to the data by 

randomly selecting data instances to calculate 

parameter updates that minimize a selected loss 

function. 

Géron (2017) 

(Géron, 2017) 

Decision Tree (DT) Grows a logic tree by recursively splitting 

nodes to maximize the purity of child or leaf 

nodes. 

Géron (2017) 

(Géron, 2017) 

Random Forest (RF) Grows many shallow and partial decision trees 

by randomly selecting a subset of attributes and 

data subset to split nodes, and then uses 

majority vote to predict the class. 

Hastie et al. 

(2016) (Hastie, 

Tibshirani, & 

Friedman, 2016) 

AdaBoost (ADB) Sequentially build shallow decision trees 

(stumps) that improve on the prediction errors 

of previous trees, and then uses majority vote 

to predict the class. 

Hastie et al. 

(2016) (Hastie, 

Tibshirani, & 

Friedman, 2016) 

Multi-layer Perceptron (MLP) A feed-forward and fully connected artificial 

neural network that learns a function with one 

or more inner layers of neurons. 

Géron (2017) 

(Géron, 2017) 

Naïve Bayes (NB) Uses Bayes probability theory to predict a class 

given the observed set of features, and 

assuming that they are independent. 

Jame et al. 

(2013) (James, 

Witten, Hastie, 

& Tibshirani, 

2013) 

k-Nearest Neighbors (kNN) Predicts a class based on the majority vote of 

its k-nearest neighbors in feature space.  

Jame et al. 

(2013) (James, 

Witten, Hastie, 

& Tibshirani, 

2013) 

Gradient Boosting (GB) Sequentially build improved models to predict 

the errors or residuals of previous models. 

Natekin & Knoll 

(2013) (Natekin 

& Knoll, 2013) 

Extreme Gradient Boosting (XGB) A highly configurable version of gradient 

boosting that incorporates regularization. 

Chen & Guestrin 

(2016) (Chen & 

Guestrin, 2016) 

The cross-validation (K-fold) procedure cyclically partitions the data into k subsets so that 

the model trains on the union of k-1 subsets and tests on the remaining subset until all subsets 

participate in the testing exactly once. The reported performance is the average value of the test 

metric across all folds. 
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The performance evaluation procedure used five test metrics derived from the true positive 

(TP), true-negative (TN), false-positive (FP), and false-negative (FN) rates of the classification 

models. The five metrics used were the classification accuracy (CA), precision (PR), recall (RC), 

F1-score, and AUC score. The CA is the proportion of correct predictions. The PR is the 

proportion of correct positive predictions, where PR = TP/(TP + FP). The RC is the proportion 

of positive predictions recalled from the true positive instances, where RC = TP/(TP + FN). F1 is 

the harmonic mean of the PR and RC scores, where F1 = TP/(TP + α) and α = (FN + FP)/2. The 

advantage of these performance metrics is their simplicity while providing different insights 

about how noise affects the sensitivity and specificity of a model. However, a heavy class 

imbalance can lead to misleading results. For example, an unskilled classifier that always 

predicts the majority class can appear to provide good performance. The AUC is another metric 

that is insensitive to data imbalance by integrating TP as a function FP across a range of 

sensitivity thresholds (Fawcett, 2006). The AUC stands for “area under the curve” of the receiver 

operating characteristic (ROC), which evolved from information theory in radio 

communications. The “curve” is a two-dimensional plot of the TP rate against the FP rate, both 

as a function of the class membership probability threshold. An unskilled classifier typically 

produces a value close to 0.5, which establishes a baseline performance to evaluate skilled 

classifiers. 

3.5 Feature Ranking 

The Shapley additive explanations used in game theory can explain the contribution of players 

towards the outcome of a stochastics process with certain rules (Štrumbelj & Kononenko, 2014). 

The output of the model is a SHAP value that represents the normalized contribution of a feature. 

The workflows of Figure 2 and Figure 3 adopted the SHAP value to quantify the contribution of 
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a feature towards predicting the target class. The SHAP value of a feature is the average of its 

marginal contribution across all permutations of the collective contribution from the subset of 

other features. Given that S is a subset of N features of the predictive model and that v(S) is the 

value of their collective contribution towards a prediction, the marginal contribution of feature 

{i} is the contribution difference v(S ∪ {i}) − v(S) after including {i} as a feature. The SHAP 

value ϕ of feature {i} is the weighted sum of its marginal contribution over all possible 

combinations of selecting S features from the set of N features. That is, 

𝜙𝑖 = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
𝑆⊆𝑁\{𝑖}

[𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)] (1) 

where the notation |S| represents the number of non-zero entities and “!” is the factorial operator. 

The above expression represents the global SHAP value for a feature, thus ranking its 

importance as a contributor towards predicting the target class. 

The local SHAP value for feature {i} when adding instance j is 

𝜙𝑖
(𝑗)

= ℎ𝑖(𝑥𝑗) − 𝐸[ℎ𝑖(𝑥)] (2) 

where hi(x) is the marginal prediction model for feature {i} and E is the expected value operator. 

That is, the local SHAP value is the difference between how much the candidate feature of an 

instant contributes towards predicting the target class and the expected marginal value of that 

feature. 

4 Results 

The subsections of this section mirror those of the methodology section to discuss the results of 

applying the two workflows to the data. The last two subsections discuss the results of the 

predictive classification and the feature ranking methods. 
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4.1 Models from Structured Data 

The following two subsections describe the results of the data processing and feature extraction 

to build models from the structured attributes. 

4.1.1 Data Processing 

The data filtering procedure removed 35 attributes that had more than 85% of their values 

missing or filled with zeros, and 8 attributes that contained duplicate information. The procedure 

also removed 12 attributes that were irrelevant to the classification target, based on evaluating 

the SHAP values via the feedback loop of the workflow. Examples of irrelevant attributes 

included train numbers, car numbers, and other numerical identifiers. The data filtering 

procedure also removed 19 attributes that were highly correlated or redundant with others. 

The feature engineering procedure combined four fields that specified the number of 

engineers, firemen, conductor, and brakemen on the train into a single field (HUMANS) to 

quantify the number of human operators (excluding passengers) present. The method also 

simplified the categories of consist type (CONSIST) and operating method (MOVEx) by 

reducing them from 14 to 6, and from 21 to 5, respectively. 

The data imputation procedure did not merely fill missing values using the mean, most 

frequent, or nearest neighbor in feature space. Rather, the procedure applied more intelligence by 

filling missing values for track density (TRK_DEN) and the signalized territory flag (SIG) by 

using the mean and most frequent non-missing values, respectively, for the track class near the 

closest location, which was encoded in the field STATION. The procedure also filled missing 

values for CONSIST by inference from the values of other attributes such as the number of 

loaded or empty freight or passenger cars, the type of railroad (freight or passenger), or the 

method of operation, for example, yard movements, maintenance, or mainline operation. The 
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geospatial data cleaning method previously described filled missing or erroneous geospatial 

coordinates, which accounted for more than 19% of those attributes. 

In summary, the data processing procedures described above reduced the original 145 

attributes of the 26,943 instances in the dataset to 42 relevant attributes. The number of data 

instances dropped to 25,035 after removing those with missing target labels. 

4.1.2 Feature Extraction 

The attribute transformation procedure used the shifted log function to transform the track 

density, train weight, and train speed. The procedure normalized the number of loaded cars 

(CARS_LD) and cars carrying hazardous materials (CARS_HZMT) to the number of cars on the 

train (N_CARS). In summary, the attribute transformation procedure further reduced the number 

of attributes from 42 to 38. 

Table 3 summarizes the final set of attributes selected for ML after applying the first 

workflow. The numerical normalization procedure converted all continuous and ordinal feature 

types to the [0, 1] range. The one-hot-encoding procedure converted all categorical attributes to a 

binary feature array that indicated the presence or absence of a category for each data instance. 

The categorical variable encoding procedure increased the number of features from 38 to 74 

features. 

The dispersion column of Table 3 indicates the amount of spread in the distribution of each 

attribute. 
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Table 3: Summary of the ML Attributes, their Dispersion, and Type 

Attribute Dispersion Type Description 

HC 0.672 Binary Target attribute: 1 if the accident type was human caused 

REGION 1.980 Categorical FRA region code for accident location 

LAT 0.133 Continuous Cleaned latitude coordinate 

LON -0.129 Continuous Cleaned longitude coordinate 

CLASS_RR 0.818 Ordinal Cleaned railroad class 

MONTH 0.541 Ordinal Incident month 

DAY 0.557 Ordinal Incident day 

HR24 0.562 Continuous Transformed time to fractional 24-hour 

TEMP 0.382 Continuous Temperature (degrees Fahrenheit) 

VISION 1.130 Categorical Visibility: {Dawn, Day, Dusk, Dark} 

WEATHER 0.952 Categorical Weather: {Clear, Cloudy, Rain, Fog, Sleet, Snow} 

TRK_TYP 1.010 Categorical Track Type: {Main, Yard, Siding, Industry} 

TRK_CL 0.755 Ordinal Track Class: {X as 0, 1 through 9} 

CWR 1.280 Binary 1 if the rail type was continuously welded, 0 otherwise 

SIG 1.855 Binary 1 if used signals to control train movements, 0 otherwise 

MOVEx 1.120 Categorical Movement: {Blocks, Control, Signal, Not Main, Restrict} 

TRK_DEN_LG 1.027 Continuous log(1+x) of annual track density in millions of gross tons 

TONS_LG 0.846 Continuous log(1+x) of gross tonnage, excluding power units 

TRNSPD_LG 0.606 Continuous log(1+x) of train speed in miles per hour (mph) 

SPD_OVR -1.335 Continuous Difference between train speed and limit for track class 

CONSIST 1.080 Categorical Consist: {Freight, Passenger, Locomotive, Cars, Work, Yard} 

HUMANS 0.579 Continuous Number of humans present on the train 

HEADEND1 0.757 Ordinal Number of headend locomotives 

N_CARS 0.998 Ordinal Total number of cars (sum of loaded + empty cars) 

CARS_LD 0.766 Continuous Proportion of the number of cars that were loaded (0 to 1) 

CARS_HZMT 2.772 Continuous Proportion of loaded cars carrying hazardous materials (0 to 1) 

CARS 3.336 Ordinal Number of cars carrying hazardous materials 

CARSHZD 21.950 Continuous Number of cars that released hazardous materials 

ACC_TYPE 1.290 Categorical The type of accident {derail, collide, obstruct, etc.} 

CARSDMG 4.975 Continuous Number of hazmat cars damaged or derailed 

POSITON2 4.863 Continuous Position of car on the train that caused the accident 

EMPTYF2 2.926 Continuous Number of empty freight cars that derailed 

LOADF2 2.253 Continuous Number of loaded freight cars that derailed 

HEADEND2 3.340 Continuous Number of headend locomotives that derailed 

POS_CAR 0.923 Continuous Relative position of the first involved car in the train 

LOADED_1 0.929 Binary Is first involved car loaded? 

ACCDMG 3.552 Continuous Total reported damage in U.S. dollars 

CASKLD 9.574 Continuous Total killed for all involved railroads 

CASINJ 20.339 Continuous Total injured for all involved railroads 

The measure of dispersion for the continuous, ordinal, and binary attributes was the coefficient of 

variation, which is the ratio of the standard deviation to the mean of the distribution for that 

attribute. The measure of dispersion for the categorical attributes was the entropy, which is the 

sum of products of the probability of occurrence for each category of the attribute. The amount 
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of dispersion is proportional to the amount of information that an attribute contributes, so it was 

the first criteria for initial inclusion for performance evaluation in the logic loop of the workflow. 

4.2 Models from Unstructured Data 

The following two subsections describe the data processing and text mining results from the 

second workflow after applying it to the unstructured features. 

4.2.1 Data Processing 

The FRA database contained an accident narrative in 15 fixed-length fields. The procedure 

combined the text from the 15 narrative fields into a single document associated with each 

record. The procedure then stripped the documents into a corpus and passed it to the text mining 

layer. 

4.2.2 Text Mining 

The first procedure of the text mining layer applied a lowercase transformation to the corpus so 

that the downstream procedures recognized any case combination of the same word. 

Subsequently, a noise filter removed all punctuation and digits before feeding the result into a 

tokenizer that produced a list of single words for each document. The Porter stemming algorithm 

then reduced all inflected forms of each word to their lexical root so that the next procedure 

could effectively remove all stop words and their variants. The subsequent outlier and common 

word filters removed word stems that appeared in fewer than 10% and more than 90% of the 

documents, respectively. In summary, the collection of text mining procedures reduced the 

number of unique words and symbols from 53,173 to only 32 relevant word stems for embedding 

using the BOW model. Figure 4a and Figure 4b shows a word cloud before and after the text 

mining, respectively. The font size of each word or word stem in the cloud is proportional to 

their frequency of occurrence in the corpus. It is evident that stop words such as “was,” “to,” 
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“the,” “and,” and “of” dominated the unprocessed corpus and that the subsequent text mining 

procedures effectively distilled the most relevant words. 

 
Figure 4: Word cloud of the combined accident narratives a) before and b) after text mining. 
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4.3 Machine Learning 

Table 4 summarizes the performance of each ML algorithm after hyperparameter tuning and 

learning from the structured features. The performance is in descending order of the AUC score. 

Table 4: Model Performance and Optimum Hyperparameter Settings for Fixed Attribute Learning 

Model AUC CA F1 PR RC Optimum Hyperparameters 

RF 0.872 0.783 0.709 0.758 0.666 Trees (N): 60, Attributes/Split: 5, Min Subset: 5 

XGB 0.870 0.783 0.719 0.741 0.698 γ:0, Max Depth: 6, Min Child Weight: 1, R:1, w:1, L:0.2 

GB 0.864 0.775 0.707 0.734 0.681 LF: LR, Trees (N): 100, L: 0.2, Min Samples Leaf: 1 

MLP 0.820 0.735 0.734 0.734 0.735 Hidden Nodes: 100, Activation: ReLu, OA: Adam (α:10-4) 

DT 0.816 0.733 0.731 0.730 0.733 Max Depth: 10, Min Samples Leaf (N): 90, Min Subset: 5 

LR 0.814 0.730 0.725 0.726 0.730 R (L2, C:5) 

SGD 0.811 0.729 0.724 0.725 0.729 LF: (LR, ε:1), R: E.Net (α:10-5, 0.15), L: IVS (η0:10-2, t:0.25) 

kNN 0.781 0.711 0.703 0.707 0.711 N: 30, Distance (Euclidean, Weights: Uniform) 

NB 0.744 0.664 0.667 0.693 0.664 No parameters to tune 

ADB 0.701 0.714 0.714 0.713 0.714 Trees (N): 50, LF: Linear, OA: SAMME.R, LR: 1.0 

SVM 0.666 0.591 0.588 0.655 0.591 Kernel: Sigmoid, R (C:0.2, ε:1.0) 

Null 0.500 0.603 0.453 0.363 0.603 No parameters to tune 

The optimum hyperparameter settings shown include values for the learning rate (L), loss 

function (LF), regularization (R), and optimizer algorithm (OA) where applicable. 

Table 5 summarizes the performance for the ML models built from the text-mined features. 

The performance is in the order of the AUC score. 

Table 5: Model Performance and Optimum Hyperparameter Settings for Text Attribute Learning 

Model AUC CA F1 PR RC Optimum Hyperparameters 

RF 0.889 0.822 0.821 0.821 0.822 Trees (N): 60, Attributes/Split: 5, Min Subset: 5 

MLP 0.841 0.775 0.773 0.773 0.775 Hidden Nodes: 100, Activation: ReLu, OA: Adam (α:10-4) 

ADB 0.837 0.788 0.787 0.787 0.788 Trees (N): 50, LF: Linear, OA: SAMME.R, LR: 1.0 

kNN 0.814 0.744 0.732 0.746 0.744 N: 30, Distance (Euclidean, Weights: Uniform) 

DT 0.794 0.736 0.730 0.732 0.736 Max Depth: 10, Min Samples Leaf (N): 90, Min Subset: 5 

LR 0.792 0.731 0.722 0.729 0.731 R (L2, C:5) 

SGD 0.786 0.728 0.724 0.724 0.728 LF: (LR, ε:1), R: E.Net (α:10-5, 0.15), L: IVS (η0:10-2, t:0.25) 

NB 0.781 0.721 0.718 0.717 0.721 No parameters to tune 

No-skill 0.500 0.603 0.453 0.363 0.603 No parameters to tune 

SVM 0.444 0.609 0.474 0.654 0.609 Kernel: Sigmoid, R (C:0.2, ε:1.0) 
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The list excludes the boosting models of XGB and GB because their performance was similar the 

other boosting model (ADB). The RF model was the top performer in both cases of learning 

from the structured and unstructured features. The null model was an unskilled classifier that 

predicted the dominant class each time and served as a baseline for comparison with the skilled 

classifiers. The AUC performance of the null classifier was lowest as expected. As previously 

described, the CA score for the null model reflected the class imbalance of 60.3% for human-

caused accidents. 

4.4 Feature Ranking 

The feedback logic of the workflow flagged irrelevant or noisy features, based on their low 

SHAP values, for elimination in previous layers. Figure 5 and Figure 6 are “bee-plots” to 

visualize the feature’s impact on the predictive performance of the RF model. The diagrams list 

the top 18 features vertically in the order of their global impact. Each point in the dot cloud 

represents the local impact of that feature for a single training instance. The horizontal position 

of a point represents the SHAP value corresponding to the feature value for that instance. Like a 

binned histogram, the height of the dot cloud is proportional to the number of instances with 

feature values that correspond to the SHAP value on the horizontal axis. The color of each point 

represents the normalized value of that feature across all values in the dataset. 

For the structured features, the top contributors to predictive performance were 1) the 

category of derailment-type accidents, 2) the position of the first involved car, and 3) the number 

of loaded cars that derailed. Binary features such as one-hot-encoded categorical features had 

either a high value of one (red color) when the attribute was present or a low value of zero (blue 

color) when the attribute was absent. 
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Figure 5: Feature ranking on model impact for fixed attribute learning. 
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Figure 6: Feature ranking on model impact for text attribute learning. 

For example, low values for “derailment” meant that the accident type category was not 

derailment, and that the influence was toward predicting the target class of human-caused 

accidents. 
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For the unstructured features, the top three contributors to predictive performance were the 

words “switch,” “shove,” and “derail.” For instance, the presence of words “switch” and “shove” 

in an accident narrative contributed more to the prediction of human-caused accidents than when 

those words were absent. 

5 Discussion 

The random forest ML model provided the best predictive performance for both workflows. The 

AUC score for models using the structured and unstructured features were 0.872 and 0.889, 

respectively. Interestingly, the CA of 82.2% was higher for the ML model using text-mined 

features. Analyst may interpret the AUC score as a confidence level in the ranking of features 

that contribute towards predicting the target class of human-caused accidents. The results from 

the best predictive model built from the structured features suggest that human-caused railroad 

accidents are associated with the following: 

1) Non-derailment and non-RGC type accidents 

2) Cars near the front of the train 

3) Unloaded cars 

4) Low train speed or speeds below the speed limit for the track class operated on 

5) Yard or non-main tracks 

6) Side collisions 

7) Presence of humans onboard. 

Interestingly, the three top features (derailment, derailed car position, loaded cars derailed) 

collectively suggest that human factors are not generally associated with derailment type 

accidents. The fourth ranking feature (accident type not classified) suggests that human-caused 

accidents tended to be associated with cases where the accident type was not specified. The fifth 
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ranking feature suggests human-caused accidents are generally not associated with RGC type 

accidents. Counter to prior beliefs, the sixth ranking feature suggests human-caused accidents are 

generally not associated with high train speeds. In sharp contrast to derailments, side collisions 

are more strongly associated with human-caused accidents. 

The results from the best model built with text-mined features suggest that human-caused 

accidents are generally associated with narratives containing the words “switch,” “shove,” 

“yard,” “line,” “crew,” “cut,” and “struck,” but are not associated with narratives containing the 

words “derail” or “cross.” The interpretations are that human-caused accidents are generally 

associated with: 

1) activities such as shoving, switching, or cutting cars from trains, more than with pulling 

(“pull”) cars, 

2) non-derailment type accidents, 

3) non-crossing type accidents, 

4) collisions (“struck”) more than other accident types, 

5) yard and line tracks more than with main tracks, and 

6) the presence of a crew. 

The following findings are interesting: 

1) Shoving cars was more associated with human-caused accidents than pulling cars, an 

insight that only the NLP learning models provided. 

2) Agreement between the two ML workflows that human-caused accidents are generally 

not associated with derailments or crossings. 

3) Agreement between the two ML workflows that human-caused accidents are generally 

associated with yard and non-main tracks. 
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4) Agreement between the two ML workflows that human-caused accidents are generally 

associated with the presence of a crew, which is intuitively sound. 

The last three findings demonstrated that the information contained within the structured and 

unstructured data was consistent. 

The worst-performing model for both types of predictive classification was SVM. This result 

suggests that there were no clear hyperplanes in the dataset that separated human-caused 

accidents from other accident causes. Some evidence of this lack of separation between the 

classes is observable by the clustering of instances or a lack of gap near the zero SHAP value for 

most features. 

One limitation of this ML approach is the difficulty of automating the processes to 

continuously improve the predictions with new data. Another limitation is the need to involve a 

data scientist in feature engineering and to interpret the results, both of which requires more art 

than science. Some of the findings of this analysis were intuitive, but others were not. Hence, it 

becomes challenging to formulate precise risk management strategies based on the outcome of 

predictive analysis, which itself is probabilistic in nature. Nevertheless, some of the distinct 

findings, such as that shoving cars is riskier than pulling cars when a crew is involved, and that 

human factors are more pronounced with yard accidents and not with derailments, can inform 

policies to minimize the risk of such future accidents. 

Railroads can use the above findings to guide management decisions, strategic planning, and 

policy development aimed at mitigating the risks associated with human-caused railroad 

accidents in the following ways: 

1. Enhanced Training: develop comprehensive training programs that focus on activities 

with higher risk such as shoving, switching, or cutting cars from trains. 
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2. Standard Operating Procedures: implement clear operating procedures and safety 

protocols for high-risk activities such as those found in this study. 

3. Improved Supervision and Monitoring: invest in technologies and systems to help 

improve the efficiency and effectiveness of supervising and monitoring crew 

performance, especially during high-risk activities. Such investments could include real-

time monitoring systems, solutions to leverage an installed positive train control system 

to reduce dependence on human decision-making, periodic safety audits, and regular site 

inspections. 

4. Infrastructure and Track Layout Optimization: invest in improving yard and non-main 

tracks that are associated with high-risk operations by improving track layouts, upgrading 

yard facilities, and implementing automatic switches and warning systems. 

5. Focused Accident Prevention Policies: develop targeted policies that address the specific 

types of accidents found to be more strongly associated with human factors. Such policies 

may include additional safety measures, enhanced protocols for train operators to follow 

during high-risk situations and encouraging open communications about safety concerns. 

6. Crew Resource Management: adopt crew resource management (CRM) techniques to 

foster a culture of safety and teamwork by improving communication, coordination, and 

decision-making among crew members. Additional considerations for CRM could 

include fatigue management and fatigue awareness training. 

7. Periodic Evaluations and Revisions: establish regular evaluations and revisions of safety 

policies and procedures to update them based on reports of best practices, new 

regulations, emerging trends, and insights gained from studies like this. 
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6 Conclusions 

The emphasis on high-profile accidents due to speeding and switches placed in the wrong 

position diverted attention from other human errors that have caused many accidents. This study 

developed two different workflows to compare how they rank features associated with human-

caused accidents. One workflow used features extracted from the structured data and the other 

used text-mined features from the unstructured data. Among 11 different ML models evaluated, 

the random forest (RF) technique provided the best predictive performance in both workflows. 

However, the ML workflow that incorporated NLP provided a slight performance edge as well 

as additional insights that the structured attribute workflow did not. 

One surprising result of the analysis was that human-caused accidents were generally not 

associated with high train speeds or derailment-type accidents. Another interesting finding was 

that shoving cars is riskier than pulling cars, especially when a crew is involved with such 

activities. These and other findings detailed in the discussion section above can inform 

management decisions and policies to minimize the risk of such accident types. The discussion 

above provided several examples of how railroads can use the insights gained from this study to 

improve railroad safety and risk management. 

The workflows presented are easily generalizable to analyze other types of classification 

problems. The NLP workflow may require even fewer modifications when dealing with English 

narratives. The Shapely feature ranking technique and the associated data visualization 

instrument are also reusable without much modification. Future work will leverage the workflow 

to examine trends in accidents caused by human error to determine the effectiveness of PTC 

deployments relative to expectations. Future work will also examine influences in human-caused 

accidents for different track types. 
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