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ABSTRACT 

The reported financial losses from railroad accidents since 2009 have been more than $4.11 

billion dollars. This considerable loss is a major concern for the industry, society, and the 

government. Hence, identifying and ranking the factors that contribute to financial losses from 

railroad accidents would inform strategies to minimize them. To achieve that goal, this paper 

evaluates and compares the results of applying different non-parametric statistical and regression 

methods to 15 years of railroad Class I freight train accident data. The models compared are 

random forest, K-nearest neighbors, support vector machines, stochastic gradient boosting, 

extreme gradient boosting, and stepwise linear regression. The results indicate that these methods 

are all suitable for analyzing non-linear and heterogeneous railroad incident data. However, the 

extreme gradient boosting method provided the best performance. Hence, the analysis used that 

model to identify and rank factors that contribute to financial losses, based on the gain 

percentage of the prediction accuracy. The number of derailed freight cars and the absence of 

territory signalization dominated as contributing factors in more than 57% and 20% of the 

accidents, respectively. Partial dependence plots further explore the complex non-linear 

dependencies of each factor to better visualize and interpret the results. 

Keywords: Machine Learning, Extreme Gradient Boosting, Partial Development Plots, Data 

Mining, Support Vector Machines 
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INTRODUCTION 

Every year, railroads invest an average of 40% of their revenue on capital expenditures, 

maintenance, and condition monitoring (1). Despite those investments, the high number of 

accidents falls far short of the goal of the Federal Railroad Administration (FRA) to reduce rail-

related accidents, injuries, and fatalities to zero (2). For a decade prior to 2019, nearly 25,000 

accidents caused 446 deaths, 5,137 injuries, and more than $4.11 billion in financial loss 

seasonally adjusted to 2018 dollars (3). Class I railroads accounted for 78% of those accidents, 

more than 72% of the resulting injuries and fatalities, and 81% of the total financial loss. 

Figure 1 summarizes the annual Class I railroad accidents and the financial losses for the decade 

prior to 2019. 
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FIGURE 1. Class I railroad incidents from 2009 to 2018 and the reported financial loss. 

The consistently large number of accidents and the injuries and fatalities they cause place 

a significant social and economic burden on the industry, environment, and society. Hence, it is 

vital to understand the dominant accident causes to guide strategies and policies that could 

minimize financial losses from accidents. Subsequently, the goal of this paper is to apply Data 

Mining (DM) and Machine Learning (ML) techniques to 15 years of Class I freight railroad 

accident data from 2004-2018 to reveal insights about the major factors contributing to financial 

losses from Class I freight train accidents. 

The FRA maintains historical data of railroad accidents in three primary databases. These 

datasets contain greater variety and have grown far beyond the ability of humans and commonly 

used software tools to capture, manage, and process data within a “tolerable elapsed time” (4). 

The available accident data are in non-uniform formats. The data includes heterogeneity, variety, 

unstructured features, missing values, incorrectly formatted values, and redundancy (5,6). Hence, 

it is not possible to apply standard statistical methods directly to the raw data. Therefore, 

advanced techniques such as DM and ML are necessary to prepare the data for processing. 

DM is helpful in analyzing vast amounts of data by using many different techniques to 

discover useful patterns and relationships among features (7,8). Kohavi (9) specified that insight 

and prediction are the two primary goals of DM. Insights identify patterns and trends that are 



Dhingra, N., Bridgelall, R., Lu, P., Szmerekovsky, J., and Bhardwaj, B.      4 

useful, whereas prediction leads to the identification of a model that provides reliable forecasts 

based on new input data. Many researchers have applied different DM/ML methodologies to 

analyze factors that cause accidents on roadways (10,11,12), at highway rail-grade crossings 

(HRGC) (13,14,15,16,17,18), and on railways (19,20). For instance, Sohn and Lee (12) 

compared the results of neural networks, Bayesian fusion, decision tree, bagging, and clustering 

models on Korean road accident data. Their results indicate that clustering-based classification 

works better than the other methods. Depair et al. (11) also examined clustering techniques to 

identify homogenous accident types. They used vehicle types as the basis for segmentation and 

evaluated the relationship to injuries caused by different segments. 

Some researchers used DM techniques to analyze road-related factors and linked them to 

accident severity. Beshah and Hill (21) compared different DM models to investigate the role of 

road-related factors in accident severity in Ethiopia and concluded that K-nearest neighbors 

performed best. Mousa et al. (22) compared the ability of tree-based ensemble methods to predict 

the onset of lane changing maneuvers by using connected vehicle data and found that the 

extreme gradient boosting (XGBM) model performed best. The highest accuracy was 99.7%, and 

that was better than methods using decision trees, gradient boosting, and random forest (RF) 

ensemble methods. 

Other related areas of research focused on HRGC accidents. Hu et al. (16) evaluated the 

relationship between crash frequency and the relevant attributes of highway and railroad 

systems. Ghomi et al. (13) used DM techniques to identify some of the main factors associated 

with injury severity of road users involved in HRGC accidents. Kang and Khattak (17) 

investigated the severity of HRGC accidents by clustering the data using a combination of DM 

and statistical methods. Brown (19) applied text mining to identify factors contributing to 

railroad accidents. Mirabadi and Sharifian (20) used association rule mining to reveal the 

relationships and patterns in Iranian Railway accident data. Many other researchers have 

conducted studies that use other analytical criteria to discover relationships between accident risk 

and contributing factors (8,23,24,25). 

All research that analyzed rail or road accidents using DM techniques focused on 

identifying contributing factors that relate to attributes of the respective infrastructure. There is a 

gap in research to identify and rank risk factors in financial loss from railroad accidents. 

Subsequently, the main contribution of this research is a comparison of the ability of different 

non-parametric, tree-based DM methods, and a regression model to identify the risk factors in 

financial loss by analyzing 15 years of railroad Class I freight train accident data. The authors 

then use the best predictive model to rank the major factors based on their influence on financial 

loss. This research extends previous work in railroad safety in the following two ways: 

1. It isolates factors that lead to financial losses. 

2. It ranks the importance of the major contributors. 

The remainder of the paper is structured as follows: The next section, introduces the models used 

to identify the factors that influence financial loss. The section that follows describes the data 

structure, variables, data cleaning, and data handling. After that, a section compares the model 

outputs for selection, variable ranking, and the marginal effect of the variables. The final section 

presents concluding remarks and describes future work. 
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MODEL DEVELOPMENT 

This study used tree-based models (random forest, stochastic gradient boosting, and extreme 

gradient boosting), K-nearest neighbor method, and support vector machine to classify the data 

according to the selected features or factors. In addition, stepwise linear regression provided a 

baseline for comparison because of its proven effectiveness in previous research (26,27). The 

next subsections provide basic descriptions of the six models, all available from the caret 

package of the R Project for Statistical Computing. 

Model Regularization 

Model regularization involves trading off training data bias for a reduced variance on new data. 

This is achievable by partitioning the data appropriately into development and test sets. The 

former is used for cross-validation while tuning the model, and the latter is used to test the final 

regularized and tuned model (28). Running the models with many different variations in 

partitioning revealed that a 70-30 split between development (training/validation) and testing 

datasets yielded the lowest variance. 

K-Nearest Neighbor Method 

K-nearest neighbor (KNN) is a supervised learning algorithm that uses a non-parametric 

technique that does not require any assumptions on the underlying data distribution. This 

algorithm predicts the class of an observation by searching through the entire dataset to identify 

K other observations that are most like it, and then takes the class associated with the majority. 

The measure of similarity is based on one of several available distance measures (29,30). This 

analysis selects the Euclidean distance measure because it is the most common. 

Random Forest 

Standard decision trees split the dataset by selecting an attribute and a threshold that maximizes 

the purity of subtrees. The purity of a node increases as the class imbalance of the dataset within 

that node increases. However, this tree-splitting strategy results in trees that tend to over-fit the 

data and subsequently fail to regularize by exhibiting a high variance on new data. Random 

Forest (RF) addresses the regularization issue by introducing two levels of randomness—namely 

the random selection of learning data and the random selection of decision attributes for tree 

splitting. Such an adjustment results in better performance than many other classifiers models, 

and improved robustness against over-fitting (31,32). 

RF learns an ensemble of trees by bootstrapping the same dataset through random 

sampling with replacement, and then randomly selecting a predetermined number of attributes 

for subsequent tree splitting (32). The selected class of observation is the majority vote from all 

trees created—also referred to as aggregation. Subsequently, the literature often refers to the 

combined methods of bootstrapping and aggregation as the bagging method. Bagging does not 

require tree pruning for regularization because averaging the results of all bootstrapped samples 

reduces the variance (33). 

Stochastic Gradient Boosting 

Stochastic gradient boosting (SGBM) is an extension of the gradient boosting (GB) technique. 

Gradient refers to model building optimization during the learning process. Boosting refer to 

finding a more accurate hypothesis by combining the predictions of many weak hypotheses 

(learners), each of which is moderately accurate (34). Most of the time, learners are nonlinear 

models (decision or regression trees), and for such cases, the literature refers to GB as “gradient 
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tree boosting” (GTB). The GTB algorithm builds an ensemble of weak prediction models by 

adding a sequence of trees, with successive trees grown on reweighted versions of the data. At 

each stage, GTB generates a new tree from the residuals and adds to the existing group of trees. 

The algorithm builds the final ensemble with a weighted summation of the individual learners. 

Motivated by Breiman’s bagging phenomenon, Friedman (35,36) augmented the gradient 

boosting procedure and incorporated randomness as part of the GB algorithm and called the 

resulting technique SGBM. Friedman recommended that instead of using the entire dataset to 

perform the boosting, it is more appropriate to select a random subsample from the training 

dataset at each step of the boosting process. The base learner then uses this randomly selected 

subsample. 

Extreme Gradient Boosting 

Extreme Gradient Boosting Method (XGBM) extends the gradient boosting method for greater 

efficiency and accuracy. Unlike the GB technique, the XGBM implements an additional 

regularization to avoid over-fitting by imposing additional control over model complexity (22). 

The additional regularization term does not depend on the randomness. Instead, the focus of this 

additional term always remains on minimizing the model complexities based on some leaves and 

the sum-of-square scores of those leaves. For further reference, (37) presents a detailed study on 

XGBM. 

Support Vector Machine 

A support vector machine (SVM) is a non-parametric statistical learning technique that requires 

no assumption on the underlying data distribution. The concept is to separate data across a 

decision boundary (hyperplanes) determined by a small subset of the data (feature vectors). The 

data subset that supports the decision boundary is called the support vector (38). SVM assumes 

that the multi-feature data are linearly separable in the input space. However, in practice, data 

points of different hyperplanes overlap, which makes linear separability challenging (39). A 

“kernel trick” overcomes the problem of the linearity restriction on the decision boundary. The 

kernel trick uses a transformation function to map the input vector into a higher dimension space 

by introducing new parameters (38). The “trick” part is that the SVM operates only on the 

vectors in their ambient space, without actually transforming the vector into a higher dimension. 

This analysis uses the radial kernel. Various authors (37,38,40) explain the use of the kernel trick 

in more detail. 

Stepwise Linear Regression 

Stepwise linear regression (SLR) is the process of building a model by successively removing or 

adding feature variables based on their relationship with the response variable. In other words, 

SLR is a method of regressing multiple variables in multiple stages. In each stage, the method 

removes or adds variables based on their correlation with the response variable. 

Model Comparison 

To minimize the potential for over-fitting or under-fitting, the ML procedure incorporates a K-

fold cross-validation process with N repeats to identify the best model parameters. As explained 

by Jhangiri and Rakha (40), the K-fold algorithm segments the training data randomly into K 

parts or folds of approximately equal size. Subsequently, the algorithm builds a model from the 

union of the remaining K-1 folds and evaluates the model performance on the validation fold. 

The algorithm repeats the cross-validation K times so that each fold serves as the validation data 
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exactly once. The algorithm repeats the K-fold process N times to introduce further 

randomization. The algorithm builds the final model by using those parameters that produce the 

best average performance across the K validations. 

The K-fold cross-validation algorithm sets a uniform random seed before training each 

model to ensure consistency in the data partitions and repeats. Once trained, the process adds all 

the models to a list for re-sampling. This function verifies that the models are comparable and 

have used the same training scheme (41,42). Finally, the algorithm evaluates the performance of 

the models by comparing the mean absolute error (MAE), the root means squared error (RMSE), 

the mean absolute percentage error (MAPE) and the R-squared metrics. The MAE is the 

unweighted average of the absolute differences between the predicted and actual observations. 

RMSE is the square root of the average of the squared differences between the predicted and 

actual observations. MAPE is the average of the absolute percentage of prediction errors. Hence, 

RMSE represents the average magnitude of the error and MAPE represents the magnitude of 

percentage of the error relative to financial loss. R-squared is a measure of the percentage of the 

variation in the response variable that the model explains. 

DATA 

FRA requires that railroads maintain and submit a detailed report of all significant accidents or 

incidents associated with railroad operations. FRA compiles these reports into the railway 

equipment accident (REA) database (25). However, this study used 15 years of REA accident 

data from all railroads reporting all types of accidents between 2004 and 2018 (3). This database 

records all accidents that exceed a specified financial cost (the inflation-adjusted 2019 threshold 

was $10,700) from damages to on-track equipment, signals, track, track structures, and roadbed 

(43). However, there are some other significant financial factors which are not considered while 

estimating the actual financial damage from a rail accident. Such expenses include delays, re-

routing, emissions, cargo losses, first and emergency responders, and other operating costs. 

Those indirect expenses could add up to a significant amount and could be included in the actual 

financial damage. However, those indirect factors are often not reported or available. 

Subsequently, this study uses Class I freight train accident data for greater consistency in the 

analysis. The data consists of more than 145 variables, such as the railroad identifier, accident 

location, speed, and other attributes that attempt to describe the nature of the event. A limitation 

of this database is that it may not capture all the underlying factors that contributed to the level of 

financial loss. However, the models are based only on the available factors and are likely to 

expose dominant factors in causing financial loss. 

Cleaning and Structuring 

The data cleaning followed a three-step process. The first step deleted variables that were not 

appropriate, such as text narratives, dummy variables, and duplicate variables. The second stage 

removed variables such as “number of engineers” and “location,” that did not support the 

analysis objectives. The third stage modified some of the FRA-structured default variables. 

Figure 2 presents a flow chart explaining the variable selection process. Restructuring of the 

default variables, also called feature engineering, was performed as follows: 

(1) TIMEHR– changed the specific hours and minutes of the incident from the standard 12-

hour, a.m.-p.m.” format to a single variable in 24-hour military time format. 

(2) P_CARSDMG – a new variable that is equal to the percentage of cars carrying hazmat 

that were damaged or derailed. 
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(3) TRKCLAS – changed the FRA track classes of A-E to a numeric categorical variable 

for compatibility across the DM techniques used. 

(4) TRKDNSTY – imputed missing values and replaced zero values based on the 

maximum reported for that county. 

(5) Ospeed – restructured “train speed” as a categorical variable over speed where the 

value is ‘1’ if the train was traveling faster than the track class limit, and ‘0’ otherwise. 

(6) P_LocoDe – a new variable that contains the percentage of locomotives derailed is 

estimated using the same dataset. 

(7) Tloco – a new variable that contains the total number of locomotives is obtained using 

the same dataset. 

(8) Cause – changed the primary cause of an accident to a categorical variable with five 

classes based on their alphabetic order. ‘1’ = ‘Mechanical and Electrical Failures’; ‘2’ = 

‘Miscellaneous Causes Not Otherwise Listed’; ‘3’= Rack, Roadbed and Structures; 

‘4’=Signal and Communication; and ‘5’= Train operation - Human Factors. 

(9) EQATT – ‘1’ if someone was attending the equipment and ‘0’ otherwise. 

(10) R_ Amount – a modified dependent variable containing the total reported financial 

damage. The modifications are as follows. 

a. Time value normalization: adjusted the total reportable damage from the 

variable ACCDMG to the average consumer price index seasonally adjusted 

amount of 2018. 

b. The REA databases should include only those accidents that exceed financial 

losses of $10,700. Therefore, this adjustment deleted records with lower 

amounts because such entries may be included in error in the dataset and not 

represent most accidents. 

c. Further analysis was conducted using the interquartile range (IQR) method to 

identify any outliers in the reported financial loss variables. The distribution 

revealed some variables within the 5-percentile and beyond the 95-percentile 

that were eliminated. 

Handling Correlation and Missing Values 

Missing values do not cause a problem for decision tree (DT) models because the method 

imputes those values based on the values of other observations that are in similar classes. 
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FIGURE 2. Variable selection flow chart 

However, models such as linear regression (LR) cannot use data that contain missing values, 

thereby making the size of the dataset inconsistent for uniform comparison of models (28). 

Model comparison is most appropriate between models that are fitted using the same set of 

observations (28). Hence, it is necessary to impute missing values before fitting models for 

comparison of performance. This analysis replaced missing values using an approach based on k-

nearest neighbors, referred to as KnnImputation. The model identified ‘k’ closest observations 

for each missing value based on the Euclidean distance and computed the weighted average as 

the missing value. Researchers observed that using K=10 provided a good trade-off of low 

computational cost and low biases in the model estimates (44). Hence, the study also uses k=10 

for imputing missing values 

Highly correlated variables with the dependent variable are redundant and does not 

contribute additional information in the model (45). Therefore, the procedure removed those 

variables that had a correlation coefficient above a commonly selected threshold of 0.75 (46). 



Dhingra, N., Bridgelall, R., Lu, P., Szmerekovsky, J., and Bhardwaj, B.      10 

Dataset for Model Comparison 

The final dataset contained 23 variables (Table 1) and approximately 12,500 observations of 

freight train accidents of the Class I railroads. 

TABLE 1. List of Variables and their Description 

Variable Description Variable Type 

R_Amount Seasonally adjusted financial loss based on 

2018 prices (dependent variable) 

Continuous 

MONTH Month of incident Categorical 

DAY Day of the incident Categorical 

TIME Time of the accident (military standard time) Continuous 

TYPE Type of accident: (1-13) Categorical 

P_CARSDMG % of hazmat cars damaged or derailed Continuous 

TEMP Temperature in degrees Fahrenheit Continuous 

VISIBLTY Daylight period: (1-4) Categorical 

WEATHER Weather conditions (1-6) Categorical 

Ospeed Boolean of train traveling over the speed 

limit 

Categorical 

TONS Gross tonnage, excluding power units Continuous 

EQATT Boolean for equipment attended by a human Categorical 

TRKCLAS FRA track class (0-9) Categorical 

TRKDNSTY Annual track density - gross tonnage in 

millions 

Continuous 

POSITON1 Car position in train (first involved) Categorical 

POSITON2 Car position in train (causing) Categorical 

Tloco Total number of locomotives Categorical 

P_LocoDe Percent of locomotives derailed Continuous 

LOADF2 Number of derailed loaded freight cars Categorical 

EMPTYF2 Number of derailed empty freight cars Categorical 

CAUSE Primary cause of incident Categorical 

TOTKLD Total killed for the railroad as reported Categorical 

SIGNAL Type of territory – signalization Categorical 

RESULTS AND DISCUSSION 

Model Selection 

Table 2 summarizes the evaluation metrics for the six ML models and their respective training 

times, using 10-fold cross-validations with 3 repeats. In general, the ensemble tree-based models 

outperformed the other models. Among tree-based ensemble methods, XGBM provided the best 

predictive capability based on the lowest RMSE, MAE, and MAPE metrics, and the highest R-

squared metric. On the other hand, tree-based models required maximum time for training. 

Moreover, random forest required the longest time amongst all of the six models. Hence, the 

final model was selected based on the model performance parameters and time required to train 
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the models which is XGBM. Figure 3 provides a visualization of the MAE, RMSE, and R-square 

for all six models. 

 
Figure 3: MAE, RMSE, R-Square, and Model Training Time (in hours) 

TABLE 2. Model Comparison Evaluation 

Models Label MAE RMSE R2 MAPE Model running 

time 

GBM Gradient boosting model 87,131 139,295 0.46 32.74 7.6 hours 

KNN K-nearest neighbors 122,391 189,069 0.03 45.99 2.4 hours 

SVM Support vector machine 102,771 204,053 0.05 38.62 2.3 hours 

RF Random forests 88,939 143,402 0.45 33.42 10.3 hours 

STEPWISE Stepwise regression 95,392 149,052 0.40 35.84 1.5 hours 

XGBM Extreme gradient boosting 85,989 137,646 0.46 30.97 6.2 hours 

Variable Importance using XGBM 

After identifying XGBM as the best model for the data, the analysis focused on identifying the 

significant contributors to the prediction accuracy. Table 3 summarizes the results. The model 

ranked importance factors in terms of gain, which is a measure of the average gain in purity 

when splitting the training data for each tree of the model (47). Hence, the gain is proportional to 
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its importance in generating predictions. The cover and frequency provide additional indicators 

about the importance of those variables in building the model during training. Frequency is the 

percentage of time that the model used the corresponding feature to split the training data across 

all trees. The cover is the frequency weighted by the number of training data observations 

involved with those splits. 

The results indicate that the number of loaded freight cars derailed is most strongly 

associated with financial losses from accidents by a proportional contribution of 57%. Territory 

signalization (SIGNAL) is the second most strongly associated factor by a proportional 

contribution of more than 20%. The number of empty freight cars derailed is next, which 

improves the predictability by more than 10%. Accidents on track class 4 are the next factor 

most associated with financial losses by a proportional contribution of more than 6%. Table 3 

summarizes the rank of the other variables. 

TABLE 3. Results of Variable Importance 

Feature Description Gain Frequency Cover 

LOADF2 # of derailed loaded freight cars 0.57459 0.2900 0.51493 

SIGNAL1 Type of territory – signalization (mandatory) 0.20220 0.1700 0.05337 

EMPTYF2 # of derailed empty freight cars 0.10124 0.1366 0.26967 

TRKCLAS4 FRA track class: 1-9 0.06536 0.1726 0.02682 

TONS gross tonnage, excluding power units 0.02092 0.0757 0.06610 

TRKCLAS3 FRA track class: 1-9 0.01018 0.0460 0.00454 

TRKCLAS2 FRA track class: 1-9 0.01008 0.0320 0.00698 

TYPE3 type of accident: 

03=Rear-end collision 

0.00599 0.0197 0.02691 

P_LocoDe % of locomotive derailed 0.00370 0.0263 0.01545 

CAUSE Contributing cause of incident 0.00233 0.0091 0.00182 

POSITON1 Car position in train (first involved) 0.00194 0.0089 0.01257 

POSITON2 Car position in train (causing) 0.00069 0.0043 0.00037 

TRKDNSTY Annual track density-gross tonnage in 

millions 

0.00062 0.0063 0.00033 

MONTH12 month of incident 0.00014 0.0023 0.00012 

Tloco Total number of locomotive 0.00001 0.0003 0.00001 

Marginal Effect of Predictor Variables 

Advanced ML models can significantly improve predictions and classifications, but 

understanding the influence of one or more predictor variables on the response variable is not 

feasible even with these advanced models. Partial-dependence plots (PDPs) can show the 

marginal effect of a single attribute on the predicted outcome of a ML model (48). The PDPs 

show the distinct impact of the most influential variables by marginalizing over the effects of all 

other variables in the model (49). The process starts with fitting the best performed machine 

learning model (XGBM), followed by using the partial dependence functions in the PDP package 

of the R-studio with default parameter settings to visualize the complex non-linear global 

relationship between each factor and the predicted outcome. 

Figure 4 shows that, except for the effects of the binary signal variable, the PDPs from 

the XGBM model exhibits non-linear patterns. The yhat (𝑦̂) variable actually does not represent 
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the predicted financial loss; instead, it represents the change in financial loss with the change in 

value of each predictor variable. 

Per the results, financial damage generally increased with the number of derailed cars 

(LOADF2) and peaked at 40. Non-signaled territories (SIGNAL = 2) are associated with higher 

financial losses than with territories that are signaled. The partial dependency on EMPTYF2 

suggests that financial losses tend to be most severe when 30 to 40 empty cars derail. Financial 

loss generally increases with track classification, and peaks for class 7 tracks. Trains that carry 

approximately 20,000 tons tend to more significantly influence financial losses. Head-on 

collision (TYPE2) and rear-end collision (TYPE3) are associated with higher financial losses 

than other accident types. Accident causes (CAUSE) category 5 (human factor related) are 

associated with the highest financial losses. P_LocoDe (percentage of locomotive derailed) 

exhibits a stepwise increasing trend with financial losses. POSITON1 (car position in train first 

involved) and POSITON2 (causing car position in the train) from 125 to 135 are associated with 

the highest financial losses. These cars tend to be towards the rear of a typical Class I train (50). 

By month (IMO), financial losses tend to peak in the summer and subside in the winter. 

In the United States, grain harvesting and grain shipping by rail generally peaks in the summer. 

Intuitively, peak demand leads to peak traffic with higher carloads, which increases the risk of 

accidents. T_loco shows that financial losses from accidents increases for trains that contained 

more than five locomotives. The variable weather shows that, compared to other weather 

conditions, snow is associated with a 0.03% increase in financial losses from accidents.  

It is essential to highlight that because of the limitations in the knowledge provided by 

the data, the PDPs might not represent the true relationship between each variable and the 

predicted outcome. For instance, the financial losses from derailed empty freight cars show to be 

unchanged after 40 cars. Similarly, financial losses appear to be insensitive to TRKDNSTY. 

These problems could be the result of inconsistent data or missing data, which could be 

addressed by incorporating more data in the future. 

CONCLUSION 

The primary objective of this study was to determine the significant factors associated with Class 

I railroad financial losses from railway accidents and to rank the strength of those associations by 

using DM and ML techniques. Data between 2004 and 2018 from the REA database provided 

inputs for the analysis. To achieve the primary objective of the study, a comparative analysis of 

six machine-learning algorithms determined the best model for the dataset. Tree-based ensemble 

models generally performed best. XGBM proved to be the best model for analyzing railroad 

accident data that is highly imbalanced. The XGBM model identified the significant factors 

associated with financial losses from railroad accidents. The results indicated that LOADF2 

(number of derailed loaded freight cars), SIGNAL (type of territory signalization), and 

EMPTYF2 (number of derailed empty freight cars) were the top three factors with accuracy 

gains of 57%, 20%, and 10%, respectively in predicting financial losses from railroad accidents. 

These results demonstrate the effectiveness of applying DM and ML techniques to high volume 

and non-uniform data formats. The results suggest that railroads should prioritize safety 

investments that allow more trains to move freight on signalized infrastructure. 

Future work will explore and evaluate additional exogenous contributors to railroad 

accidents using a similar approach. The results will provide an opportunity to conduct a more 

comprehensive assessment of railroad accident contributors. 
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FIGURE 4. Partial dependence plots of the predictor variables in the model 
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