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Quantifying Freight Flow Disruption Risks from Railroad Accidents 

Abstract 

Workforce shortages during the COVID-19 pandemic and the recent threat of railroad strike in 

the United States have generated greater public awareness of how freight flow disruptions can 

harm society. Unlike highways, trains often do not have the ability to take alternative routes that 

directly connect major metropolitan areas; hence railroad networks are vulnerable to disruptions 

like accidents. This study developed a data mining workflow to rank commodity movements that 

are at the highest risk of disruption from railroad accidents and other types of regional disasters 

that can affect railroad operations. A key finding is that five U.S. metropolitan areas are at least 

five times more likely than others to experience a railroad accident. Those five areas account for 

more than 40% of the monetary value in alcoholic beverages, raw meats, gasoline, plastic-based 

products, and rubber-based products moved by rail. Hence, any disruption in those five areas can 

lead to widespread shortages of those commodities. The implication is that decision makers 

should focus risk mitigation and resiliency strategies in those five metropolitan areas and on the 

top commodity categories at risk. 

Keywords: Capacity disruption; Commodity flows; Risk assessment; Risk management; Supply 

chain resilience; Sustainable supply chains 
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1 Introduction 

The recent threat of railroad strike in the United States increased public awareness of how 

important railroads are to the economic and social well-being of the nation. Railroad commodity 

flows are vulnerable to any sort of blockage on a line because the networks lack direct alternative 

routes between major metropolitan areas. Weather-related disasters such as heavy snowfall, 

flooding, or falling debris can block traffic (Sharma, et al. 2021). Accidents can block or damage 

shipments, thereby creating severe commodity shortages. The loss of railroad capacity at 

seaports and other intermodal transloading facilities can result in backlogs and spoilages as 

vessels queue for processing (Schofer, Mahmassani and Ng 2022). In a multimodal or intermodal 

network, a railroad accident can affect freight flows in other modes that use highways, 

waterways, or airways (Kelle, et al. 2019). The loss of freight from accidents or theft can have 

cascading effects because manufacturers rely on the timely delivery of raw materials to produce 

finished goods. Disruptions of even a single commodity flow can affect multiple industries that 

rely on that item for economic productivity (Darayi, Barker and Nicholson 2019). 

The risk of railroad accidents in North America is predictable because the incidents have 

consistently hovered around 2,500 per year (Bridgelall and Tolliver 2022). The dominant causes 

of railroad accidents are consistently human error and problems with the track or roadbed 

(Bhardwaj, et al. 2021). Positive train control (PTC) systems installed in North America to 

reduce the risk of human errors make railroads more connected than ever (Zhang, Liu and Holt 

2018). Therefore, new cyber-threats to railroads are likely to develop, which can disable key 

railroad systems and operations (Kolli, Lilly and Wijesekera 2018). 

Greater awareness of the potential disruption impact from railroad accidents will inform 

risk mitigation strategies. Therefore, the goal of this research is to quantify the risk of railroad 
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accidents among the metropolitan statistical areas (MSAs) of the continental United States 

(CONUS). The approach identified MSAs that are accident outliers and then ranked the types 

and proportion of commodities that they moved by rail. The results of this work will help create 

awareness and insights for stakeholders to prioritize and tailor risk mitigation strategies and 

resource planning to enable a more resilient system. The data mining framework presented is 

applicable to any region of the world. 

The United States Census Bureau (USCB) defined 82 MSAs of the CONUS based on 

their population and importance as transportation hubs or foreign trade gateways (BTS and 

USCB 2020). Using a Geometric Information System (GIS) tool and shapefile data from the 

USCB to produce Figure 1, the relative size and spatial distribution of the MSAs on the CONUS 

becomes evident. The figure also shows the arrangement of the MSAs relative to the major 

railroad tracks that serve them. This visualization illustrates how the present railroad network 

will require significant diversions to find alternative routes between MSAs. Consequently, 

rerouting will cause delivery delays and increased transport costs until agencies can complete 

their investigations and clear the incident to reopen railroad tracks. 

 

Figure 1: MSAs of the CONUS and the major railroad routes that serve them. 
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Recent media attention to railroad accidents in the United States has raised awareness 

about their implications to society. A few studies examined on how extreme weather events can 

delay railroad operations (Huang, et al. 2020) and even cause widespread disruptions to the 

supply chain (Woodburn 2019). Analysts are increasingly interested in understanding factors that 

can affect the resilience of rail transport (Bešinović 2020). To gain insights, more researchers are 

beginning to apply data mining to large datasets on operations, safety, and maintenance 

(Ghofrani, et al. 2018). Especially vulnerable to point disruptions are freight bottlenecks at 

intermodal terminals such as ports, which are the main gateways of foreign trade, inland 

terminals, and transshipment yards (Basallo-Triana, Bravo-Bastidas and Vidal-Holguín 2022). A 

striking example is how human resources shortages during the COVID-19 pandemic exacerbated 

delays at seaports (Schofer, Mahmassani and Ng 2022). 

Jabbarzadeh et al. (2020) found that contingency plans can significantly mitigate the risk 

of disrupted hazardous material transport by rail for only a slight increase in total cost 

(Jabbarzadeh, Azad and Verma 2020). Procházka et al. (2020) conducted a statistical evaluation 

of accidents involving the transport of dangerous substances and found that broad 

implementation of safety regulations reduced the impact on affected populations (Procházka, 

Hošková-Mayerová and Procházková 2020). Overall, there has been few academic studies about 

how the disruption of railroad capacity can affect trade bottlenecks (Wendler-Bosco and 

Nicholson 2020). 

The organization of the rest of this paper is as follows: Section 2 describes the 

methodology to identify accident outlier MSAs and the commodity flows that will be most 

affected. Section 3 discusses the results. Section 4 discusses the implications for society and 

potential solutions. Section 5 concludes the paper and suggests future work. 
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2 Methodology 

The next subsections describe the datasets, the technique used to combine them, the workflow to 

identify high-risk metropolitan areas, and the commodity flows at highest risk. 

2.1 Data Sourcing 

Figure 2 illustrates the analytical workflow to rank the risks of commodity flow disruption from 

railroad accidents. The input datasets were 1) the Rail Equipment Accident database from the 

Federal Railroad Administration (FRA) (FRA 2021), 2) the freight analysis framework (FAF) 

data from the Federal Highway Administration (FHWA) (FHWA 2021), and 3) the commodity 

flow survey (CFS) geography definitions (USCB 2021). The FRA accident database contains 

data from the mandatory reporting of accidents that resulted in a certain amount of damage cost. 

The cost threshold varies annually—it was $11,300 for the year 2022 (FRA 2021). In addition to 

dozens of fixed fields that describe features of each accident, such as location and damage 

amount, the reports also contain 15 narrative fields that provide further details about the event 

(Bridgelall and Tolliver 2021). 

The CFS is a joint effort by the Bureau of Transportation Statistics (BTS) of the United 

States Department of Transportation and the United States Census Bureau (USCB) of the 

Department of Commerce (BTS and USCB 2020). 
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Figure 2: Input datasets and analytical workflow. 

The two agencies conduct the survey every five years as part of the Economic Census. The CFS 

is the primary source of domestic freight shipment data of the CONUS. The CFS primarily 

covers shipping data from the mining, manufacturing, and wholesale sectors. The FAF dataset, 

which is a joint production of the BTS and the FHWA, extends the CFS data (FHWA 2021). The 

FAF dataset integrates shipping data from additional sectors such as agriculture, extraction, 

utility, construction, and service. The FAF version 5.2 dataset, published in 2021, provides 

estimates for commodities moved between MSAs in 2017 by weight (thousand tons) and by 

value (million dollars). The movements by rail include common or private railroad carriers but 
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excludes rail movements that are part of multiple modes and mail. 

2.2 Data Merge 

The workflow extracted railroad accidents that occurred during the decade from 2009 through 

2019 to reflect railroad movements prior to disruptions from the COVID-19 pandemic. There 

were 28,237 rows of data remaining after extracting records for the CONUS. Each row contained 

145 fields of information relating to a railroad accident. The subset of features used for the 

analytical workflow were the date, accident damage value in U.S. dollars, and the federal 

information processing (FIP) code for the county where the accident occurred. The CFS 

geography dataset contained the names, FIP codes, CFS area codes (CFS07_DDESTGEO), and 

the 2017 CFS area names (CFS17_NAME) associated with 3,143 U.S. counties. The 132 CFS 

area codes matched the FAF region codes, except for 13 MSAs. Consequently, the workflow 

incorporated data cleaning to identify and substitute the mismatched codes as summarized in 

Table 1. 

Table 1: Cleaning of CFS Geography Dataset 

CFS 

Area Name 

CFS Code 

Replaced 

FAF Code 

Substituted 

Fresno-Madera, CA  CFS Area 69 65 

Philadelphia-Reading-Camden, PA-NJ-DE-MD (DE Part) 100 101 

Remainder of Delaware 100 109 

Fort Wayne-Huntington-Auburn, IN 189 183 

Wichita-Arkansas City-Winfield, KS 209 202 

Louisville/Jefferson County-Elizabethtown-Madison, KY-IN (KY Part) 211 212 

Omaha-Council Bluffs-Fremont, NE-IA (NE Part) 310 311 

Remainder of Nebraska 310 319 

Boston-Worcester-Providence, MA-RI-NH-CT (NH Part) 330 331 

Remainder of New Hampshire 330 339 

New York-Newark, NY-NJ-CT-PA (PA Part) 429 423 

Knoxville-Morristown-Sevierville, TN 479 473 

Portland-Vancouver-Salem, OR-WA (WA Part) 539 532 

A string processing procedure then created a data merge key by concatenating the two-digit FIP 

code for the state and the three-digit FIP code for the county to form a unique five-digit county 

code (FIP5) that matched the FIP code in the FRA dataset. The workflow then merged the FRA 
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accident and CFS geography datasets by the FIP5 codes. Subsequently, a pivot table procedure 

grouped and aggregated the number of accidents and accident damage costs by the FAF region 

codes. 

Rows of the FAF 5.3 dataset contained the tonnage and value of a commodity class by 

their origin and destination FAF region codes and the transportation mode. Extracting the 

CONUS rail-only movements reduced the dataset from 1,627,492 rows to 175,816 rows. Pivot 

table procedures then aggregated the weight and value of commodity categories by FAF region 

origin and destination codes. The procedure then aggregated the commodity categories leaving 

(origin) and entering (destination) by weight and value handled within each FAF region. A 

merge procedure then combined the summarized FRA and FAF datasets by the FAF region 

codes. Of the 132 FAF regions, 82 were MSAs on the CONUS and the others were the 

remainder of a state. The final procedure retained the data for the MSAs. 

2.3 Outlier Identification 

The method produced a histogram (Figure 3 in the results section) of the decade accumulated 

accident counts among MSAs to identify the outliers. An optimization procedure fitted a 

lognormal distribution to the histogram without outliers and evaluated the goodness of fit with a 

chi-squared statistical test. The optimization procedure was as follows: 

minimize
𝑋𝑖

   𝑒 = ∑(𝐻i − 𝑓i)
2

𝐵

𝑖=1

 

subject to   𝛼 > 0, 𝜎 > 0, 𝜇 > 0 and 𝑁 ≥ 𝐵 ≥ 4 

where       𝑓i =
𝛼

√2𝜋𝜎2
𝑒

−
(𝑋𝑖−𝜇)

2

2𝜎2 ,  i = 1, 2, ..., B 

(1) 

The parameters α, σ, and µ are the amplitude, standard deviation, and mean, respectively, of the 

distribution function, f. The starting interval for histogram bin i was Xi and the number of MSAs. 
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The number of accidents that fell within that interval was Hi. The distribution under test was the 

function fi. The solution to the optimization problem was the combination of amplitude α, mean 

µ, and variance σ2 of fi that minimized the sum-of-squares error e, subject to the constraints 

indicated. The test statistic was the Pearson’s chi-squared statistic of k degrees of freedom (df) 

where 

𝜒𝑘
2 = ∑

(𝐻i − 𝐷i)
2

𝐷i

𝐵

𝑖=1

 (2) 

and the p-value associated with the statistic guided whether to reject the null hypothesis that the 

histogram followed the tested distribution. The constraint on the minimum number of bins B was 

at least 4 because with three parameters (α, µ, and σ) estimated, the minimum df was unity 

(4 - 3 = 1). Outlier MSAs are those with accumulated accident counts greater than 1.5 standard 

deviation above the mean. 

3 Results 

Figure 3 shows the histogram of railroad accidents accumulated among MSAs during the decade 

ending in 2019. The minimum and maximum number of accumulated accidents among MSAs 

was 5 and 1,550, respectively. The mean was 183.6 and the standard deviation was 231.1. 

Therefore, the outlier threshold was 530.3. The five callouts show that the MSA accident outliers 

were within and around the cities of Chicago (IL), Houston (TX), Los Angeles or LA (CA), 

Dallas-Fort Worth or DFW (TX), and Newark (NJ). The chi-squared statistic with df of 28 was 

7.85 and the p-value was nearly 1.0. The customary p-value threshold for hypothesis rejection is 

0.05 (Agresti 2018). Therefore, the test could not reject the null hypothesis that the distribution 

followed the lognormal. 
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Figure 3: Distribution of the number of railroad accidents accumulated from 2009 to 2019. 

The first four columns of Table 2 summarize the sum and mean values for accident count, 

accident damage amount, commodity weight moved, and United States dollar (USD) value of 

commodity moved in all MSAs. 

Table 2: Accident and Commodity Statistics of Outlier MSA Proportions 

Feature Units Statistic MSAs Outliers Outliers % 

Accidents Count Sum 15057 4641 30.8% 

Accidents Count Mean 183.6 928.20 505.5% 

Damage USD Sum $1,701,398,934 $479,271,757 28.2% 

Damage USD Mean $13,189,139 $95,854,351 726.8% 

Weight Thousand Tons Sum 1,377,862.24 233,014.24 16.9% 

Weight Thousand Tons Mean 10,681.10 46,602.85 436.3% 

Value Million USD Sum 739,870.42 162,706.37 22.0% 

Value Million USD Mean 5,735.43 32,541.27 567.4% 

The “Outliers” and “Outliers %” columns summarize the same statistics for the five outlier 

MSAs and the proportion they accounted for, respectively. For example, the first row indicates 
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that sum of accidents within the outlier MSAs accounted for 30.8% of the railroad accidents in 

all MSAs. The last row indicates that the mean USD of commodities moved by the five outlier 

MSAs was more than 567% greater than that moved by the average MSA. The ranking compares 

accident risk among MSAs where freight flows originate or terminate, hence the workflow does 

not include accidents that occurred outside of MSAs. Table 3 lists the weight proportion of each 

commodity category moved by each of the outlier MSAs. The table ranks the commodity 

categories by the sum of their weight proportions across the outlier MSAs, starting with the 

highest proportion. Table 4 provides a similar list as Table 3, but instead shows the monetary 

value proportion of the commodity categories moved. The last column of Table 3 shows that the 

five outlier MSAs moved more than 61% of the weight of alcoholic beverages transported by rail 

in the CONUS. The BTS lists all commodities associated with the assigned standard 

classification of transported goods (SCTG) codes listed in the table (BTS and USCB 2015). The 

last column of Table 4 shows that the five outlier MSAs moved more than 53% of the USD value 

of raw meats transported by rail in the CONUS. 

Table 5 lists the weight and monetary value proportion of the commodity categories 

moved by the top outlier MSAs. The table rows are in the order of the commodity monetary 

value proportion, starting with the highest proportion. As observed, alcoholic beverages ranked 

as the top commodity moved by rail with the Chicago MSA accounting for more than 61% and 

56% of its handled weight and monetary value proportions, respectively. The top five accident 

outlier MSAs moved 19 of the 42 commodity categories at risk. Los Angeles was the top MSA 

for eight of the commodity categories moved, namely raw meats, printed products, furniture, 

electronics, products of animals, prepared foods, miscellaneous manufactured goods, textiles, 

and leathers. Houston was the top MSA for seven of the commodity categories moved, namely 
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gasoline, plastic articles, rubber articles, basic chemicals, chemical products, fuel oils, base metal 

articles, and coal. 

Table 3: Weight Proportion of the Commodity Categories Moved by the Outlier MSAs 

Commodity SCTG 

Code 
Chicago 

IL 

Houston 

TX 

LA 

CA 

DFW 

TX 

Newark 

NJ 

Weight 

% 

Alcoholic Beverages 08 47.5 5.2 6.5 0.7 1.6 61.5 

Paper-based Products 28 36.7 0.8 9.1 0.3 0.8 47.8 

Gasoline Fuel 17 9.5 19.3 2.5 4.0 11.5 46.8 

Raw Meats 05 2.9 3.1 30.9 1.2 2.4 40.6 

Plastics & Rubbers 24 3.7 30.4 1.9 3.1 0.9 40.0 

Base Metal Articles 33 4.0 23.0 10.6 1.0 0.5 39.1 

Basic Chemicals 20 3.2 20.6 9.3 2.3 0.9 36.3 

Printed Products 29 2.1 1.5 29.9 0.5 1.7 35.8 

Chemical Products 23 5.1 21.4 3.2 2.0 1.9 33.7 

Furniture 39 3.0 6.1 15.9 0.5 7.9 33.4 

Mixed Goods 43 2.2 8.4 12.9 6.5 2.3 32.4 

Fuel Oils 18 0.5 16.9 2.7 7.6 2.1 29.8 

Electronics 35 2.8 6.9 9.1 6.8 3.2 28.8 

Pharmaceuticals 21 0.8 22.1 2.1 0.4 3.0 28.3 

Milled Grains 06 3.3 0.1 12.1 0.2 11.8 27.6 

Products of Animals 04 10.5 0.9 12.6 1.3 0.1 25.4 

Transport Equipment 37 14.5 2.3 1.1 3.6 0.2 21.8 

Petroleum Products 19 0.2 20.3 0.7 0.1 0.0 21.3 

Waste & Scrap 41 3.3 2.0 5.7 1.8 7.6 20.4 

Misc. Manufactured 40 1.1 1.5 12.1 0.7 4.6 19.9 

Prepared Foods 07 6.3 2.4 5.9 1.0 1.1 16.7 

Textiles & Leathers 30 1.2 2.1 5.8 1.0 5.2 15.3 

Machinery 34 2.1 4.3 3.1 4.0 1.7 15.2 

Crude 16 6.9 0.0 2.8 0.0 5.3 15.0 

Precision Instruments 38 4.2 1.1 4.1 0.4 4.4 14.2 

Wood Products 26 2.9 3.4 2.9 2.9 1.9 14.0 

Agricultural Products 03 6.6 2.4 3.6 0.9 0.2 13.8 

Coal 15 0.3 4.6 1.5 0.6 6.7 13.6 

Non-metallic Minerals 13 8.9 1.4 0.8 1.0 1.0 13.1 

Building Stone 10 0.0 2.5 2.9 0.8 4.1 10.3 

Base Metals 32 2.3 2.6 1.4 2.7 0.7 9.7 

Cereal Grains 02 5.0 2.4 0.5 1.2 0.4 9.5 

Natural Sands 11 8.1 0.1 0.4 0.5 0.0 9.2 

Newsprints & Papers 27 2.8 1.0 3.0 1.3 1.1 9.2 

Mineral Products 31 2.3 3.7 1.3 1.3 0.5 9.1 

Fertilizers 22 5.2 2.2 0.3 0.6 0.5 8.9 

Motorized Vehicles 36 0.6 1.1 5.5 0.8 0.4 8.5 

Logs 25 3.6 0.3 0.7 0.2 0.1 4.9 

Gravel & Crushed Stone 12 0.2 1.1 0.1 3.1 0.0 4.5 

Metallic Ores 14 0.7 0.2 2.0 0.1 0.5 3.4 

Live Animals & Fish 01 0.0 0.0 2.8 0.0 0.0 2.8 

Tobacco Products 09 0.0 0.0 0.2 0.0 1.7 1.9 

Figure 4 shows a value proportion histogram for all the commodity categories moved by each 

accident outlier MSA. These histograms present another view of the data mining results. The 
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trends indicate that each of the accident outlier MSAs tend to move by rail a much larger 

proportion (outlier) of some commodity categories than others. 

Table 4: Monetary Value Proportion of the Commodity Categories Moved by the Outlier MSAs 

Commodity SCTG 

Code 
Chicago 

IL 

Houston 

TX 

LA 

CA 

DFW 

TX 

Newark 

NJ 

Value 

% 

Alcoholic Beverages 08 41.5 4.5 4.7 0.8 4.8 56.3 

Raw Meats 05 2.9 2.8 42.8 1.7 3.3 53.4 

Gasoline Fuel 17 8.9 20.6 2.6 4.0 11.2 47.3 

Plastics & Rubbers 24 4.1 27.1 4.4 3.1 1.3 40.0 

Basic Chemicals 20 3.8 23.2 6.3 2.3 2.4 38.1 

Printed Products 29 2.4 0.8 32.5 0.2 2.1 38.0 

Chemical Products 23 5.3 20.7 6.0 1.6 3.1 36.7 

Fuel Oils 18 0.9 22.8 2.7 7.3 2.0 35.8 

Furniture 39 3.6 5.7 17.8 0.6 7.8 35.4 

Electronics 35 3.4 7.8 11.9 8.0 4.0 35.1 

Products of Animals 04 10.4 2.2 19.8 2.0 0.6 35.0 

Base Metal Articles 33 4.3 21.3 5.6 1.2 1.1 33.5 

Milled Grains 06 5.5 0.4 10.9 0.2 12.8 29.8 

Mixed Goods 43 1.8 6.7 13.5 4.6 1.9 28.6 

Petroleum Products 19 0.3 24.9 2.6 0.0 0.3 28.3 

Pharmaceuticals 21 1.9 6.0 2.7 0.9 16.5 28.1 

Building Stone 10 0.0 6.0 4.8 1.9 14.6 27.3 

Prepared Foods 07 7.4 3.3 12.6 1.3 2.5 27.1 

Paper-based Products 28 4.3 1.6 17.8 0.7 1.6 26.0 

Natural Sands 11 22.5 0.3 0.6 1.4 0.1 25.0 

Waste & Scrap 41 4.0 3.3 8.2 1.8 7.6 24.9 

Misc. Manufactured 40 1.9 1.8 16.3 0.5 3.1 23.6 

Textiles & Leathers 30 1.4 2.6 11.5 1.7 6.1 23.2 

Machinery 34 2.8 6.0 4.4 5.2 2.2 20.6 

Agricultural Products 03 5.9 4.8 6.3 2.7 0.7 20.5 

Wood Products 26 3.9 4.2 4.1 4.2 3.8 20.2 

Transport Equipment 37 13.7 1.3 1.1 1.6 0.6 18.4 

Precision Instruments 38 5.5 1.8 5.9 1.0 3.9 18.0 

Mineral Products 31 3.5 5.0 3.6 1.7 1.9 15.7 

Crude Oil 16 7.0 0.0 2.8 0.0 5.3 15.1 

Non-metallic Minerals 13 4.8 2.9 3.3 1.6 0.9 13.4 

Base Metals 32 2.0 2.4 3.1 2.4 2.1 12.0 

Newsprints & Papers 27 3.1 1.2 3.7 1.3 1.3 10.5 

Fertilizers 22 6.0 2.4 0.4 0.6 0.7 10.1 

Cereal Grains 02 5.0 2.5 0.6 1.1 0.5 9.8 

Motorized Vehicles 36 0.6 1.3 5.5 1.0 0.3 8.8 

Coal 15 0.3 1.8 1.4 0.4 4.5 8.3 

Gravel & Crushed Stone 12 0.5 2.0 0.1 5.2 0.1 7.8 

Logs 25 1.8 0.8 2.0 0.6 0.2 5.3 

Metallic Ores 14 1.6 0.9 1.6 0.2 0.5 4.7 

Live Animals & Fish 01 0.0 0.0 2.6 0.0 0.0 2.6 

Tobacco Products 09 0.0 0.0 0.3 0.0 0.3 0.6 
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Table 5: Top Outlier MSAs Ranked in Order of Commodity Value Proportion Moved 

Commodity Top MSA by Value Weight % Value % 

Alcoholic Beverages Chicago, IL 61.5 56.3 

Raw Meats Los Angeles, CA 40.6 53.4 

Gasoline Houston, TX 46.8 47.3 

Plastics & Rubbers Houston, TX 40.0 40.0 

Basic Chemicals Houston, TX 36.3 38.1 

Printed Products Los Angeles, CA 35.8 38.0 

Chemical Products Houston, TX 33.7 36.7 

Fuel Oils Houston, TX 29.8 35.8 

Furniture Los Angeles, CA 33.4 35.4 

Electronics Los Angeles, CA 28.8 35.1 

Products of Animals Los Angeles, CA 25.4 35.0 

Base Metal Articles Houston, TX 39.1 33.5 

Milled Grains Newark, NJ 27.6 29.8 

Petroleum Products Houston, TX 21.3 28.3 

Pharmaceuticals Newark, NY 28.3 28.1 

Prepared Foods Los Angeles, CA 16.7 27.1 

Misc. Manufactured Los Angeles, CA 19.9 23.6 

Textiles & Leathers Los Angeles, CA 15.3 23.2 

Base Metals Chicago, IL 9.7 12.0 

Each histogram points to the outlier proportions. For example, the proportion of alcoholic 

beverages moved by the Chicago MSA is more than four times that of the other items it moved. 

Similarly, the proportion of raw meats moved by the Los Angeles MSA was more than four 

times that of the other items it moved by rail. 

This analysis suggests that any loss of railroad capacity can severely disrupt the supply 

chain for raw meats, alcoholic beverages, gasoline, and paper-based products such as toilet paper 

because of their extreme proportion by weight (more than 40%) moved by the accident outlier 

(high-risk) MSAs. As experienced during the COVID-19 pandemic, shortages due to supply 

chain disruptions can lead to price gouging and hoarding as consumers rush to acquire scarce 

items like toilet paper, tissues, and raw meats. Conversely, commodity categories with the least 

risk of shortages from railroad capacity disruptions at the accident outlier MSAs include tobacco 

products, live animals and fish, metallic ores, gravel and crushed stones, and logs. 
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Figure 4: Value proportion distribution of commodity categories moved by the outlier MSAs. 
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Those items account for less than 5% of the commodity proportion by weight moved by the 

outlier (high-risk) MSAs. Therefore, supply chain managers can focus their efforts and resources 

on locations and commodities that are at the highest risk of flow disruption. 

4 Discussions 

The outlier MSAs contain the largest U.S. cities, which is consistent with the intuition that they 

will generate the highest demand to move products. Previous work found that there is a high 

correlation between train traffic and accident rates (Schafer and Barkan 2008). Therefore, a 

higher demand for moving products by rail increases the risk of accidents. Related work found 

that financial losses from railroad accidents tend to peak in the summer months, particularly due 

to the increase in shipping harvested gains (Dhingra, et al. 2022). 

Implications from the findings of this study extend beyond the realm of supply chain 

management because of the profound impacts that railroad disruptions can have on society. The 

COVID-19 pandemic highlighted the fragile nature of global supply chains. An interruption in 

the supply of top commodities like alcoholic beverages and raw meats could lead to hoarding, 

price gouging, and widespread disruption in the restaurant and hospitality industries. Such 

actions could exacerbate social inequalities because lower-income households may not be able to 

afford inflated prices due to shortages. Small to medium enterprises would struggle to adapt in 

such situations, which could potentially lead to business closures and job losses. Interrupted 

supply chains can strain local economies and create a ripple effect that could extend beyond the 

disrupted areas. Those societal implications underscore the need for risk mitigation strategies. 

The five MSAs identified as the most vulnerable provide clear targets for managing the 

risks of railroad disruptions. Initially focusing on railroad operations in those MSAs can help to 

prevent severe disruptions because they move more than 40% of the monetary value in certain 
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commodities. Potential risk mitigation solutions could include diversifying transportation modes 

for the highest-risk commodities. For example, agencies can plan to use emerging modes such as 

electrified and autonomous trucks and electrified freight drones to help with transport 

diversification while reducing both cost and environmental harm. 

Another potential solution would be to focus investments on improving infrastructure 

resilience and creating alternative rail routes to relieve high traffic nodes or bottleneck routes on 

the rail network. Other measures to improve resilience could include hardening the rail 

infrastructure to withstand extreme weather events and enhancing cybersecurity measures to 

protect connected railroads (using PTC) from cyberattacks. 

Public policy can also play a crucial role in promoting risk management. For example, 

policymakers could incentivize the diversification of and hardening of rail transport by first 

targeting operations in the most vulnerable MSAs identified. Regulations to prevent price 

gouging in the event of supply chain disruptions would help to protect consumers and 

businesses. 

Managers globally can use the data mining workflow as a tool to identify high-risk areas 

in their own supply chains and implement targeted risk mitigation strategies. In summary, 

proactive policymaking to diversify and harden freight transport could contribute to a more 

stable and resilient global supply chain that can withstand future disruptions to safeguard society 

and the economy. 

5 Conclusions 

The loss of human resources due to the COVID-19 pandemic sensitized the public to how any 

loss of transport capacity at freight bottlenecks like ports and inland terminals can cause 

widespread supply chain disruptions. Railroads are especially vulnerable to movement 
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disruptions because the rail network has few alternative routes to accommodate detours in the 

event of disruptions. For instance, railroads are consistently involved in thousands of accidents 

annually that can disrupt the flow of certain commodities much more than others. Additional risk 

factors are threats such as extreme weather events, cyberattacks, and cargo theft. 

This research developed a data mining workflow to rank the risk of commodity flow 

disruptions in the continental United States (CONUS). A key finding is that railroad accidents 

are at least five times more likely to occur in five MSAs of the CONUS than in other areas. 

Those five MSAs moved more than 40% of the monetary value in alcoholic beverages, raw 

meats, gasoline, plastic-based products, and rubber-based products. Alcoholic beverages are the 

top rail-transported commodity in the CONUS. The Chicago MSA accounted for more than 61% 

and 56% of the alcoholic beverages moved on rail by weight and monetary value, respectively. 

The Los Angeles and Houston MSAs are two accident outlier areas that handled 15 of the 42 

commodity categories moved by rail. The above findings suggest that supply chain managers 

should focus risk mitigation and resiliency strategies in those five MSAs to minimize potential 

disruption that can lead to severe shortages of those commodities in the nation. For instance, a 

severe shortage of the two top commodities (alcoholic beverages and raw meats) can lead to 

hording, price gouging, and widespread disruptions in the restaurant and hospitality industry. 

Supply chain managers can use the data mining workflow developed in this research to rank 

commodity flow disruption risks in any region of the world, and to identify locations where to 

focus risk mitigation strategies. 

Future work will apply a modification of the methodological workflow to profile the 

transport risks of commodities moved by airways and by trucks to determine if emerging freight 

drones could help to mitigate the risk of capacity losses from those modes. 
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Figure 1 Caption: MSAs of the CONUS and the major railroad routes that serve them. 

Figure 1 Alt Text: A map of the continental United States with lines that indicate the location 

and extent of railroad tracks, overlayed with colored polygons that indicate the locations and 

relative sizes of metropolitan areas that handle the freight analyzed in this study. 

Figure 2 Caption: Input datasets and analytical workflow. 

Figure 2 Alt Text: A three-section flow diagram, with each section containing labeled boxes and 

directional arrows between them to indicate the data-mining workflow and analysis. 

Figure 3 Caption: Distribution of the number of railroad accidents accumulated from 2009 to 

2019. 

Figure 3 Alt Text: A combination bar and line chart with the horizontal axis indicating data bins 

for the quantity of accidents and the height of each bar (vertical axis) indicating the number of 

metropolitan areas where that volume of accidents occurred. The line overlays the bars to show 

the best fit lognormal distribution that excludes the outliers. Five labeled boxes contain the name 

of the outlier metropolitan areas and point to the corresponding outlier bars. 

Figure 4 Caption: Value proportion distribution of commodity categories moved by the outlier 

MSAs. 

Figure 4 Alt Text: Five separate bar charts (each representing one of the five outlier metropolitan 

areas) vertically stacked to compare the distribution of all commodity categories moved by value 

proportion. Labels and arrows point to outlier bars that indicate the type of commodity mostly 

moved by each outlier metropolitan area. 
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