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Abstract 20 

Micromobility is an evolving form of transportation modality that uses small human- or electric-21 

powered vehicles to move people short distances. Planners expected that bike sharing, the first 22 

form of micromobility, would reduce traffic congestion, cut travel cost, reduce pollution, enable 23 

connectivity with other modes of transport, and promote public health. However, micromobility 24 

options also brought new challenges such as the difficulty of placement decisions to encourage 25 

adoption and to minimize conflict with other transport modes. Sound deployment decisions 26 

depend on the unique environmental characteristics and demographics of a location. Most studies 27 

analyzed deployments in high-density urban areas. This research determines the best locations 28 

for 5 new bike sharing stations in Fargo, North Dakota, a small urban area in the rural United 29 

States. The workflow combines a geographic information system (GIS), level of traffic stress 30 

(LTS) ratings, and location-allocation optimization models. The spatial analysis considered 18 31 

candidate station locations and eliminated those that fell within the 700-meter isochrone walking 32 

distance of the 11 existing stations. This case study demonstrates a scalable workflow that 33 

planners can repeat to achieve sustainable micromobility deployments by considering the land-34 

use, population density, activity points, and characteristics of the available pathways in their 35 

unique setting. 36 
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1 Introduction 41 

Transportation planners worldwide view new micromobility options such as bike sharing as 42 

another important means towards achieving sustainable transportation (Midgley, 2009). A bike 43 

sharing system (BSS) is a network of bicycles that enable short-distance, low-cost travel for the 44 

public. Such services provide short-term rental between self-service stations distributed 45 

throughout an area such as a city or suburb (NYC Department of City Planning, 2009).  46 

Micromobility services have recently exploded across the world because they provide 47 

low-cost, convenient, and accessible alternatives to public transportation. Some studies found 48 

that in some cities, micromobility services can result in a mode shift from automobile trips 49 

(Shaheen, Martin, Cohen, & Finson, 2012). Additional motivations for deployments include the 50 

promotion of physical exercise, congestion reduction, pollution reduction, and support for 51 

multimodal transportation connections. Organizations have also deployed dock-less BSSs but 52 

issues such as sidewalk clutter, interference with pedestrian traffic, and increased coordination 53 

costs tampered their adoption in many cities (Taleqani, Vogiatzis, & Hough, 2020). Even with 54 

docked BSS, there are numerous challenges to integrating them into communities and the 55 

transportation network. 56 

The demand for a BSS can become induced based on the choice of station location. 57 

Demand is also closely linked to weather (Godavarthy, Mattson, & Taleqani, 2017), season, and 58 

working days. A BSS design scheme that focuses solely on reducing construction costs can lead 59 

to unsatisfactory service and high operational costs. Planners also need to balance the important 60 

relationship between design to satisfy dynamic demand and design to accommodate supply 61 

rebalancing. 62 
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Design decisions for rural and small urban areas are different from those of densely 63 

populated urban areas and large cities. Most studies previously focused on deployments in large 64 

urban areas and large cities. In 2015, the city of Fargo, North Dakota, launched a bike-sharing 65 

enterprise with only 11 stations. Expanding the system could increase accessibility and reduce 66 

the demand for cars in the downtown, shopping, and university districts of this small urban 67 

community. 68 

The goal of this study is to identify the most appropriate locations to add new bike 69 

sharing stations in Fargo, North Dakota. The contribution of this study is an analytical 70 

workflow that combines level of traffic stress (LTS) network rating, demand location 71 

assessment, and spatial optimization models within a geographic information system (GIS) 72 

platform to solve the location optimization problem. 73 

The remainder of this paper is organized as follows: Section 2 reviews the body of works 74 

related to the case study, demand modeling, LTS formulation, and the spatial optimization 75 

problem. Section 3 presents the methodology and further defines the location-allocation 76 

optimization problem. Section 4 describes the results and discusses the implications. Section 5 77 

concludes the study and hints as future work. 78 

2 Literature Review 79 

Since the introduction of a third generation BSS in the United States in 2010, the network grew 80 

to 3,378 BSSs in 104 cities within six years (Firestine, 2016). Sponsorships and usage fees were 81 

the primary sources of funding for BSS deployments in North America (Shaheen, Martin, Cohen, 82 

& Finson, 2012). The next subsections describe the case history for the existing bikeshare 83 

locations in Fargo, North Dakota, and review related work on general decision making for other 84 

BSS deployments. 85 
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2.1 Case History 86 

In March 2015, the Great Rides Bike Share (GRBS) company began operating the first BSS in 87 

Fargo, North Dakota with 11 stations (Figure 1). 88 

 89 

Figure 1: Service areas for the GRBS bike stations in Fargo, North Dakota. 90 
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After collaborating with North Dakota State University (NDSU) to produce contactless student 91 

identification cards, the company distributed 101 bikes across the deployed stations. 92 

Consequently, GRBS became the first company in the United States to integrate contactless 93 

identification cards with the BSS rental system (Godavarthy & Taleqani, Winter bikesharing in 94 

US: User willingness, and operator’s challenges and best practices, 2017). As shown in Figure 1, 95 

the 11 stations formed two clusters approximately two miles apart. One cluster was on or near 96 

the NDSU campus and the other was in and around the Fargo downtown area. The deployment 97 

induced a fast growing demand within months, with 79% and 19% of the users being students 98 

and guests, respectively (Godavarthy & Taleqani, 2017). 99 

2.2 Demand Modeling 100 

The Latent Demand Score (LDS) is a commonly used method of demand analysis for locations 101 

where bicycles are not yet a popular option (Landis, 1996). The LDS method is a probabilistic 102 

gravity model that produces a measure of potential demand by considering trip production sites, 103 

trip attraction sites, and the bikeable pathways between them. For example, the Portuguese city 104 

of Coimbra used the LDS method by considering the number of trips between production and 105 

attraction sites, and the shortest path between them (Frade & Ribeiro, 2014). The authors later 106 

developed an optimization model to maximize demand coverage within a given budget constraint 107 

(Frade & Ribeiro, 2015). 108 

Market modeling based on other deployments is another method used to forecast demand. 109 

For example, New York City identified the three user groups of cyclists based on trends from 110 

deployments by Velib' (Paris, France), Velo'v (Grand Lyon, France), and Bicing (Barcelona, 111 

Spain) (NYC Department of City Planning, 2009). The analysts then estimated the size of each 112 

group (recreational, errand users, visitors) and their growth based on the adoption rates of 3%, 113 
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6%, and 9% determined from surveys conducted in London and Paris. Krykewycz et al. (2010) 114 

identified two market areas in Philadelphia, Pennsylvania, by using a raster-based geographic 115 

information system (GIS) method (Krykewycz, Puchalsky, Rocks, Bonnette, & Jaskiewicz, 116 

2010). Based on low-, medium-, and high-demand scenarios from the Grand Lyon and Barcelona 117 

surveys, they applied three trip diversion rates to estimate the mode shift for each market. 118 

Gregerson (2011) applied the GIS approach used for Philadelphia and the adoption rates 119 

observed in Paris and Barcelona to estimate bike sharing demand for Seattle, Washington, in the 120 

United States. Their GIS raster dataset consisted of weighted sum indicators to predict usage. 121 

The indicators were population density, non-institutionalized group quarter population density, 122 

job density, retail job density, commute trip reduction, tourist attractions, parks, topography, 123 

regional transit stations, local transit stops, and various characteristics of the bicycle 124 

infrastructure (Gregerson, et al., 2011). 125 

Daddio (2012) created a regression model for bikeshare station demand that was 126 

dependent on the trip generation rate, trip attraction rate, and the transportation network 127 

characteristics within 400 meters of each station (Daddio, 2012). The author trained the 128 

regression model with data from the Capital Bikeshare network in Washington, DC. García-129 

Palomares (2012) also proposed a GIS-based method to calculate the spatial distribution of 130 

potential trip demand and found that the method can be effectively combined with location-131 

allocation models (García-Palomares, Gutiérrez, & Latorre, 2012). 132 

2.3 Level of Traffic Stress 133 

The Geelong bike plan team first developed a bicycle tension rate in 1978 to guide deployments 134 

in Australian cities (Scott, Hurnall, & Pattinson, 1978). The plan characterized roads based on 135 

their difficulty of cycling and the stress of sharing them with other vehicles. Decades later, 136 
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Sorton and Walsh (1994) proposed five bicycle stress levels based on traffic volume, traffic 137 

speed, and curb lane width (Sorton & Walsh, 1994). Mekuria et al. (2012) used four levels of 138 

traffic stress (LTS) to characterize bikeable paths (Mekuria, Furth, & Nixon, 2012). The lower 139 

stress levels of LTS 1 and LTS 2 were suitable for children and tolerable by most adults, 140 

respectively. Murphy and Owen (2019) cautioned that restricting bicycles to only low LTS 141 

networks can result in a universal reduction in accessibility, modulated by land use (Murphy & 142 

Owen, 2019). Larsen and El-Geneidy (2011) surveyed 2917 cyclists in Montréal, Quebec, 143 

Canada to determine spatial characteristics that affect route choice (Larsen & El-Geneidy, 2011). 144 

They found that cyclists make longer trips on facilities that are separate from vehicle traffic. 145 

Obtaining the street geometry and traffic data for all roads to classify their LTS can be a 146 

significant challenge. However, some analysts discovered that OpenStreetMap (OSM) data can 147 

provide a viable alternative. For example, Wasserman et al. (2019) compared ground-truth data 148 

to the accuracy of LTS predictions based on OSM data and found that the results were 149 

comparable, but very sensitive to incorrect classifications (Wasserman, Rixey, Zhou, Levitt, & 150 

Benjamin, 2019). Similarly, Hochmair et al. (2015) examined the integrity of OSM tags and 151 

Google Maps data for bicycle paths and found that the accuracy can surpass those of datasets 152 

from local planning agencies (Hochmair, Zielstra, & Neis, 2015). 153 

2.4 Location-Allocation Optimization 154 

Common applications of the location-allocation optimization problem are the placement of 155 

healthcare facilities (Murawski & Church, 2009), fire stations (Liu, Huang, & Chandramouli, 156 

2006), police stations, and schools (Teixeira & Antunes, 2008). The optimization models can 157 

define discrete or continuous locations but planners often use discrete locations in practice (Yeh 158 

& Chow, 1996). The emergence of GIS presented enhanced options to combine spatial analysis 159 
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and optimization (Ribeiro & Antunes, 2002). Conrowa et al. (2018) utilized GIS to determine the 160 

tradeoff between coverage and accessibility for Phoenix, Arizona (Conrowa, Murray, & Fischer, 161 

2018). Their optimization model selected placements that maximized user coverage for a given 162 

level of investment. Guo et al. (2020) used a branch and bound optimization algorithm to address 163 

the bike-stowage problem for a university campus (Guo, Yang, He, & Tang, 2020). Their 164 

optimization model solved an impedance minimization problem by considering all pair-wise 165 

combinations of candidate locations and demand points. Banerjee et al. (2020) used a location-166 

allocation model to determine the locations for three new bike stations in Baltimore City, 167 

Maryland, based on maximizing potential demand and weighing facility locations with a 168 

suitability score (Banerjee, Kabir, Khadem, & Chavis, 2020). More recently, Pérez-Fernández 169 

and García-Palomares (2021) used a GIS-based location-allocation model to reserve parking 170 

spaces for moped-style scooters (Pérez-Fernández & García-Palomares, 2021). 171 

3 Methodology 172 

The analysis evaluated the placement of five more bike-share stations in the Fargo small urban 173 

area. Figure 2 shows the workflow to prepare the data for the location optimization model to 174 

cover all the service points identified. The workflow is applicable to any populated place, but 175 

planners must decide on the candidate station locations and covered activity points (CAPs) based 176 

on the population density, land use, trip generation centers, and roadway network characteristics 177 

that are unique to every place. The next subsections describe the data sources, service area 178 

analysis, LTS formulation, identification of the CAPs, and the location-allocation optimization 179 

problem. 180 

3.1 Data and Sources 181 

Table 1 summarizes all the datasets obtained to set up and solve the bikeshare station location 182 
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optimization problem. The description column identifies the data source. 183 

 184 

Figure 2: Workflow for the location allocation optimization model. 185 

Table 1: Dataset Used for the Location Optimization Problem 186 

Dataset Description 

Bike-share Stations 

(Existing) 

Shapefile from the Fargo-Moorhead Metropolitan Council of Governments 

(METROCOG) of North Dakota encoding the location of bike-sharing stations. 

Population Density 2020 block group census data from the U.S. Census Bureau. 

Road Centerline Shapefiles for Fargo street segments from METROCOG including geographical 

coordinates, number of lanes, speed limit, functional class, and shape length. 

Bikeways Shapefiles for Fargo bikeway segments from METROCOG including geographical 

coordinates, type of bikeways, and shape length. 

Shared-Use Paths Shapefiles for Fargo shared use path segments from METROCOG including geographical 

coordinates, pavement type, pavement width, and shape length. 

Traffic Signals Shapefiles for Fargo signalized intersections from METROCOG. 

Traffic Volume METROCOG interactive map of the 2015 annual average daily traffic volume (AADT) 

for Fargo (METROCOG, 2021). 

Right-Turn Lanes Manual measurements of right-turn lane geometries from Google Earth® imagery. 

 187 
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3.2 Service Area Analysis 188 

A GIS network analysis tool determined accessibility to a facility based on radial walking 189 

distances within 700 meters. This distance threshold reflected the accepted transit industry 190 

definition for service “catchment” based on a 5–10-minute walk (FTA, 2002). The service area 191 

analysis computed the walking distances along all paths that can access a bike sharing station. 192 

Figure 1 shows the spatial contours of accessibility to each of the 11 existing bike stations. The 193 

three contours are the core, primary, and secondary catchment areas based on walking distances 194 

of 300-, 500-, and 700-meters, respectively. 195 

3.3 Level of Traffic Stress 196 

A GIS tool divided the street and bike lane networks in Fargo into small segments for LTS 197 

classification. The analysis used roadway geometry and traffic data from METROCOG as inputs 198 

to the classification model. Factors included, if present, bike lane width, speed limit, parking 199 

width, a residential area indicator, mid-block crossings, the geometry of right-turn lanes, bike 200 

lane type, functional class, traffic volume, and the type of intersection signalization. 201 

Consequently, a traffic-separated bike lane and a mixed pathway with high traffic volume or 202 

high-speed limit had the lowest (LTS 1) and highest (LTS 4) stress levels, respectively. Figure 3 203 

shows a map of the LTS classified roadways of the Fargo study area. 204 

In general, the LTS classification model assigned LTS 1 to physically separated 205 

bikeways, multi-use pathways, and walkways in parks and trails. A decision tree model used the 206 

same traffic volume, functional class, number of traffic lanes, and speed limit thresholds of 207 

Bearn (2018) to assign one of four LTS levels to each road segment (Bearn, Mingus, & Watkins, 208 

2018). In particular, the speed limit thresholds for LTS 1 through LTS 4 were 25, 30, 35, and 50 209 

mph, respectively. Bearn (2018) scaled down the tiered traffic volume thresholds when 210 
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considering bikeways that were alongside parking lanes. The model also included geometric 211 

criteria used by Mekuria et al. (2012) for any auxiliary right lane along the path (Mekuria, Furth, 212 

& Nixon, 2012). The model adopted the LTS level of the highest stress rating among all 213 

segments that cross non-signalized intersections. 214 

Figure 3 shows the LTS ratings derived for all bikeable pathways in Fargo. To simplify 215 

the methodology and to reduce the scope, the model did not adjust thresholds for signalized 216 

intersections to account for possible misalignments between green-time and slow riding speeds. 217 

Figure 3 shows traffic separated bikeways (LTS 1) and shared-use pathways (LTS 1 or LTS 2) in 218 

different colors to highlight their location and how the network spans the city. 219 

3.4 Candidate Locations 220 

An overlap of four GIS layers helped to identify the candidate locations for bikeshare stations. 221 

One layer was the LTS classified network. A second layer was the population density derived 222 

from the 2020 block group census data obtained from the U.S. Census Bureau. Selecting areas of 223 

high population density assured the potential for demand. A third GIS layer was the land-use 224 

classification. Selecting commercial, entertainment, and shopping areas with potentially high trip 225 

generation and attraction rates assured potential adoption. A fourth GIS layer was the 226 

aggregation of the 700-meter service areas for the existing bikeshare stations. The analyst then 227 

identified all junctions with at least three intersecting paths of LTS rating at or below 2. Low-228 

level LTS junctions assured flexible accessibility and maximum safety. The analyst then 229 

eliminated locations with low population density or poor access to CAPs such as parks, 230 

restaurants, and commercial areas. This process resulted in the selection of 18 candidate 231 

locations to deploy bikeshare facilities. Figure 3 shows the candidate locations. 232 
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 233 

Figure 3: LTS ratings for pathways in Fargo, North Dakota. 234 

3.5 Covered Activity Points 235 

The location-allocation optimization model utilized the METROCOG dataset of 200 covered 236 

activity points (CAPs) for Fargo. METROCOG determined the CAPs based on the presence of 237 
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transit stops, parks, restaurants, bars, commercial areas, industrial centers, universities in high 238 

density population areas, and surveys of needed coverage points. Planners used the 2020 block 239 

group census data from the U.S. Census Bureau to determine the population density of an area 240 

smaller than the traffic analysis zones that planners often use in travel demand analysis. Figure 3 241 

shows the location distribution of CAPs across the city. As observed, CAP clusters form near 242 

shopping, entertainment, university, park, and residential areas. 243 

3.6 Location-Allocation Optimization 244 

The objective of the location-allocation model was to identify the subset of facilities from among 245 

the candidate locations to serve the CAPs with the least travel impedance. Given the multiplicity 246 

of alternative routes to a CAP, the analysis simplified the travel impedance as the geodesic 247 

distance. The constraint for the model was to select five locations from the 18 candidate sites. 248 

The travel cost between a facility location and a CAP was the geodesic distance, with the 249 

maximum distance set to 1,000 meters. 250 

The optimization model allowed the same bike station location to service multiple CAPs 251 

but restricted more than one station from serving the same CAP. The variables of the 252 

optimization problem were: 253 

I the set of N demand node locations indexed by i 254 

J the set of M candidate station locations indexed by j 255 

p the number of stations to deploy 256 

wi relative weight of CAP i (0 to 2) 257 

dij the geodesic distance between CAP i and candidate station j. 258 

The problem formulation is: 259 
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Minimize 260 

𝐷 = ∑ ∑ 𝑤𝑖𝑑𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

𝑌𝑖𝑗  
(1) 

Subject to: 261 

∑ 𝑌𝑖𝑗

𝑀

𝑗=1

= 1,    ∀𝑖 ∈ 𝑰 
(2) 

and 262 

∑ 𝑋𝑗

𝑀

𝑗=1

= 𝑝 
(3) 

and 263 

𝑌𝑖𝑗 ≤ 𝑋𝑗,     ∀𝑖 ∈ 𝑰,  ∀𝑗 ∈ 𝑱 
(4) 

where 264 

𝑌𝑖𝑗 = {
1 location i is served from location j
0 otherwise

,   ∀𝑖 ∈ 𝑰, ∀𝑗 ∈ 𝑱 
(5) 

 265 

𝑋𝑗 = {
1 if server is placed at location j
0 otherwise

,   ∀𝑗 ∈ 𝑱 
(6) 

 266 

The objective function selected candidate sites that minimized the overall weighted geodesic 267 

distance in the network. The relative weight for each CAP reflects combined considerations that 268 

are important to the planners, for example, social factors and environmental impacts. The 269 

nominal weight is 1. A weight lower or higher than 1 reflects the relative importance level of that 270 

CAP. A weight of zero means that the model will not consider service to that CAP. A weight of 271 

2 means that a CAP is 100% more important than the nominal CAP. A high weight has the effect 272 

of a pseudo increase in the distance to a candidate facility, hence the optimization for minimum 273 



Page 15 of 20 
 

total distance will tend to select a candidate facility that is closer. The planners wanted identical 274 

weight for all CAPS in this analysis. The first constraint assured that one and only one station 275 

served a demand site. The second constraint assured that the number of stations selected was 276 

exactly p. The third constraint assured that if the optimizer placed a station at location j to serve 277 

location i then it must set station j location as assigned. All decision variables were binary. 278 

4 Results and Discussion 279 

Figure 1 shows that Interstates 29 and 94 are the main traffic conduits through Fargo. As 280 

anticipated, the LTS model assigned those highways to level 4 as shown in Figure 3. The LTS 281 

model also assigned level 4 to the major arterials that form a grid pattern throughout the city. As 282 

observed, the LTS model classified local roads in residential areas as LTS 1. Assignments of 283 

LTS 2 were mostly to the narrower avenues. The bikeways highlighted are roadways with bike 284 

path designations, so the model classified them as LTS 1. Most of the shared use paths are along 285 

the river park to the east of the city. Pedestrians, hikers, and cyclists use the shared-use paths, so 286 

the model set their LTS ratings to level 1. All candidate bikeshare station locations were at the 287 

intersections of traffic-separated bikeways and shared-use pathways, as Figure 3 shows. 288 

The workflow selected the five locations for the new bike sharing stations as shown in 289 

Figure 4. Three of the new stations fill gaps within the aggregate service area of the existing 290 

stations. The other two extend the service areas towards the southwestern and southeastern 291 

regions of the small urban area. The southwestern location serviced CAPs near shopping and 292 

entertainment regions. The southeastern location covers residential, park, and golf course 293 

regions. One can visually observe that the selected locations for new stations are distributed in a 294 

manner that evenly covers all the CAPs. The coverage was highest in the eastern part of Fargo, 295 

along the winding Red River that forms a border between the states of North Dakota and 296 
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Minnesota. All five of the selected locations are at the intersection of bikeways and shared-use 297 

paths, thus making them suitable even for beginners.  298 

 299 

Figure 4: Selected facilities and new service areas relative to land-use zoning in the City of Fargo, ND. 300 

The 700-meter service areas of the selected locations cover LTS 1 and LTS 2 segments, thus 301 
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making them easily accessible from many points throughout the city. 302 

5 Conclusion 303 

Bike sharing is a popular form of micromobility that is rapidly expanding across many cities of 304 

the world to fill mobility gaps and enhance accessibility at affordable prices while achieving 305 

sustainable deployments. While there has been a lot of analysis about deployments in high-306 

density areas and cities, analysts have paid little attention to small urban and rural areas. This 307 

study addressed the micromobility needs of Fargo, North Dakota, a small urban area in the rural 308 

United States. The analysis accounted for the unique land-use settings, street geometry, and 309 

traffic situations of the area. Applying the level of traffic stress (LTS) technique to all the 310 

available pathways in the area helped identify accessible locations for 18 candidate stations at the 311 

junction of low-stress pathways. 312 

The spatial analysis of service areas for the existing bike stations produced isochrones of 313 

walking distances based on accepted public transit catchment criteria. Subsequently, overlapping 314 

layers in a geographic information system (GIS) helped to identify and eliminate from 315 

consideration candidate stations that fell within the isochrone clusters of the existing bikeshare 316 

stations. The analysis also determined covered activity points (CAPs) throughout the city based 317 

on population density and land-use characteristics such as shopping, entertainment, university, 318 

park, and residential areas. 319 

The location-allocation optimization procedure selected the five bike station locations 320 

that minimized the total geodesic distances to all the CAPs. Consequently, service area analysis 321 

showed that three of the selected locations filled gaps around the existing deployment sites near 322 

the state university campus and in the downtown areas. The other two selected locations 323 
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extended accessibility towards the shopping districts in the southwest and residential areas in the 324 

southeast. 325 

Analysts can benefit from this study by following the same workflow. The data obtained 326 

for roadway, pathway, intersection, land-use, population, and traffic characteristics would be 327 

unique to their study area. Analysts can use any suitable GIS tool to visualize the results of their 328 

LTS classification and spatial optimization to refine the selection of deployment sites. However, 329 

analysts should consider that deployments at the selected sites could lead to an induced demand 330 

for bike sharing and other micromobility modes such as electric scooters, which can attract a 331 

broader demographic of users. Future work will examine how induced demand would affect the 332 

distribution of LTS segments from the current distribution in Fargo. That study will include a 333 

traffic impact analysis after collecting data on bicycle volume and motorized traffic volume. 334 

6 Data Availability 335 

The shapefile data used to support the findings of this study were supplied by the Fargo-336 

Moorhead Metropolitan Council of Governments (METROCOG) of North Dakota under license 337 

and so cannot be made freely available. Requests for access to these data should be made to Dan 338 

Farnsworth at 701.532.5106 or farnsworth@fmmetrocog.org. 339 
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