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I. Introduction 

Each year the U. S. department of transportation and the states 

allocate most of their budget toward infrastructure 

maintenance, preservation, and rehabilitation. There are more 

than 4.1 million roadway miles in the U.S., and about one-third 

of those are unpaved gravel or dirt roads (Statistics 2018). State 

departments of transportation (DOTs) have developed 

pavement management systems (PMS) to manage the 

efficiency of network performance and to propose economical 

solutions for deteriorating pavements. PMS is a tool that 

collects data on pavement roughness and other surface 

distresses to evaluate the ride quality. A rougher roadway 

causes ride discomfort, risky driving behaviors, travel delays, 

excessive fuel consumption, and higher green-house gas 

emissions. Studies showed that distressed road surfaces 

increase fuel consumption by about 4% to 5% (Klaubert 2001). 

Transportation agencies widely use the international 
roughness index (IRI) to quantify ride quality, which is an 

indicator of pavement condition. IRI produces longitudinal 
elevation profiles showing variation in surface roughness by 

using special inertial profiler vehicles, which require skillful 

labor to operate and to evaluate the data. Some shortcomings 
associated with this procedure such as the fixed reference speed 

of 80 kilometers-per-hour required by the golden car model 

(Bridgelall 2013), a high cost of about $6.12 per mile (McGhee 
2004), and wavelength biases due to the fixed quarter-car 

model used to calculate IRI (Marcondes et al. 1991).  

The use of smartphones has become a potential alternative 

approach to measure roadway roughness to reduce cost, 

increase monitoring frequency, and increase coverage network-
wide (Forslöf and Jones 2015). Most smartphone based 

methods for roughness measurement use the built-in sensors of 
smartphones, including the global positioning system (GPS) 

receiver, three-dimensional accelerometer with gyroscope, and 

ground speed sensor (Bridgelall et al. 2016b). The statistical 
model for road roughness improves when combining data from 

multiple sensors rather than taking only the magnitude from an 

accelerometer, referenced to an average speed (Douangphachanh 
and Oneyama 2014). 

Case studies found that a given smartphone will generate 

consistent data for multiple traversals of a road segment to be 
used for roughness measurement (Zeng et al. 2018). However, 

for scenarios using multiple vehicles with varying suspension 

characteristics, a self-calibration approach using a machine 
learning could help to calibrate the output (Laubis et al. 2016). 

Nevertheless, variations in sensitivity among different 
smartphones present a challenge. There is strong (Li and 

Goldberg 2018) to poor (Thiandee et al. 2019) correlation of the 

acceleration with the IRI when using different smartphone 
models or brands and calibration is then needed (Yang et al. 

2020). It is possible to use data-mining algorithms to help 

mitigate issues with hardware diversity when relying on only on 
the capabilities of smartphones (Silva et al. 2017). Several 

studies validated the repeatability of smartphone-based 
measurements and their similarity with the IRI (Taleqani et al. 

2019), (Douangphachanh and Oneyama 2013), (Darawade et al. 

2016). However, none of the studies examined the impact of 
sensor variability among smartphones under the same 

measurement conditions. 

This study is based on a method previously developed to 

quantify the ride quality of either paved or unpaved roads by 

applying a Road Impact Factor (RIF) transform to the inertial and 
geospatial position data collected (Bridgelall 2013). The RIF-

transform produces RIF-indices that characterize roughness 

within adjustable distance windows along the traversal path. The 
window size tradeoff is that narrow windows more precisely 

localize the roughness caused by anomalies such as potholes, 

cracks, and rutting. In contrast, wider windows provide a greater 
reduction in data size and processing requirements at the expense 

of lower precision (Tai et al. 2010). Shorter window lengths are 
more sensitive to GPS positioning error (Douangphachanh and 

Oneyama 2014). Previous studies demonstrated that for any 

window size, the mean value of RIF-indices is directly 
proportional to the IRI, at any given speed (Bridgelall et al. 

2016b). 

 

Accelerometers embedded in smartphones have become an alternative means of measuring the 
roughness of roads. However, the differences in their sensitivity and sampling rates between 
smartphones could produce measurement inconsistencies that challenges the wide spread of the 
smartphone approach for road roughness measurements. In this study, the roughness measurement 
inconsistency was investigated between smartphones from three different brands. Using the same 
vehicle, device mount method, traversal speed, and method of producing a roughness index, field 
experiments demonstrated that accelerometer sensitivities and maximum sample rates vary 
significantly among smartphones of the same brand as well as across brands. For each smartphone, 
to achieve a margin-of-error within a 95% of confidence, significant large amounts of traversals are 
needed. Specifically, 24 and 35 traversals for a paved and an unpaved road, respectively. A higher 
sampling rate produced more consistent measurements and the least margin-of-error but resulted 
in larger data sizes. In addition, the measurements from all smartphones were not very sensitive to 
the size of the feature extraction window, therefore, selecting the largest practical window size will 
minimize the data size without significant loss of accuracy. This study indicated that for practical 
application, calibration is necessary to achieve consistent roughness measurements between 
various different smartphones. 



 

 

Based on the RIF index, this study is to characterize the 

measurement variability among smartphone sensors as a 
function of the RIF-transform window size by comparing 

measurements of roughness from multiple traversals of the 

same vehicle at the same speed on both paved and unpaved 
roads. The major contribution of this study is a quantification 

of the number of traversals needed for consistent roughness 

characterization using different smartphone sensors at different 
sampling frequencies, for paved roads and unpaved roads. 

The organization of the remainder of this paper is: Section 

II describes the smartphone brands, their respective data 

collection apps, the method of generating roughness indices, 

the experimental design, and the data processing required for 

subsequent analysis. Section III produces the results and 

examines the differences in smartphone sensitivities as a 

function of feature extraction window size, and the margin-of-

error as a function of the number of measurements taken for a 

paved road and an unpaved road. Section IV concludes this 

study with an observation about the effectiveness of a simple 

method of calibration and offers a recommendation for 

selecting the feature extraction window size in practice. 

   II. Methodology and Experiments 

A. Methodology 

The smartphones used for the data collection were an iPhone® 

8 (i8), an iPhone® 10 (iX), and a Google Pixel (GP). The 

iPhones® ran the PAVET data collection app (Lu et al. 2019) 

in the iOS® operating system, and the Google Pixel (GP) ran 

the RIVET data collection app (Lu et al. 2019) in the Android 

operating system. The apps logged signals from the three-axis 

accelerometer, ground speed sensor, timer, and gyroscope as 

inputs for the RIF-transform.  

The RIF transform integrates a product of the vertical 

acceleration signal samples gz[n] and the longitudinal velocity 

samples v[n] as follows (Bridgelall et al. 2016b), (Taleqani et 

al. 2019): 
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ΔL[w]
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where the RIF-index for distance window w along the traversal 

path is 𝑅Δ𝐿[𝑤] and L is the window size. Within each window, 

n is the sample instant. The index of the first and last samples 

of each window is 0 and Nw-1, respectively. The variable Nw is 

the number of samples in window w. Since the smartphones do 

not sample the signals at a uniform rate, T varies with each 

sample. The RIF-index is interpreted as the average g-force 

magnitude experienced per unit of distance L traveled. The 

segment RIF-index RL is the mean of the RIF-indices across 

all windows of the entire segment such that: 

RΔL=
1

Nw

∑ RΔL[w]
Nw

w=1  .                      (2)  

B. Experimental Design 

Researchers can use a variety of vehicles to assess road quality. 

For example, some have used a motorcycle (Tai et al. 2010), 

(Setiawan and Nurdin), (Gorges et al. 2019) and others used a 

bicycle to assess the roughness of unmotorable roads as 

pedestrian paths and bicycle lanes (Zang et al. 2018), (Ho et al. 

2016). This study used a regular passenger vehicle, a 2015 

Volkswagen Jetta, to collect the data as illustrated in Fig.1 (a). 

An HTC smartphone was included with the other three 

smartphones described. However, it failed to capture GPS data 

and was excluded from the analysis. The phones were taped 

together onto the car floor behind the passenger seat as shown in 

Fig. 1 (b). The authors previously calibrated data from the i8 

smartphone with data from a traditional road profiler to 

determine the proportionality constant with the IRI (Bridgelall et 

al. 2016a, Yang et al. 2020). Others demonstrated a similar utility 

by using a simple linear regression to calibrate smartphone 

accelerometer data with the IRI (Buttlar and Islam 2014). The 

two road segments, were tested in Fargo, North Dakota, 

including a 400-meter section of the paved road on 9th St NE, 

and a 300-meter section of the unpaved road on 57th St N, with 

portions as shown in Fig.1 (c, d).  

   
Figure 1. (a) 2015 Volkswagen Jetta used to collect data in this study, (b) 
Mounted smartphones, (c) Section of paved road, and (d) Section of 
unpaved road. 

C. Data Collection 

The authors used the same car to collect data by traversing the 

same segment of the paved and unpaved roads at approximately 

the same speed between 11.5~11.7 m/s, 35 times each. The 

smartphone apps transmitted the sampled data to a secure web 

server, which stored the data in comma-separated-value (CSV) 

format for post-analysis. The system stored the time instants in 

milliseconds, ground speed in meters-per-second, and the 

gyroscope angles of pitch, roll, and yaw in degrees. The sample 

rate of each phone varied substantially. The average sample rate 

of the Android and iOS® smartphones was approximately 385 

Hz and 85 Hz, respectively. Similar studies used various 

smartphones with sampling frequencies ranging from 310 Hz to 

10 Hz (Sattar et al. 2018). Table 1 summarizes the segment 

length traversed in meters (m), the average traversal speed, and 

the average sample rate of each smartphone.  

Table 1. Summary statistics for field experiment 

Road 
Type 

Phone 
Type 

Segment 
Length (m) 

Average 
Speed (m/s) 

Sample 
Rate (Hz) 

Paved 

i8 399.821 11.772 86.924 

iX 399.819 11.751 87.894 

GP 399.965 11.753 386.488 

Unpaved 

i8 299.823 11.548 79.088 

iX 299.810 11.543 80.364 

GP 299.968 11.559 385.548 

 



 

 

C. Data Processing 

The data processing divided the vertical accelerations by 9.81 

m•s-2 for normalization to g-force values. Due to processing 

load variations, the average sample rate varied among 

smartphones and among traversals. Therefore, the data 

preparation procedure applied a digital noise filter to normalize 

the signal content within the nominal response frequency band 

(Bridgelall et al. 2016a), and to remove any constant offset that 

could bias the RIF-indices. 

The authors used a technique previously reported (Bridgelall 

et al. 2016a) to align the spatial positions of each signal by 

using a known ground truth. This experiment used a rail-grade 

crossing bump on each road type. Using the signal peak 

produced from traversing the bump, interpolating the distances 

outwards, and then truncating all traversals to approximately 

the same length produced aligned signals for further 

processing. The paved road segment has a road width of 8m. 

The railroad grade crossing for the paved road as the maximum 

bump as shown in Figure 2 (a) has a length of 3 m and a width 

of 10 m. The total paved road segment for testing is 580m. 

From the beginning point of the paved road test to the crossing 

is 420 m, and from the ending point of the paved road test to 

the crossing is 160 m. To be comparable to the paved road 

testing, the selected unpaved road segment in this field testing 

as shown in Figure 2 (b) has a width of 6 m. This railroad grade 

crossing for this unpaved road as the maximum bump, which 

has a length of 2.5 m and a width of 6.7 m. The total length of 

the unpaved road testing is 620 m. From the beginning point of 

the unpaved road test to the crossing is 280 m, and from the 

ending point of the unpaved road test to the crossing is 340 m. 

The interpolation of distance (Dn) based on the rail-grade 

crossing bump used the measured speed (Vn) and time (tn) 

samples from the smartphones as follows: 

     𝐷𝑛 = 𝐷𝑛−1 + 𝑉𝑛 ∙ (𝑡𝑛 − 𝑡𝑛−1) ∙
1

1000
 .             (3) 

The division by 1000 in Equation (3) converted the 

millisecond time intervals to seconds. Finally, an application of 

the RIF-transform to the aligned and equal length signals 

produced RIF-indices for distance window sizes of 1 m, 5 m, 

10 m, 15 m, 20 m, and 40 m. 

 
Figure 2. (a) Railroad crossing for the paved road (b) and unpaved 
road. 

   III. Results and Discussions 

To characterize the measurement variability among smartphone 

sensors as a function of the RIF-transform window size and 

numbers of traversals for both paved and unpaved roads, the 

sensitivity difference and margin-of-error of the measured RIF-

index from all the three smartphones are analyzed. 

A. Sensitivity Differences  

Fig. 3 plots the mean (μ) and standard deviation (σ) of the RIF-

indices as a function of window size for paved (P) and unpaved 

(UP) roads. It is evident that there was general agreement among 

smartphone measurements that the unpaved road was more than 

twice as rough as the paved road. It is also evident that there were 

sensitivity differences among the smartphone sensors. For both 

road types, the i8 was consistently most sensitive and the Google 

Pixel was consistently least sensitive. This suggests that simple 

linear sensor calibration would produce consistent results. 

For the unpaved road, there is a slight increase in the RIF-

indices with increasing window size, for all smartphones. The 

increase is proportionally more pronounced for the paved road. 

This increase is due to the end condition of the RIF-

transformation where the last window is effectively shorter 

because it exceeds the signal stream. This results in a larger RIF-

index per unit of distance. The effect is more pronounced for 

larger windows because there are fewer windows to dominate 

the effect of the last window of unequal size. The very low slope 

of the trend suggests that the mean of the RIF-indices is not very 

sensitive to the choice of window size. 

The standard deviation of the RIF-indices for all smartphones 

and for both types of roads decreased with an increase in window 

size. This is intuitive because larger windows tend to average out 

roughness peaks and produce fewer RIF-indices, which 

consequently lowers the spread. This illustrates the tradeoff 

whereas larger windows reduce the spread in sensitivity among 

smartphones, narrower windows` increase the precision of 

localizing anomalies. 

The Android smartphone exhibited the lowest standard 

deviation for each window size because its sampling frequency 

was more than 4.5 times greater than that of the iOS 

smartphones. Consequently, the low pass filter had a greater 

effect in reducing noise because the Nyquist frequency was 

substantially higher than the cut-off frequency. 



 

 

 
Figure 3. Mean (a) and standard deviation (b) of RIF-Indices. 

B. Margin-of-Error for RIF-Indices  

The margin of error (MOE) is a statistical measure that 

quantifies the spread in measurement variability within some 

confidence interval. Thus, a lower percentage provides high 

confidence in the observed values. The MOE percentage for 

the distribution of a random variable within a (1 − α)% 

confidence interval with significance α (Papoulis and Pillai 

2002) is 

MOE1−𝛼 =  ± 
𝜎 𝑡1−α/2,𝑑𝑓

𝜇√𝑁
                       (4) 

where t1-a/2,df is the t-score for a normalized cumulative 

t-distribution with df degrees of freedom, μ is the mean value 

of the measurements, σ is the standard deviation, and N is the 

sample size. 

Fig. 4 plots the MOE95 for the segment RIF-indices as a 

function of the traversal number. There are 35 traversals each 
for the paved and unpaved roads. It is clear that the MOE95 is 

not sensitive to window size because for each smartphone the 

trends are nearly identical and converges to approximately the 
same value. The number of traversals after which the MOE95 

dropped below 2% consistently was different for each 

smartphone. For the paved road, approximately 24 traversals 
were needed to achieve lower than 2% MOE95 for all 

smartphones and window sizes. 

 
Figure 4. MOE95 as a function of traversals and window size. 

The GP smartphone consistently produced lower than 2% 

MOE95 for the least number of traversals across all window 

sizes, and for both road types. This outcome was due to the 

higher sample rate that produced more consistent RIF-indices 

per traversal. As observed, the difference was more pronounced 

for unpaved roads. Roughness measurements for the unpaved 

road required approximately 35 traversals to achieve lower than 

2% MOE95 for all smartphones and window sizes. This is an 

expected result because multiple traversals of an unpaved road 

will likely produce more variability in roughness than traversals 

of a paved road. 

IV. CONCLUSIONS AND FUTURE WORK 

This study demonstrated that accelerometer sensitivities and 

maximum sample rates vary significantly among smartphones of 

the same brand as well as across brands. Therefore, when the 

smartphones are used to measure the ride quality of roads, these 

differences result in inconsistent measurements. However, the 

measurement trends with feature extraction window size and 

margin-of-error are nearly identical. This suggests that using a 

simple calibration constant would normalize the measurements 

for consistent results across phones that are mounted in a specific 

vehicle. Subsequently, the nominal ride quality experienced with 

different vehicles would be the statistical average of the 

roughness indices that each vehicle produced. 

Roughness measurements are not very sensitive to window 

size selection, particularly for rougher rides across unpaved and 

gravel roads. For all smartphones and feature extraction window 

sizes, the MOE95 dropped below 2% after 24 and 35 traversals 

for the paved and unpaved roads, respectively. A higher sample 

rate produces more consistent measurements but also results in 

a larger data size per traversal. Since measurements are not very 

sensitive to feature extraction window sizes, using larger 



 

 

windows could help to reduce the data size and improve the 

measurement consistency. However, the tradeoff is a loss of 

precision in the localization of roadway anomalies. Hence, the 

recommended approach is to use the largest feature extraction 

window size tolerable so that the localization of anomalies is 

within practical limits. Future work will examine the 

effectiveness of calibrating multiple smartphones in a single 

reference vehicle, and then using them in many vehicles with 

various suspension characteristics to estimate the consistency 

of the average ride quality experienced on a given roadway, at 

various speeds. 
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