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Forecasting Market Opportunities for Urban and Regional Air Mobility 

Abstract 

Analysts predict that future air taxis will fundamentally change the travel behavior of society. 

However, current market forecasts for air taxi demand varies widely because of inconsistencies 

in assumptions about travel purpose, technology acceptance, time savings, affordability, and 

safety. To successfully deploy Advanced Air Mobility (AAM), stakeholders need to reliably 

forecast routes where demand will be highest. To increase reliability, this study focuses on the 

Uber Elevate multimodal use case and combines top-down and bottom-up methodologies to 

forecast demand. The hybrid methodology forecasts demand within four distance bands from 

100 miles to 400 miles, in 100-mile increments. Forecasting within distance bands informs a 

range roadmap for electrified vertical takeoff and landing (eVTOL) aircraft. Geographic 

information system (GIS) and network trimming techniques identify 2,083 viable routes among 

859 U.S. cities. The findings are that approximately 78,000 passengers daily will access at most 

4,214 vertipads to fly on 3,023 four-passenger eVTOL aircraft. Serving routes within the first 

100-mile band will require two and five times more capital for aircraft and vertiports, 

respectively, than for longer routes. AAM stakeholders can utilize the hybrid methodology to 

forecast demand for specific routes in other regions of the world and for additional use cases. 

Keywords: Aircraft Utilization; Autonomous Aircraft; Data Mining; Electrified Aircraft; Trip 

Demand Forecasting; Future Transportation. 
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1 Introduction 

Advanced air mobility (AAM) is a sustainable aviation initiative to connect cities across urban 

and regional areas with air taxis in the form of electrified vertical takeoff and landing (eVTOL) 

aircraft (GAO, 2022). eVTOL aircraft characteristics are favorable for operation in densely 

populated places because they can take off and land like helicopters in small spaces called 

vertipads. Unlike airports, vertipads distributed throughout a city will be closer to the origins and 

destinations of passengers (Ackerman, Zorpette, Pepitone, & Choi, 2022). eVTOL aircraft 

promise shorter journeys, lower fares, lower traffic noise, and less pollution (NASA, 2021). 

Urban vertiports can spur new shuttle services between regional locations, resulting in less 

ground traffic. Each vertipad services a single aircraft, and each vertiport can contain multiple 

vertipads. In summary, motivations for AAM deployments are to increase accessibility, reduce 

trip times, lower fares, lower traffic noise, reduce pollution, and reduce ground traffic. 

Uber Elevate described a detailed vision for the passenger AAM use case (Uber Elevate, 

2016). The vision was that passengers could book complete door-to-door journeys that combine 

ground and air passenger modes for faster, more accessible, and more affordable transportation 

across longer distances. Some of the proposed locations for vertiports were at underutilized small 

airports and heliports, the rooftops of parking garages and shopping malls, floating barges, 

roadside facilities, and in the cloverleaf areas of highway exchanges (Uber Elevate, 2016). Joby 

Aviation acquired Uber Elevate in 2020 to commercialize the use case (Joby Aviation, Inc., 

2021). The Uber Elevate business model has since attracted hundreds of eVTOL aircraft 

manufacturers and billions of dollars to deploy AAM (Dempsey, 2021). 

Initial deployments that fail to produce a reasonable return on investment can stall AAM 

development. Hence, the problem to solve is where to develop routes that will serve the greatest 
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initial demand. There is no data on existing demand locations because a commercial air taxi 

market does not exist at the time of this study. It is also likely that adding lower-cost air taxi 

services to existing regional routes will induce demand and mode shift from larger aircraft. There 

has been no study to rank all U.S. cities and routes by their air taxi demand potential. Therefore, 

the goal of this research was to rank potential U.S. routes based on the Uber Elevate business 

model, within the range constraints of an AAM technology roadmap. 

Air passenger demand forecasting typically takes a top-down approach by considering 

how socioeconomic factors may influence travel demand (Suryani, Chou, & Chen, 2010). 

Current market size estimates for AAM vary widely because of the inconsistencies of study 

scope, varying assumptions about socioeconomic factors, and guesses about deployment 

constraints (Sun, Wandelt, Husemann, & Stumpf, 2021). The contribution of this study is a 

hybrid methodology that ranked specific U.S. routes by trip-miles, within distance bands to 

inform an eVTOL aircraft range roadmap. The hybrid methodology combined top-down and 

bottom-up approaches. The top-down aspect was based on population projections for 2030 and 

trip rates based on statistics from transportation network company (TNC) operations. The year 

2030 is when most air taxi companies expect to deploy commercial service (Carter, Johnston, 

Lidel, Riedel, & Tusch, 2022). The bottom-up aspect of the methodology identified potential air 

taxi routes by using a geographic information system (GIS) to produce a Haversine distance 

matrix among all pairwise combinations of cities selected. The results of this study will inform 

investment decisions, transportation planning, standardization initiatives, regulatory 

developments, and policymaking. 

The organization of the rest of this paper is as follows: Section 2 reviews the literature on 

AAM market forecasts, air travel demand modeling, TNC statistics, and bottom-up studies. 
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Section 3 describes the hybrid methodology introduced to forecast and rank specific U.S. routes 

based on their trip-mile potential. Section 4 discusses the results and implications for AAM 

stakeholders. Section 5 concludes the research and hints at future work already underway. 

2 Literature Review 

Ghalehkhondabi et al. (2019) suggested that there is no single method of forecasting air 

passenger demand that works best for all scenarios (Ghalehkhondabi, Ardjmand, Young, & 

Weckman, 2019). Current demand forecasts vary widely because of the variety of assumptions 

made and the range of scenarios investigated. For instance, Porsche Consulting estimated that the 

global passenger market for AAM in 2035 will be $32 billion (Grandl, et al., 2018). In contrast, 

Morgan Stanley Research estimated that the same market in 2035 will be $641 million (Morgan 

Stanley Research, 2019). Lineberger et al. (2021) estimated that the U.S. AAM market alone will 

be $115 billion by 2035 (Lineberger, Silver, & Hussain, 2021). A literature review by Banerjee 

et al. (2020) suggested that standardizing forecasting methods will improve consistency 

(Banerjee, Morton, & Akartunalı, 2020). The U.S. National Academies of Science (NAS) 

validated a need for more research in AAM forecasting by launching a synthesis study in 2021 to 

further compare existing methods and assumptions (Fowler, 2021). 

Classic travel demand forecasting begins by estimating future trip production rates based 

on surveys or assumptions about how often people will travel for different purposes such as 

work, shopping, leisure, school, and to access services (Bridgelall & Stubbing, 2021). However, 

the dynamics of remote work policies and e-commerce introduce additional uncertainty. 

Although anticipated to grow rapidly, many issues can delay AAM adoption such as concerns 

about community acceptance (Kalakou, Marques, Prazeres, & Agouridas, 2023), lack of 

supporting infrastructure for smart city integration (Richter, Löwner, Ebendt, & Scholz, 2020), 
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and environmental impacts (Cohen, Shaheen, & Farrar, 2021). Other concerns include safety, 

security, operational robustness in all weather conditions, visual and noise pollution, aircraft 

technology limitations, inequitable accessibility, and service unaffordability (Garrow, German, 

& Leonard, 2021). Top-down methods typically assume estimates for population, gross domestic 

product, price, need, and service quality (Suryani, Chou, & Chen, 2010). Forecasters also apply 

macroeconomic indicators to linear models (Njegovan, 2005), and time-series models with 

seasonality (Jungmittag, 2016). 

Statistics from specific use cases help to decrease uncertainty. For instance, a Gallup poll 

found that 30% of Americans used ridesharing, which ties demand for the Uber Elevate use case 

directly to population (Reinhart, 2018). A few studies examined the potential for AAM to 

capture some of the ground TNC market. Rothfeld et al. (2018) found that ground trips longer 

than 10 kilometers (6 miles) could compete with an air taxi market (Rothfeld, Balac, Ploetner, & 

Antoniou, 2018). Another study found that air taxi trips need to be longer than 15 to 25 

kilometers (9 to 16 miles) to entice a mode shift for more time savings (Baur, Schickram, 

Homulenko, Martinez, & Dyskin, 2018). Goyal et al. (2021) found that AAM could capture 98% 

of ground trips longer than 30 minutes and replace non-discretionary car trips that take more than 

45 minutes (Goyal, Reiche, Fernando, & Cohen, 2021). The Goyal study focused on ten 

metropolitan regions in the United States and estimated a constrained daily demand of 82,000 

passengers served by 4,100 four- or five-seat aircraft. Kooti et al. (2017) analyzed more than 4 

million Uber trip receipts and found that more than half the rides were shorter than four miles 

and 10% were longer than 36 minutes (Kooti, et al., 2017). The Kooti study also found that the 

median trip duration was 14 minutes, and the median trip rate was 10.4 rides per year. Wang et 
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al. (2022) analyzed street images of Atlanta, Georgia, and found that the average wait time for an 

UberX ride was approximately 6 minutes (Wang, et al., 2022). 

Very few research tackled forecasting by bottom-up approaches that consider specific 

routes. Bottom-up methods are more challenging because they require additional granularity and 

computational resources to evaluate details about the origin and destination characteristics for the 

considered routes. Rakas et al. (2021) used multi-criteria decision analysis to rank the suitability 

of eVTOL aircraft designs for specific routes across the Los Angeles, California, metropolitan 

area (Rakas, Jeung, So, Ambrose, & Chupina, 2021). A U.K. study found that conventional 

regional aircraft used only 11% of their range capability to serve sector lengths up to 1,000 

kilometers (Swanson & Zych, 2022). The U.K. study suggested that electric aircraft with range 

capability up to 500 km (311 miles) can more efficiently serve a majority of that sector. In 

summary, there has been no AAM forecasting method that combined top-down and bottom-up 

approaches. 

3 Methodology 

A NASA-commissioned study found that 98% of the air taxi demand will come from a portion of 

ground trips that exceed 30 minutes (Goyal, et al., 2019). Therefore, this study focused on the 

Uber Elevate use case, which could be the largest initial market for air taxis. The Uber Elevate 

scenario generates air taxi demand by shifting modes from ground to air for a portion of the TNC 

ride journey. The analyzed scenario assumes that there is no lack of supply in the horizon year 

that would influence demand. The next six subsections discuss the data mining workflow, the 

variables and values used in the calculations, and the methods of trip generation, network 

trimming, trip distribution, and supply-side estimates. 
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3.1 Data Mining Workflow 

Figure 1 illustrates the data mining and analytical workflow where each procedure shown is a 

function implemented in the Python programming language. The workflow starts with 2010 and 

2020 population estimates from the United States Census Bureau (USCB) for all incorporated 

U.S. cities (USCB, 2022). The model to forecast population for each city in 2030 was a linear 

projection based on population changes from 2010 to 2020. The linear projection captured a 

decade-long change in population for each city as a nominal slope and projected the same change 

to the next decade. 

 

Figure 1: The data mining and analytical workflow of this study. 

Estimates for the trips generated and the mode shift propensity for each city were based 

on TNC statistics reported by the Gallup poll (Reinhart, 2018) and the Kooti et al. (2017) 

analysis of more than four million Uber trip receipts (Kooti, et al., 2017). The network trimming 

procedures removed nodes and links that would be unattractive for AAM deployments based on 

low departure rates. 

Route length classification binned all potential routes between the selected cities within 

distance bands of 100 miles to 400 miles, in 100-mile increments. The four distance bands align 

with four stages of a proposed eVTOL technology roadmap to increase operating range. That is, 

steady advancements in battery energy density, lightweight airframe material, propulsion system 

efficiency, and automation will increase eVTOL aircraft range (Lee, Tullu, & Hwang, 2020). 
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Forecasting demand within distance bands will help AAM stakeholders make decisions about 

reaching additional markets served by longer routes. 

The advantage of ranking routes based on their relative trip-mile potential was that 

ranking is insensitive to estimate variations for trip rate and mode shift. Hence, using rank 

instead of an absolute demand rate identifies important routes for prioritized development based 

on their relative business potential. For example, the absolute size of the potential market within 

a top ten list of routes would depend on the actual mode shift from ground TNC rides, but those 

routes will remain on the top ten list. 

3.2 Scenarios and Variables 

Table 1 summarizes the variables (Vars) used in the analysis and includes their value, units, and 

data source. Uber Elevate suggested that a four-passenger aircraft will achieve the AAM vision 

better than larger aircraft because of the strict community noise restrictions (Uber Elevate, 2016). 

Uber Elevate calculated that 125 mph yielded the maximum motion efficiency (miles/kwh) for 

eVTOL aircraft in cruise mode (Uber Elevate, 2016). This speed is coincidentally the same as 

the average speed specification for eVTOL aircraft under development (Bridgelall, Askarzadeh, 

& Tolliver, 2023). Therefore, this analysis used 125 mph as the average eVTOL aircraft cruise 

speed. 

The average range specification for eVTOL aircraft under development was 91 miles 

(Bridgelall, Askarzadeh, & Tolliver, 2023). Although a few manufacturers demonstrated full-size 

prototype flights, the robust range capability of eVTOL aircraft under real-world scenarios like 

inclement weather, temperature extremes, and wind gusts, was unverified at the time of this 

research (Nickels, 2021). However, most manufacturers that announced plans to launch service 

by 2030 were designing aircraft to serve routes within 100-miles, including a buffer distance to 
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comply with regulatory safety requirements (FAA, 2020). Manufacturers have also been 

developing hybrid VTOL aircraft that can service routes of up to 400 miles (Rakas, Jeung, So, 

Ambrose, & Chupina, 2021). 

Table 1: Data Used in the Analysis 

Vars Description Value Units Source 

Dm Average eVTOL flight range advertised 91 Miles (Bridgelall, Askarzadeh, & 

Tolliver, Introducing an 

Efficiency Index to Evaluate 

eVTOL Designs, 2023) 

BN Distance band category {100, 200, 

300, 400} 

Miles  

Sm Average eVTOL cruise speed advertised 125 MPH (Bridgelall, Askarzadeh, & 

Tolliver, Introducing an 

Efficiency Index to Evaluate 

eVTOL Designs, 2023) 

Se Cruise speed for peak motion efficiency 125 MPH (Uber Elevate, 2016) 

Bc Aircraft battery charge time 30 Minutes (Rajendran, Vaithilingam, 

Misron, Naidu, & Ahmed, 2021) 

TL Aircraft vertical lift time 1 Minute (Uber Elevate, 2016) 

TD Aircraft vertical descent time 1 Minute (Uber Elevate, 2016) 

HO Operating Hours (6 a.m. to 8 p.m.) 14 Hours (WorldData.info, 2023) 

DC Drone passenger capacity + 1 pilot 4 Count (Uber Elevate, 2016) 

Pi 2030 population estimate for city at node i Var Count (USCB, 2022) 

XYi Centroid geospatial coordinates for node i Var degrees (SimpleMaps, 2020) 

rp Proportion of population using TNC rides 0.30 Proportion (Reinhart, 2018) 

rr Average annual TNC ride trip rate 10.4 per year (Kooti, et al., 2017) 

rAP Proportion of Uber trips accessing airports 0.17 Proportion (Uber Elevate, 2016) 

r36 Proportion of rides longer than 36 minutes 0.10 Proportion (Kooti, et al., 2017) 

r60 Proportion of rides longer than 60 minutes 0.06 Proportion (Uber Elevate, 2016) 

RT Average TNC ride trip time 14 Minutes (Kooti, et al., 2017) 

RW Average TNC ride wait time 5.8 Minutes (Wang, et al., 2022) 

HD Haversine distance factor of road distance 0.71 Proportion (Uber Elevate, 2016) 

The battery charge time of 30 minutes reflected current developments in fast chargers 

that would be suitable for the AAM market (Rajendran, Vaithilingam, Misron, Naidu, & Ahmed, 

2021). Battery swapping could potentially reduce the aircraft ground time, thereby increasing 

utilization. However, battery swapping may require additional personnel, which would increase 

operating costs and the need for training and safety inspections. Therefore, this analysis 

calculates the departure capacity of a vertipad based on aircraft occupation time, which is the 

total time required to descend, charge, and liftoff. The scenario was that the total time required 

for disembarking, cleaning, and boarding will be comparable to the charge time. 
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The operating scenario was that the first and last departure times would be 6 a.m. and 8 

p.m., respectively. The rationale was to operate during the average summer daylight time in the 

continental United States (WorldData.info, 2023). Therefore, the capacity of a vertipad under the 

above scenarios was 

𝑉c = ⌈
60𝐻O

𝐵c + 𝑇L + 𝑇D
⌉ = 26 (1) 

where ⌈∙⌉ is the mathematical ceiling function that rounds up a value to the nearest integer. This 

equation reflects an ideal capacity that does not include any additional time for potential “safety 

intervals” that a future air traffic management system might require. 

3.3 Trip Generation 

Uber found that less than 17% of all its bookings connected to airports (Uber Elevate, 2016). 

However, data is not available about the portion of those bookings that involved urban or 

regional air travel within 400 miles. A related data point is that regional airlines accounted for 

41% of all scheduled U.S. passenger flights in 2021 (RAM, 2023). Hence, an informed estimate 

for the Uber Elevate use case was that 17% x 41% = 7% of bookings would be for regional 

flights, but of unknown distance. Another data point from Kooti et al. (2017) was that 10% of 

TNC trips were longer than 36 minutes (Kooti, et al., 2017). Uber Elevate reported that 6% of 

TNC trips were longer than 60 minutes (Uber Elevate, 2016). Hence, the above datapoints 

support a plausible scenario that between 6% and 10% of TNC users will switch to air taxis that 

will reduce overall travel time to below 36 minutes. 

Table 2 summarizes the variables used in the calculations. Given that 30% of the 

population uses TNC and that the average annual trip rate is 10.4 (Table 1), the estimated 

average annual passenger departures from all vertiports at node i is 
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𝑌𝑖 = 𝑃𝑖𝑟p𝑟𝑟𝑟36 =
𝑃𝑖

3.21
∙ (2) 

That is, the value 3.21 = 1/(0.3 × 10.4 × 0.10). Therefore, the annual number of four-passenger 

drone departures from node i is 

𝐴𝑖 =
𝑌𝑖
𝐷C

=
𝑃𝑖

3.21 × 4
=

𝑃𝑖
12.82

∙ (3) 

Hence, the average number of daily four-passenger drone departures from node i is 

𝐷𝑖 =
𝐴𝑖

365
=

𝑃𝑖
4679.5

∙ (4) 

Table 2: Variables Used in the Analysis 

Vars Description Units 

Yi Average annual passenger departures from node i Count 

Ai Average annual drone departures from node i Count 

D{i, j} Average daily drone round trips on route {i, j} Count 

Mij Average daily trip-miles between nodes i and j Trip-Miles 

dij Haversine distance between nodes i and j Miles 

Fij Flight time between nodes i and j Minutes 

∆ij Time between availability of the same aircraft at node i Minutes 

Rij Road distance between nodes i and j Miles 

Gij Ground (road) travel time between nodes i and j Minutes 

rij Flight time to road time ratio between nodes i and j Proportion 

N{i, j} Number of drones serving route{i, j} Count 

Q{i, j} Average daily departures per drone on route{i, j} Count 

U{i, j} Average annual aircraft utilization on route{i, j} Hours 

Vc Vertipad capacity (daily departures per vertipad) Count 

V{i, j} Vertipads needed at each trip end of route{i, j} Count 

Vi Minimum number of vertipads needed at node i  Count 

The above quantity is equivalent to 0.021% of the population at a node. For perspective, the 

above model predicts that a city of 9,359 persons will have 2,808 TNC users (30%) who would 

produce an average demand of two daily four-passenger drone departures. 

3.4 Network Trimming 

The network model to select route candidates represented cities as nodes. The value of each node 

was the number of daily drone departures. The value of a link between each node pair was the 

Haversine distance between city centers, which approximated a direct flight path. A fully 

connected network of N nodes has N2 – N links. The USCB population dataset contained 19,494 
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cities, which resulted in approximately 380 billion route candidates. The strategy to reduce the 

problem size for practical evaluation and planning was to trim the network in stages, based on a 

set of criteria. 

Network trimming started with node elimination and then proceeded with link 

elimination. Node elimination was based on a minimum demand threshold. Link elimination was 

based on a Haversine distance window. Node trimming removed nodes in three stages to gauge 

the progressive effectiveness of each. The first stage eliminated cities where the population was 

insufficient to generate at least one drone departure per day. The threshold was 365 × 4 = 1,460 

annual person-departures, based on four-passenger drones. The second stage removed places in 

Alaska, Puerto Rico, and Hawaii to focus the forecast on the contiguous United States. 

After applying trip generation, the third stage eliminated cities with, at most, two daily 

drone departures (Di ≤ 2). The rationale was that investors and transportation providers will 

deploy initial service to maximize daily revenue and aircraft utilization for the least amount of 

capital investment. The threshold of two daily departures reflected the scenario that a single 

aircraft can provide only one to two daily round trips within a 400-mile distance band. 

The minimum and maximum distance for link trimming was 15 and 400 miles, 

respectively. The maximum distance was the upper limit of the last distance band, which was 

400 miles. Setting the lower limit to 15 miles was based on the total journey time of a typical 

TNC trip in large U.S. cities, which was 20 minutes (6 minutes of waiting and 14 minutes of 

riding). When traveling at the typical arterial speed limit of 45 mph, a zero-wait 20-minute ride 

will go approximately 15 miles. 

Link trimming required the Haversine distances for every pairwise combination of nodes 

remaining on the trimmed network. A geospatial information systems (GIS) tool provided those 
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distances by using the centroid of cities to generate a distance matrix. However, the USCB 

population dataset lacked geospatial coordinates for the city centroids. The solution was to merge 

another dataset that contained those geospatial coordinates. However, merging the two datasets 

required a common unique variable or key, but none existed. Therefore, the strategy was to 

create a unique key by concatenating the city name with the state name. It was not possible to 

use only city names as the merge key because of many duplicates. Finally, data cleaning was 

necessary to correct mismatches in the city names across datasets due to differences in prefix 

spellings like “St.” versus “Saint” and differences in name suffixes such as “City,” “village,” 

“town,” “borough,” and “municipality.” 

3.5 Trip Distribution 

One of the most important models in trip distribution is the gravity model of migration that 

estimates the number of trips that would go from node i to node j based on the concept of 

attraction (Zhang, Lin, & Zhang, 2018). Inspired by Newton’s law of gravity, the model 

represents “attraction” between two locations as the product of their individual importance and 

the inverse of an impedance factor between them. The number of daily departures based on 

population was the measure of importance, and the impedance factor was the squared Haversine 

distance between them. The basic gravity model does not account for relative importance among 

all possible routes from an origin node. Hence, the strategy was to modify the model to reflect 

equal weight between the relative importance and relative impedance of locations with routes 

connecting to node i. That is, let {J} be the set of nodes j = {1, 2 ...} connected to node i. Hence, 

the number of departures that node j attracts from node i is 

𝐷𝑖𝑗 = 𝐷𝑖 [
1

2
(

𝐷𝑗
∑ 𝐷𝑗𝑗∈{𝑱}

) +
1

2
(

1 𝑑𝑗
2⁄

∑ (1 𝑑𝑗
2⁄ )𝑗∈{𝑱}

)] ∙ (5) 
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Airlines use the concept of “passengers daily each way” (PDEW) to measure the demand 

on a regional route (Bachwich & Wittman, 2017). PDEW assumes that passengers arriving at 

node i, especially commuters and business travelers, will return at some time. Therefore, 

returning passengers at node i will add to its departing passengers. Hence, the number of round 

trips on route {i, j} was the sum of departures originated at each trip end such that 

𝐷{𝑖, 𝑗} = ⌊𝐷𝑖𝑗 + 𝐷𝑗𝑖⌋ (6) 

where the operator ⌊∙⌋ is the mathematical floor function that rounds down a value to the nearest 

integer. 

3.6 Supply Estimates 

The flight time from node i to node j is 

𝐹𝑖𝑗 =
𝐷m

𝑆m
+ 𝑇L + 𝑇D ∙ (7) 

Based on round trips, the time between availability of the same aircraft at node i is 

∆𝑖𝑗= 2(𝐵c + 𝐹𝑖𝑗) ∙ (8) 

The number of four-passenger drones needed to serve route {i, j} is 

𝑁{𝑖, 𝑗} = ⌈
𝐷{𝑖, 𝑗}∆𝑖𝑗

60𝐻O
⌉ ∙ (9) 

The average number of daily one-way trips per drone that serve route {i, j} is 

𝑄{𝑖, 𝑗} = ⌈
2 × 𝐷{𝑖, 𝑗}

𝑁[𝑖, 𝑗]
⌉ ∙ (10) 

The average daily trip-miles for route {i, j} is 

𝑀𝑖𝑗 = 2 × 𝐷{𝑖, 𝑗}𝐹𝑖𝑗 ∙ (11) 

The average aircraft utilization on route {i, j} in annual flight hours is 

𝑈{𝑖, 𝑗} = 𝑄{𝑖, 𝑗} × 𝐹𝑖𝑗 × 365/60 ∙ (12) 
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The number of vertipads needed at each trip end of route {i, j} is 

𝑉{𝑖, 𝑗} = ⌈
𝐷{𝑖, 𝑗}

𝑉c
⌉ (13) 

Vertipads dedicated for specific routes may be underutilized. Hence, sharing a vertipad to serve 

multiple routes will increase utilization. Therefore, the lower bound for the number of route-

shared vertipads needed at node i is 

𝑉𝑖 = ⌈
∑ 𝐷{𝑖, 𝑗}𝑗∈{𝑱}

𝑉c
⌉ (14) 

The lower bound represents the theoretical scenario of 100% vertipad capacity utilization. 

Practically, however, more vertipads will be necessary to design some slack in the system that 

would accommodate operational variations such as flight, departure, and charge times. 

4 Results and Discussion 

The first two subsections that follow discuss results of the network trimming and demand 

forecasting. The last two subsections discuss the potential travel time savings over ground 

transportation and limitations of the study. 

4.1 Network Trimming 

The first procedure in the workflow was to clean the population datasets to enable their merging 

to forecast the 2030 population for each city. The USCB dataset contained 81,415 entries but 

only 19,494 were incorporated U.S. cities, identified by the field value SUMLEV = 162. The 

number of cities decreased to 19,444 after removing duplicates. Eliminating cities where the 

population was insufficient to generate at least one drone departure per day reduced the number 

of candidate cities by 56% to 8,561. Removing locations in Alaska, Puerto Rico, and Hawaii 

resulted in a slight reduction to 8,525 cities. Subsequently, eliminating cities with daily drone 

departures of at most two (Di ≤ 2) reduced the candidate cities by a further 60% to 3,434. 
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After data cleaning and merging the 2030 population forecast with the geospatial 

coordinate dataset, the GIS produced a distance matrix with 11,788,922 (34342 - 3434) candidate 

routes. Trimming link distances to at most 400 miles reduced the number of candidate routes by 

83.7% to 1,920,076 routes. Trimming link distances to at least 15 miles further reduced the 

number of candidate routes by another 2% to 1,884,764 routes. 

The modified gravity model distributed trips from each of the remaining origin cities to 

all destination cities within the (15 ≤ miles ≤ 400) distance window. Then eliminating routes 

with fewer than two daily departures reduced the number of routes to 4,166, which was a factor 

of more than 452. Given that each end of each route had the same number of departures and the 

same flight distance, the final procedure combined their individual unidirectional links to 

bidirectional links for faster processing. The final trimmed network consisted of 859 cities 

connected by 4,166/2 = 2,083 unique routes. 

4.2 Demand Forecasting 

Table 3, Table 4, Table 5, and Table 6 list the top ten routes within the 100-, 200-, 300-, and 400-

mile distance bands, respectively. The tables rank the routes by average daily trip-miles. Routes 

that service cities in New York, Texas, and California consistently ranked highest by trip-miles 

in each of the four distance bands. Table 3 revealed that serving the top ten routes within the 

100-miles band will require an average of 4.4 drones per city for a total of 44 drones. The 

average route distance in the 100-mile band was 77 miles with aircraft producing an average of 

3,731 daily trip-miles. The {New York City ↔ Philadelphia} route will require 22 drones that 

will produce more than five times the average daily trip miles in the top ten routes of the 100-

miles band. New York City will require at least 95 vertipads when shared across all routes to 
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maximize utilization. The {New York City ↔ Philadelphia} route alone will require five of 

those 95 vertipads. 

Table 7 summarizes the results for the top ten routes across all distance bands. Once 

again, the largest cities in California, New York, and Texas ranked highest in trip-miles. The 

above findings align with intuitive expectations that air taxi demand will be highest in the most 

populated U.S. cities. Table 8 summarizes the results for all 2,083 routes within each distance 

band. The “Departures” column lists the total daily one-way drone departures on all routes 

within the indicated distance band. That is, the forecast was 19,424 daily drone departures 

carrying 19,424 × 4 = 77,696 passengers across all 2,083 routes. The “Drones” column of Table 

8 shows that 3,023 four-passenger drones can serve all 2,083 routes each day. The “Trip-Miles 

(K)” column of Table 8 lists the number of daily trip-miles (in thousands) that drones would 

produce within each indicated distance band. The “Vertipads” column lists the total number of 

vertipads needed to serve routes within the distance band indicated. That is, companies will need 

to build at most 4,214 vertipads to service all 2,083 routes each day. However, vertipads will be 

underutilized if reserved to service only a given route. Therefore, using the same vertipad to 

schedule departure slots for multiple routes will minimize the number of vertipads needed. The 

lower bound was 1,269, which is the sum of vertipads based on the total departures in each of the 

859 cities. Hence, optimizing departure slots to maximize vertipad utilization could reduce the 

number of vertipads needed by a factor of 4,214/1,269 = 3.3. Future work will conduct a few 

case studies to optimize vertipad utilization and location within cities. 

Figure 2 plots the data in Table 8 to visualize the forecasted demand trend across distance 

bands. Figure 2a shows opposing trends in the number of one-way departures and trip-miles. 
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Table 3: Metrics for the Top Ten 100-mile Rand Routes 

Top Ten (100-mile Band) Mij dij Fij Rij Gij rij D{i, j} N{i, j} Q{i, j} U{i, j} V{i, j} Vi Vj 

New York_NY ↔ Philadelphia_PA  20,665 79 40.2 94 110 0.370 130 22 12  2,931 5 95 11 

Austin_TX ↔ San Antonio_TX  3,107 74 37.5 80 77 0.490 21 4 11  2,510 1 10 14 

Los Angeles_CA ↔ Bakersfield_CA  2,037 93 46.4 111 113 0.410 11 3 8  2,260 1 42 2 

Denver_CO ↔ Colorado Springs_CO  1,985 62 31.8 71 68 0.470 16 3 11  2,126 1 7 4 

New York_NY ↔ Hartford_CT  1,769 98 49.2 116 146 0.340 9 2 9  2,692 1 95 1 

New York_NY ↔ Allentown_PA  1,636 82 41.3 93 106 0.390 10 2 10  2,510 1 95 1 

New Haven_CT ↔ New York_NY  1,618 67 34.4 80 115 0.300 12 2 12  2,509 1 1 95 

Chicago_IL ↔ Milwaukee_WI  1,546 86 43.2 92 89 0.490 9 2 9  2,366 1 16 1 

Waterbury_CT ↔ New York_NY  1,511 76 38.3 95 121 0.320 10 2 10  2,327 1 1 95 

New York_NY ↔ Bridgeport_CT  1,437 51 26.6 65 101 0.260 14 2 14  2,269 1 95 1 

Average  3,731 77 38.9 90 105 0.384 24.2 4.4 10.6  2,450 1.4 45.7 22.3 

Table 4: Metrics for the Top Ten 200-mile Band Routes 

Top Ten (200-mile Band) Mij dij Fij Rij Gij rij D{i, j} N{i, j} Q{i, j} U{i, j} V{i, j} Vi Vj 

New York_NY ↔ Boston_MA  24,434 185 90.9 215 234 0.390 66 19 7  3,869 3 95 5 

San Antonio_TX ↔ Houston_TX  15,958 190 93.2 198 183 0.510 42 13 7  3,968 2 14 25 

Baltimore_MD ↔ New York_NY  12,033 172 84.5 188 203 0.420 35 10 7  3,599 2 2 95 

Austin_TX ↔ Houston_TX  9,053 146 72.1 165 156 0.460 31 8 8  3,508 2 10 25 

San Diego_CA ↔ Los Angeles_CA  8,771 115 57.4 120 135 0.430 38 8 10  3,492 2 10 42 

New York_NY ↔ Worcester_MA  6,493 155 76.2 176 195 0.390 21 6 7  3,245 1 95 1 

Austin_TX ↔ Dallas_TX  5,803 181 89.0 195 173 0.510 16 5 7  3,792 1 10 12 

Portland_OR ↔ Seattle_WA  5,791 145 71.5 174 166 0.430 20 5 8  3,479 1 5 7 

Los Angeles_CA ↔ Fresno_CA  5,598 200 98.0 220 214 0.460 14 5 6  3,576 1 42 3 

Indianapolis_IN ↔ Chicago_IL  5,233 164 80.5 183 178 0.450 16 5 7  3,427 1 4 16 

Average  9,917 165 81.3 183 184 0.445 29.9 8.4 7.4  3,596 1.6 28.7 23.1 
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Table 5: Metrics for the Top Ten 300-mile Band Routes 

Top Ten (300-mile Band) Mij dij Fij Rij Gij rij D{i, j} N{i, j} Q{i, j} U{i, j} V{i, j} Vi Vj 

New York_NY ↔ Washington_DC  24,269  206 100.7 226 255 0.390 59 19 7  4,289  3 95 5 

Los Angeles_CA ↔ San Jose_CA  15,808  293 142.5 341 329 0.430 27 12 5  4,335  2 42 6 

Dallas_TX ↔ Houston_TX  15,586  223 108.9 239 215 0.510 35 12 6  3,974  2 12 25 

Houston_TX ↔ Fort Worth_TX  13,728  237 115.6 262 233 0.500 29 11 6  4,220  2 25 9 

New York_NY ↔ Buffalo_NY  13,040  296 144.3 375 383 0.380 22 10 5  4,388  1 95 1 

San Diego_CA ↔ Phoenix_AZ  11,840  296 144.1 355 329 0.440 20 9 5  4,382  1 10 17 

Chesapeake_VA ↔ New York_NY  11,819  269 130.9 368 401 0.330 22 9 5  3,983  1 2 95 

San Antonio_TX ↔ Dallas_TX  11,086  252 122.9 274 263 0.470 22 9 5  3,739  1 14 12 

New York_NY ↔ Richmond_VA  10,203  269 130.9 340 388 0.340 19 8 5  3,981  1 95 1 

Norfolk_VA ↔ New York_NY  9,887  291 141.6 363 395 0.360 17 7 5  4,306  1 1 95 

Average  13,727  263 128.2 314 319 0.415 27.2 10.6 5.4  4,160  1.5 39.1 26.6 

Table 6: Metrics for the Top Ten 400-mile Band Routes 

Top Ten (400-mile Band) Mij dij Fij Rij Gij rij D{i, j} N{i, j} Q{i, j} U{i, j} V{i, j} Vi Vj 

Phoenix_AZ ↔ Los Angeles_CA  36,518  365 177.3 372 352 0.500 50 25 4  4,314  2 17 42 

New York_NY ↔ Virginia_VA  26,518  390 189.2 388 454 0.420 34 18 4  4,604  2 95 2 

San Francisco_CA ↔ Los Angeles_CA  16,901  338 164.3 383 365 0.450 25 12 5  4,996  1 5 42 

El Paso_TX ↔ Phoenix_AZ  14,717  350 170.2 430 387 0.440 21 11 4  4,141  1 6 17 

Mesa_AZ ↔ Los Angeles_CA  12,420  388 188.3 389 373 0.500 16 9 4  4,582  1 5 42 

Pittsburgh_PA ↔ New York_NY  12,116  319 155.1 388 372 0.420 19 9 5  4,716  1 1 95 

Nashville_TN ↔ Chicago_IL  11,028  394 191.1 442 462 0.410 14 8 4  4,649  1 4 16 

Sacramento_CA ↔ Los Angeles_CA  10,540  351 170.6 386 367 0.460 15 8 4  4,152  1 2 42 

Houston_TX ↔ New Orleans_LA  9,843  328 159.5 348 326 0.490 15 7 5  4,851  1 25 2 

New York_NY ↔ Akron_OH  8,769  399 193.3 438 427 0.450 11 6 4  4,704  1 95 1 

Average  15,937  362 175.9 396 389 0.454 22 11.3 4.3  4,571  1.2 25.5 30.1 
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Table 7: Metrics for the Top Ten Routes Among All Distance Bands 

Top Ten (Overall) Mij dij Fij Rij Gij rij D{i, j} N{i, j} Q{i, j} U{i, j} V{i, j} Vi Vj BN 

Phoenix_AZ ↔ Los Angeles_CA 36,518  365 177.3 372 352 0.500 50 25 4  4,314  2 17 42 400 

New York_NY ↔ Virginia_VA 26,518  390 189.2 388 454 0.420 34 18 4  4,604  2 95 2 400 

New York_NY ↔ Boston_MA 24,434  185 90.9 215 238 0.380 66 19 7  3,869  3 95 5 200 

New York_NY ↔ Washington_DC 24,269  206 100.7 226 255 0.390 59 19 7  4,289  3 95 5 300 

New York_NY ↔ Philadelphia_PA 20,665  79 40.2 95 106 0.380 130 22 12  2,931  5 95 11 100 

San Francisco_CA ↔ Los Angeles_CA 16,901  338 164.3 383 365 0.450 25 12 5  4,996  1 5 42 400 

San Antonio_TX ↔ Houston_TX 15,958  190 93.2 198 183 0.510 42 13 7  3,968  2 14 25 200 

Los Angeles_CA ↔ San Jose_CA 15,808  293 142.5 341 329 0.430 27 12 5  4,335  2 42 6 300 

Dallas_TX ↔ Houston_TX 15,586  223 108.9 239 215 0.510 35 12 6  3,974  2 12 25 300 

El Paso_TX ↔ Phoenix_AZ 14,717  350 170.2 430 386 0.440 21 11 4  4,141  1 6 17 400 

Average 21,137  262 127.7 289 288 0.441 48.9 16.3 6.1  4,142  2.3 47.6 18.0 300 

Table 8: Demand Forecast Summary 

Band Routes Departures Trip-Miles (K) Drones Vertipads 

100 1,370  13,010  360  1,547 2,762 

200 234  2,238  359  398 480 

300 205  2,028  506  454 420 

400 274  2,148  749  624 552 

Total 2,083  19,424  1,973  3,023 4,214 
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Figure 2: Revenue factors of a) departures and trip-miles, and b) capital factors of drones and vertipads. 

The number of one-way departures decreased by a factor of 5.9 after the first 100-mile band and 

then remained steady. The trip-miles changed only slightly from the 100- to the 200-mile band 

but more than doubled within the 400-mile band. This result suggests that targeting services in a 

higher distance band will increase revenue if based on seat-miles. On the other hand, starting 

service in the first 100-mile band will capture a greater portion of the market in terms of 

passenger volume, albeit at lower trip-miles. This finding suggests that a non-linear fare structure 

would generate more revenue by charging a higher base rate within the first 100-miles, and then 



Page 23 of 32 

by seat-mile for longer distances. Service within the first 100-mile band will require more than 

double the number of aircraft than serving longer routes. The number of vertipads needed on 

both ends of routes within the first 100-mile band was more than five times that needed for 

longer distances. The above findings imply that the capital required to capture initial markets 

serving the first 100-miles will be a factor of two and five times larger to purchase aircraft and 

build vertiports, respectively. 

Aircraft utilization is another important consideration in the commercial aviation business 

(NASA, 2021). Greater aircraft utilization, measured in annual hours flown, spreads fixed costs 

across more revenue service hours (Pertz, et al., 2023). The aircraft utilization rate increases with 

longer distance routes. Hence, the time spent on the ground refueling, boarding, disembarking, 

and cleaning becomes a smaller percentage of the daily operating hours. As summarized in Table 

3, the average annual aircraft utilization for the top ten routes within the first 100 miles band was 

2,450 hours. For comparison, the average annual utilization of small regional jets and turboprops 

in the United States were 2,263 and 2,665 hours, respectively (FAA, 2022). The average aircraft 

utilization within the 400-mile band will increase by 86.5% from the average utilization within 

the first 100-mile band. 

Figure 3 maps the cities (trip-ends) that generated at least two drone trips (Di ≥ 2) as 

small black dots and highlights the cities of the trimmed network as larger dots. For comparison, 

Figure 3a and Figure 3b maps the location of cities with routes within the 100- and 400-mile 

bands, respectively. The maps show that the density of cities with routes within the first 100-mile 

band is visibly higher than those with routes within the 400-mile band. The dense city clusters in 

each map align with the top ten locations summarized in Table 3, Table 4, Table 5, and Table 6. 
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Figure 3: Trip ends selected a) within a 100-mile band, and b) within a 400-mile band. 

4.3 Travel Time Savings 

For the top ten routes within each distance band, Table 9 summarizes the mean air miles (μ 

AMiles), mean air minutes (μ AMin), mean road miles (μ RMiles), mean road minutes (μ RMin), 

mean air/road time ratio (μ A/R), and the mean person years saved daily (μ PYSD). Figure 4 

plots the data in Table 9 to visualize the trends across distance bands. The daily mean PYSD was 

2.4 in the first 100-mile band and accumulated to 10.1 in the 400-mile band. For comparison, 

Uber Elevate estimated that in 2016, San Francisco residents lost the equivalent of 57 years of 
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productivity daily by wasting time in road traffic (Uber Elevate, 2016). This result highlights that 

time savings from the Uber Elevate use case alone would be substantial. 

Table 9: Time Saving Statistics 

Distance Band μ AMiles μ AMin μ RMiles μ RMin μ A/R μ PYSD 

100 76.8 38.9 89.7 104.6 0.384 2.4 

200 165.3 81.3 183.4 183.7 0.445 1.7 

300 263.0 128.2 314.3 319.1 0.415 2.6 

400 362.2 175.9 396.4 388.5 0.454 3.3 

 

Figure 4: Average travel time savings with drones for each distance band. 

At the average aircraft speed of 125 mph, the average travel time ratio for air/ground was 

approximately 38% within the first 100-mile band and increased to 45% within the 400-mile 

band. Hence, the average travel time ratio within the first 100-mile band was 7% lower than the 

average across the 200-mile to 400-mile bands. That is, travel time savings by switching from 

cars to drones will be largest for routes within the first 100 miles. Flying at higher speeds will 

proportionally decrease in the travel time ratio, which could further increase the propensity for 

mode shift to drones. The above time-saving ratios are comparable to the 40% reported in the 

Uber Elevate study (Uber Elevate, 2016). 
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Depending on the number of drivers available, wait-time can become a deterrent in TNC 

trips. By extension, AAM processing time (access, security clearance, boarding, disembarking, 

and egress) and aircraft speed will become crucial factors in air taxi adoption. Therefore, to spur 

adoption, providers must strive to minimize AAM processing time to become an insignificant 

portion of the average ground TNC journey. 

4.4 Limitations 

The forecasted demand was for the Uber Elevate use case only. That is, the forecast did not 

include potential demand for air taxis that may shift from other modes such as walking, 

micromobility, private vehicle, and other modes of public transportation. The model utilized a 

forecasted population for 2030, TNC statistics, and criterion from previous studies that assessed 

the potential for mode shift from ground TNC rides. Those TNC statistics could change over 

time. If so, the analyzed scenario can represent a baseline scenario for comparison. Additional 

research could survey trip purposes in smaller transportation analysis zones (TAZs) to forecast 

the potential for additional mode shift. However, agencies must weigh the additional cost of 

doing such surveys on a local scale to estimate demand more accurately. 

The cities and routes selected were based only on the potential of their population to 

generate more than two daily departures of four-passenger drones. The analysis did not consider 

additional criteria such as recurring congestion levels that slow ground traffic, sociodemographic 

factors that can affect affordability, and the potential for induced demand. TNC users often pay 

additional fees for airport access (Gurumurthy & Kockelman, 2021). Therefore, it is possible that 

faster access and processing times to fee-free vertiports would induce demand. 

The operating hours of 6 a.m. to 8 p.m. for first and last departures, respectively, 

represented a scenario where drone operations will cease when it becomes dark. Longer 
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operating hours can reduce the number of drones needed to service daily demand for some 

routes. Furthermore, this analysis constrained the maximum vertipad departure capacity based on 

limitations of current battery charging technologies. The scenario was that the total time required 

for disembarking, cleaning, and boarding will be comparable to the charge time. Shorter charge 

time that reduces the vertipad occupation time can increase vertipad capacity to service a greater 

daily demand with the same number of drones and vertipads. Shorter charging time will also 

increase aircraft utilization by reducing time parked on the ground. Higher aircraft speed will 

further reduce the time savings ratio and potentially induce further demand. 

Analysis of the specific placement of vertiports within each city was not within the scope 

of this study. Analysis of fare strategies based on willingness-to-pay (WTP) was also not within 

the scope of this study. Future work will conduct case studies of vertipad capacity maximization 

based on sharing routes and location optimization based on zonal TNC demand. 

5 Conclusions 

Analysts and investors predict that advanced air mobility (AAM) will disrupt urban and regional 

travel by distributing aircraft access across cities, closer to where passengers would need them. 

The new electric vertical takeoff and landing (eVTOL) aircraft can access small spaces called 

vertipads like a helicopter and cruise efficiently at high speeds like a winged aircraft. 

Advancements in distributed electric propulsion promise to increase safety and reduce engine 

noise to levels comparable with urban traffic. Further advancements in battery technology and 

lightweight airframe materials will increase operating range beyond 100 miles. Aircraft 

technology and safety regulations are steadily progressing. Amid those developments, 

uncertainties about eVTOL range capability and widely varying market forecasts raise questions 

about where to first deploy commercial services to capture the greatest latent demand. 
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This research combined top-down and bottom-up approaches to forecast demand for air 

taxis based on the Uber Elevate use case. The top-down aspect forecasted the population for all 

U.S. cities in 2030, used known trip rates for ground TNC rides, and the anticipated propensity to 

shift modes to air based on trip length statistics. The bottom-up aspect used a geographic 

information system (GIS) and network trimming techniques to identify all potential routes 

between cities that fall within distance bands of 100 to 400 miles, in 100-mile increments. 

The main findings were that service providers will need 3,023 four-passenger eVTOL 

aircraft to fly approximately 78 thousand passengers daily across 2,083 urban and regional 

routes. Initial deployments that target routes within the first 100-mile band will access the largest 

available market in terms of daily passenger volume. However, serving longer routes of up to 

400 miles will increase aircraft utilization and require fewer aircraft and vertiports. The capital 

needed to acquire aircraft and build vertiports to serve routes within the first 100-mile band will 

be a factor of two and five times larger, respectively, than for longer routes. The top ten routes 

across all distance bands were within the largest U.S. metropolitan areas within the U.S. states of 

California, New York, and Texas. The mean passenger years saved daily from ground-only 

travel was 2.4 in the first 100-mile band and accumulated to 10.1 in the 400-mile band. 

Stakeholders involved in AAM market development can utilize the hybrid methodology 

to forecast demand for other regions of the world and for other use cases. Using known 

population, TNC statistics, and criterion based on distance thresholding can reduce forecast 

discrepancies, especially for a specific use case. Future work will optimize vertipad utilization 

and location based on case studies of zonal TNC demand. Future work will also extend the 

hybrid methodology to forecast route opportunities for eVTOL freight service. 



Page 29 of 32 

6 References 

Ackerman, E., Zorpette, G., Pepitone, J., & Choi, C. Q. (2022, March). Transportation: What's 

Behind the Air-Taxi Craze: A Wave of eVTOL Startups Aim to Revolutionize 

Transportation. IEEE Spectrum, 59(3), pp. 6-13. doi:10.1109/MSPEC.2022.9729952 

Bachwich, A. R., & Wittman, M. D. (2017). The emergence and effects of the ultra-low cost 

carrier (ULCC) business model in the US airline industry. Journal of Air Transport 

Management, 62, 155-164. doi:10.1016/j.jairtraman.2017.03.012 

Banerjee, N., Morton, A., & Akartunalı, K. (2020). Passenger demand forecasting in scheduled 

transportation. European Journal of Operational Research, 286(3), 797-810. 

doi:10.1016/j.ejor.2019.10.032 

Baur, S., Schickram, S., Homulenko, A., Martinez, N., & Dyskin, A. (2018). Urban air mobility: 

The rise of a new mode of transportation. Roland Berger GMBH. Retrieved January 6, 

2023, from https://www.rolandberger.com/en/Insights/Publications/Passenger-drones-

ready-for-take-off.html 

Bridgelall, R., & Stubbing, E. (2021). Forecasting the effects of autonomous vehicles on land 

use. Technological Forecasting and Social Change, 163, 120444. 

doi:10.1016/j.techfore.2020.120444 

Bridgelall, R., Askarzadeh, T., & Tolliver, D. (2023). Introducing an Efficiency Index to 

Evaluate eVTOL Designs. Technological Forecasting and Social Change, 191(June 

2023), 122539. doi:10.1016/j.techfore.2023.122539 

Carter, S., Johnston, T., Lidel, S., Riedel, R., & Tusch, L. (2022, March 15). Drone delivery: 

More lift than you think. Future Air Mobility Blog. Retrieved from 

https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/future-air-

mobility-blog/drone-delivery-more-lift-than-you-think 

Cohen, A. P., Shaheen, S. A., & Farrar, E. M. (2021). Urban air mobility: History, ecosystem, 

market potential, and challenges. IEEE Transactions on Intelligent Transportation 

Systems, 22(9), 6074-6087. doi:10.1109/TITS.2021.3082767 

Dempsey, P. (2021). Aviation Evtol: UP, UP and away! Engineering & Technology, 16(7), 26-

29. doi:10.1049/et.2021.0704 

FAA. (2020). Urban Air Mobility: Concept of Operations, v1.0. Washington, D.C.: Federal 

Aviation Administration (FAA). Retrieved from 

https://nari.arc.nasa.gov/sites/default/files/attachments/UAM_ConOps_v1.0.pdf 

FAA. (2022). Benefit-Cost Analysis. Washington, D.C.: Federal Aviation Administration (FAA). 

Retrieved January 11, 2023, from 

https://www.faa.gov/regulations_policies/policy_guidance/benefit_cost 

Fowler, M. (2021). ACRP Synthesis 11-03/Topic S03-17. Retrieved January 6, 2022, from 

Transportation Research Board of the National Academies: 

https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=5270 

GAO. (2022). Transforming Aviation: Stakeholders Identified Issues to Address for 'Advanced 

Air Mobility'. Washington, D.C.: Government Accountability Office (GAO). Retrieved 

from https://www.gao.gov/products/gao-22-105020 

Garrow, L. A., German, B. J., & Leonard, C. E. (2021). Urban air mobility: A comprehensive 

review and comparative analysis with autonomous and electric ground transportation for 

informing future research. Transportation Research Part C: Emerging Technologies, 

132, 103377. doi:10.1016/j.trc.2021.103377 



Page 30 of 32 

Ghalehkhondabi, I., Ardjmand, E., Young, W. A., & Weckman, G. R. (2019). A review of 

demand forecasting models and methodological developments within tourism and 

passenger transportation industry. Journal of Tourism Futures, 5(1), 75-93. 

doi:10.1108/JTF-10-2018-0061 

Goyal, R., Reiche, C., Fernando, C., & Cohen, A. (2021). Advanced air mobility: Demand 

analysis and market potential of the airport shuttle and air taxi markets. Sustainability, 

13(13), 7421. doi:10.3390/su13137421  

Goyal, R., Reiche, C., Fernando, C., Serrao, J., Kimmel, S., Cohen, A., & Shaheen, S. (2019). 

Urban Air Mobility (UAM) Market Study. Washington, D.C.: Booz-Allen-Hamilton. 

Retrieved from https://ntrs.nasa.gov/citations/20190001472 

Grandl, G., Ostgathe, M., Cachay, J., Doppler, S., Salib, J., & Ross, H. (2018). The Future of 

Vertical Mobility: Sizing the Market for Passenger, Inspection, and Goods Services Until 

2035. Stuttgart, Germany: Porsche Consulting:. 

Gurumurthy, K. M., & Kockelman, K. M. (2021). Impacts of shared automated vehicles on 

airport access and operations, with opportunities for revenue recovery: Case Study of 

Austin, Texas. Research in Transportation Economics, 90, 101128. 

doi:10.1016/j.retrec.2021.101128 

Joby Aviation, Inc. (2021). United States Securities and Exhange Commission Form 10-K. Santa 

Cruz, CA: Joby Aviation, Inc. Retrieved January 4, 2023, from 

https://ir.jobyaviation.com/sec-filings/annual-reports##document-401-0000950170-22-

004706-2 

Jungmittag, A. (2016). Combination of forecasts across estimation windows: An application to 

air travel demand. Journal of Forecasting, 35(4), 373-380. doi:10.1002/for.2400 

Kalakou, S., Marques, C., Prazeres, D., & Agouridas, V. (2023). Citizens' attitudes towards 

technological innovations: The case of urban air mobility. Technological Forecasting and 

Social Change, 187, 122200. doi:10.1016/j.techfore.2022.122200 

Kooti, F., Grbovic, M., Aiello, L. M., Djuric, N., Radosavljevic, V., & Lerman, K. (2017). 

Analyzing Uber's ride-sharing economy. WWW '17 Companion: Proceedings of the 26th 

International Conference on World Wide Web Companion, (pp. 574-582). 

doi:10.1145/3041021.3054194 

Lee, B.-S., Tullu, A., & Hwang, H.-Y. (2020). Optimal design and design parameter sensitivity 

analyses of an eVTOL PAV in the conceptual design phase. Applied Sciences, 10(15), 

5112. doi:10.3390/app10155112 

Lineberger, R., Silver, D., & Hussain, A. (2021). Advanced Air Mobility: Can the United States 

afford to lose the race? Deloitte Development LLC. Retrieved from 

https://www2.deloitte.com/us/en/insights/industry/aerospace-defense/advanced-air-

mobility.html 

Morgan Stanley Research. (2019). Are Flying Cars Preparing for Takeoff. New York City, NY, 

USA: Morgan Stanley. Retrieved January 6, 2023, from 

https://www.morganstanley.com/ideas/autonomous-aircraft 

NASA. (2021). Regional Air Mobility: Leveraging Our National Investments to Energize the 

American Travel Experience. Washington, D.C.: United States National Air and Space 

Administration (NASA). Retrieved from https://sacd.larc.nasa.gov/ram/ 

Nickels, L. (2021). When I see a taxi fly. Reinforced Plastics, 65(4), 175-178. 

doi:10.1016/j.repl.2021.06.003 



Page 31 of 32 

Njegovan, N. (2005). A leading indicator approach to predicting short‐term shifts in demand for 

business travel by air to and from the UK. Journal of Forecasting, 24(6), 421-432. 

doi:10.1002/for.961 

Pertz, J., Niklaß, M., Swaid, M., Gollnick, V., Kopera, S., Schunck, K., & Baur, S. (2023). 

Estimating the Economic Viability of Advanced Air Mobility Use Cases: Towards the 

Slope of Enlightenment. Drones, 7(2), 75. doi:10.3390/drones7020075 

Rajendran, G., Vaithilingam, C. A., Misron, N., Naidu, K., & Ahmed, R. (2021). A 

comprehensive review on system architecture and international standards for electrical 

vehicle charging stations. Journal of Energy Storage, 42, 103099. 

doi:10.1016/j.est.2021.103099 

Rakas, J., Jeung, J., So, D., Ambrose, P., & Chupina, V. (2021). eVTOL Fleet Selection Method 

for Vertiport Networks. 2021 IEEE/AIAA 40th Digital Avionics Systems Conference 

(DASC) (pp. 1-10). San Antonio, TX: IEEE. doi:10.1109/DASC52595.2021.9594309 

RAM. (2023, January 20). Regional Airline Association (RAM). Retrieved January 20, 2023, 

from This is RAA: www.raa.org 

Reinhart, R. (2018, July 25). Snapshot: Who Uses Ride-Sharing Services in the U.S.? Economy. 

Retrieved January 6, 2023, from  

https://news.gallup.com/poll/237965/snapshot-uses-ride-sharing-services.aspx 

Richter, A., Löwner, M.-O., Ebendt, R., & Scholz, M. (2020). Towards an integrated urban 

development considering novel intelligent transportation systems: Urban Development 

Considering Novel Transport. Technological Forecasting and Social Change, 155, 

119970. doi:10.1016/j.techfore.2020.119970 

Rothfeld, R., Balac, M., Ploetner, K. O., & Antoniou, C. (2018). Agent-based simulation of 

urban air mobility. Modeling and Simulation Technologies Conference (p. 3891). Atlanta, 

Georgia: Aerospace Research Central. doi:10.2514/6.2018-3891 

SimpleMaps. (2020, November 18). Simple Maps, 1.71. (L. Bright Market, Producer, & Pareto 

Software, LLC) Retrieved November 18, 2020, from  

https://simplemaps.com/data/us-cities 

Sun, X., Wandelt, S., Husemann, M., & Stumpf, E. (2021). Operational Considerations regarding 

On-Demand Air Mobility: A Literature Review and Research Challenges. Journal of 

Advanced Transportation, 2021. doi:10.1155/2021/3591034 

Suryani, E., Chou, S.-Y., & Chen, C.-H. (2010). Air passenger demand forecasting and 

passenger terminal capacity expansion: A system dynamics framework. Expert Systems 

with Applications, 37(3), 2324-2339. doi:10.1016/j.eswa.2009.07.041 

Swanson, D., & Zych, J. (2022). UK Advanced Air Mobility (AAM) Market Assessment. Swanson 

Aviation Consultancy & ElectricAviation Maven. Retrieved January 6, 2023, from 

https://www.ukri.org/publications/market-assessment-for-advanced-air-mobility-in-the-

uk/ 

Uber Elevate. (2016). Fast-Forwarding to a Future of On-Demand Urban Air Transportation. 

Uber. Retrieved from 

https://evtol.news/__media/PDFs/UberElevateWhitePaperOct2016.pdf 

USCB. (2022, July 22). Population and Housing Unit Estimates. Retrieved January 7, 2023, 

from https://www.census.gov/programs-surveys/popest.html 



Page 32 of 32 

Wang, M., Chen, Z., Rong, H. H., Mu, L., Zhu, P., & Shi, Z. (2022). Ridesharing accessibility 

from the human eye: Spatial modeling of built environment with street-level images. 

Computers, Environment and Urban Systems, 97, 101858. 

doi:10.1016/j.compenvurbsys.2022.101858 

WorldData.info. (2023, January 8). Sunrise and sunset in the United States of America. Retrieved 

January 8, 2023, from WorldData.info: 

https://www.worlddata.info/america/usa/sunset.php 

Zhang, Y., Lin, F., & Zhang, A. (2018). Gravity models in air transport research: A survey and 

an application. In B. A. Blonigen, & W. W. Wilson (Eds.), Handbook of International 

Trade and Transportation (pp. 141-158). Cheltenham, United Kingdom: Edward Elgar 

Publishing. doi:10.4337/9781785366154.00009 


	Structure Bookmarks
	1 Introduction 
	2 Literature Review 
	3 Methodology 
	3.1 Data Mining Workflow 
	3.2 Scenarios and Variables 
	3.3 Trip Generation 
	3.4 Network Trimming 
	3.5 Trip Distribution 
	3.6 Supply Estimates 

	4 Results and Discussion 
	4.1 Network Trimming 
	4.2 Demand Forecasting 
	4.3 Travel Time Savings 
	4.4 Limitations 

	5 Conclusions 
	6 References 


