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Abstract—Tracks are critical and expensive railroad asset, 

requiring frequent maintenance. The stress from heavy car axle 

loads increases the risk of deviations from uniform track 

geometry. Irregularities in track geometry, such as track warping, 

can cause an excessive harmonic rocking condition that can lead 

to derailments, traffic delays, and associated financial losses. This 

paper presents an approach to enhance the location identification 

accuracy of track geometry irregularities by combining 

measurements from sensors aboard Hi-Rail vehicles. However, 

speed variations, position recording errors, low GPS update rates, 

and the non-uniform sampling rates of inertial sensors pose 

significant challenges for signal processing, feature extraction, and 

signal combination. This study introduces a method of extracting 

features from the fused data of inertial sensors and GPS receivers 

with multiple traversals to locate and characterize irregularities of 

track geometry. The proposed method provides robust detection 

and enhanced accuracy in the localization of irregularities within 

spatial windows along the track segment. Tradeoff analysis found 

that the optimal spatial window size is 5-meter.  

 

Index Terms — Sensor, Road Impact Factor, Feature 

Extraction, Track Geometry, GPS, Inertial Signal. 

I. INTRODUCTION 

RREGULARITIES in rail geometry is a primary concern of 

the railroad industry because they can lead to accidents, 

resulting in traffic delays and financial losses. Repeated stress 

from heavy axle loads increases the risk of deviations from 

uniform track geometry [1]. Therefore, railroads spend billions 

of dollars each year on infrastructure inspections and 

maintenance [2]. Measures of track geometry include vertical 

profile, horizontal alignment, cross-level, gage, and warp. The 

design values of these parameters enable safe and efficient train 

operation [3].  

Regular track geometry monitoring, inspections, and 

maintenance result in a smoother ride, reduce wear and tear, and 

ensure safe operations. However, traditional inspection 

methods are laborious, relatively slow, expensive, and require 

track closure to search for possible track defects. 

Additionally, lack of resources needed and the loss of 

network capacity limit the ability of railroads to scale 

inspections for continuous and network-wide monitoring. A 

promising alternative is to use sensors aboard revenue service 

trains to identify locations of ride roughness and processing 

inertial signals to identify the type of track geometry 

irregularity. 

Much of the previous research in this area has explored the 

concept of using data from onboard sensors to continually 

monitor the roughness of road pavements [4]–[6].  This method 

has the potential to reduce the monitoring cost and provide 

more accurate results. The same technique is applicable to 

railroads. Dedicated sensors or smartphones can log and 

transmit time, inertial, and geospatial position data that machine 

learning algorithms can use to infer track properties. The 

approach can enhance the efficiency of traditional track 

inspections by focusing inspection resources on high-risk 

locations. However, the non-uniform sample rate and 

inaccurate geospatial position estimates from low-cost GPS 

receivers pose significant challenges for signal processing, 

feature extraction, and signal combination [7], [8]. Appropriate 

noise filtering is necessary to maximize the signal-to-noise ratio 

(SNR) of each signal prior to feature extraction [9]. 

This research applies a method of roughness feature 

extraction called the Road Impact Factor (RIF) transform. The 

mathematical transform integrates time, inertial signals, and 

geospatial position data within consecutive distance windows 

to reduce the data size and produce features called RIF indices. 

The authors previously demonstrated the use of RIF indices to 

characterize the intensity of roadway anomalies [5]. Moreover, 

increases in traversal volume improve the precision of anomaly 

localization by reducing the variance of the RIF-index.  

Subsequent experiments found that RIF indices are similarly 

effective in characterizing ride roughness due to irregular 

railroad track geometry [10].  

The RIF transform uses GPS coordinates to tag the position 

of each distance window. Therefore, the position of a given 

distance window reflects the errors and low resolution of GPS 

position estimates across multiple traversals. The primary 

contribution of this research is an algorithm that can enhance 
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the accuracy of identifying and locating track irregularities by 

combining the data from multiple traversals of the same or 

different trains, at various speeds. In particular, the algorithm 

computes the ensemble average of RIF indices (EAR) across 

the distance windows of multiple traversals. The EAR reduces 

noise while enhancing feature detection by leveraging the 

correlation property of uncorrelated noise and correlated signal, 

respectively. Equivalently, the EAR enhances the signal-to-

noise ratio (SNR), which reduces both false positive and false 

negative feature detection errors. Furthermore, the analysis 

determines a distance window size that yields the best tradeoff 

between the consistency and spatial resolution of estimating the 

position of a track irregularity. 

The organization of this paper is: The literature review 

section summarizes related work. The data section describes the 

sensor specifications and placement location. The data section 

also describes the format and units of the GPS-tagged inertial 

signal samples. The method section defines and demonstrates 

the EAR method. The result section evaluates the outcome of 

the method by comparing the EAR and their corresponding 

standard deviations as a function of distance window size to 

determine the best window size for the railroad application. The 

conclusion section makes concluding remarks about the 

generalization and utility of the method.  

II. LITERATURE REVIEW 

Several studies have proposed monitoring track networks 

with sensors aboard in-service vehicles. Lederman et al. [11] 

presented a data fusion approach for data-driven track 

monitoring with in-service trains. They mounted two uni-axial 

accelerometers vertically on two trains and placed a BU-353 

GPS receiver under the roof of the first train. Real et al. [12] 

developed a technique to estimate track profile and relate it to 

track conditions.  

Data fusion is a technique that combines data and information 

from multiple sensor sources to achieve more specific 

inferences. A primary advantage of data fusion is improved 

robustness or a higher fault-tolerance rate. Another advantage 

is an ability to gain more insights into the situation for improved 

inference and better decision making. It also improves data 

accuracy and reduces data uncertainty and ambiguity and 

extends coverage of information on an observed object or event. 

Generally, it is better to use multiple sources of data than to 

depend on a single source to provide all the necessary 

information [13], [14]. However, some problems make data 

fusion a more challenging task. The first problem is sensor 

selection, which is one of the integration functions that allow a 

multi-sensor system to select the most appropriate 

configuration of sensors from among the sensors available. 

Hence, sensor selection strategies need to be appropriately 

performed. Another problem is data alignment. The output from 

different sensors can lead to different dimensionalities and 

features. Therefore, data alignment and transformation are 

needed to achieve a common format and standard.   
Many researchers related to railroads have used different 

techniques to access track irregularity. Time and frequency 

domain analysis methods were effective in identifying track 

irregularities. Bocciolone et al. [15] developed a system that 

detects track corrugations by visualizing the wavelet transform 

of the data acquired from accelerometers mounted on the axle 

of a passing train. Mori et al. [16] introduced a portable 

condition monitoring system that estimated irregularities from 

the vertical and lateral accelerations of a car body. They used a 

GPS and a map-matching algorithm to identify fault locations 

on the track. Another study used power spectral density (PSD) 

to estimate irregularities in track geometry [17].  Zongyi et al. 

[18] proposed an online monitoring method to detect the 

vertical long-wavelength track irregularities based on the bogie 

pitch rate. The method included a mixed-filtering approach for 

bogie pitch rate and a coupling dynamics model of vertical 

vehicle-track interactions to obtain simulation data of bogie 

pitch rate. The result showed that the proposed method could 

monitor the long-wavelength track irregularities effectively and 

accurately. Similarly, Zhou et at. [19] developed a web-based 

conditioning monitoring system that includes a variety of 

sensors for acquiring trackside data related to different 

parameters. The system allows a remote operator to download 

data automatically for offline analysis while observing the 

health condition of the point machine using Internet Explorer.   
Another monitoring application [20] that used a light source 

and high-resolution cameras found an increase in false positives 

due to stains from oil and dust particles. Santur, Karaköse, and 

Akın used 3D laser cameras to provide high accuracy rates in 

real-time and found that the system was prone to false positives 

[21]. The cost of these applications is high because of the need 

for high accuracy of detection at high speeds [21]. 
Some authors [22], [23] focused on developing approaches 

that aggregate and evaluate track geometry measures across 

varying lengths of track. Those studies used the standard 

deviation of track geometry as an index to represent track 

surface roughness. The track geometry condition indicator 

obtained through standard deviation is called the Track Quality 

Index (TQI) [23]. Sadeghi [24] developed indexes of rail track 

geometry based on the statistical distribution of track geometry 

data. They found that the field data obtained from four 

geometrical parameters, namely gauge, profile, alignment, and 

twist, follow a normal distribution.  

All these studies demonstrated a successful assessment of 

irregular track geometry algorithms. However, they all focused 

on the use of complex and expensive sensors and cameras, 

which result in high maintenance costs. Moreover, the life cycle 

of such sensors is limited due to the high-impact forces of 

wheel-rail interaction [25]. Therefore, a research gap is 

characterizing the effects of combining the signals from 
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multiple train traversals at different speeds to detect track 

irregularities throughout the network. 

 

III. METHOD 

 

This section describes the methods used to enhance the 

detectability and location estimation accuracy of track 

irregularities. The authors selected the Road Impact Factor 

(RIF) space-time transform to extract inertial features within 

consecutive distance windows along the traversal path [5]. This 

method has the advantages of simultaneous data reduction and 

feature extraction, at any speed. Prior to producing the EAR, 

the workflow included distance interpolation from a spatial 

reference position to align the signals and to extract 

approximately equal length segments, as described in previous 

work [26]. Additional processes described in previous work 

included computing a Fast Fourier Transform (FFT) and 

ensemble average of the FFT (EA-FFT) across multiple signals 

to inform an appropriate filter cutoff frequency, and applying a 

finite impulse response (FIR) low-pass filter [9]. Fig. 2 

illustrates the complete workflow. 

Irregular track geometry produces at least one maxima in the 

inertial signal [5]. Fig. 3 compares the inertial signals from two 

random traversals of an isolated bump. The second signal is at 

an offset for clarity. The bump produced a first major valley 

(FMV) as illustrated. The distance is relative to a reference 

position near the beginning of each traversal. The algorithm 

interpolates the distance from that position by using the speed 

and time samples. 

 

A. Feature Extraction 

The RIF transform reduces the data into features that are 

proportional to the roughness within a distance window L 

such that  

𝑅∆𝐿 = √
1

∆𝐿
∑ |𝐺z[𝑛]𝑣𝑛|

2
𝛿𝑡𝑛

𝑁−1

𝑛=0
                                              (1) 

where the RIF index 𝑅∆𝐿 is the average g-force magnitude per 

unit of distance L travelled. 𝐺z[n] is the vertical acceleration 

for signal sample n. The sample period instant is 𝛿𝑡𝑛 and, the 

instantaneous traversal speed is 𝑣𝑛. 

B. Ensemble Average of RIF Indices (EAR) 

The window position varied with GPS error. The RIF 

intensity varied with traversal speed. Hence, an ensemble 

average of the RIF-indices (EAR) within a selected distance 

window along the traversal path and across N traversals 

produced an estimate of the average roughness 𝐸𝑤  experienced 

in window w, at any speed where 

𝐸𝑤 =
1

𝑁
∑ 𝑅𝑥

𝑤𝑛
𝑥=1 .                                                                    (2)         

𝑅𝑥
𝑤 is the RIF index from traversal x within distance window w. 

The intensity of the peak EAR is proportional to the amount of 

roughness produced from traversing roadway or railroad track 

anomalies [5]. Fig. 4a and fig. 4b shows the EAR of the road 

segment data for spatial resolution windows of 1, 5, 15, and 20 

meters. The chart shows the unprocessed inertial signal from 

one of the traversals for reference. The position of the 

maximum EAR is an estimate of the position of the track 

irregularity. The precision of position estimate increases with 

the number of traversals. Larger window sizes provide greater 

data reduction but reduce the precision of estimating the 

position of an irregularity. 

C. Ensemble STD RIF 

The ensemble STD RIF (ESR) is 

 

𝜎𝑅𝐼𝐹 = √
∑ (𝑅𝑥

𝑤− 𝐸𝑤)2𝑁
𝑥=1

𝑁
                                                               (3) 

 

It is a measure of the variability of the roughness intensity 

across traversals, within a distance window. Fig. 4c and fig. 4d 

show the ESR of the traversal data with distance windows of 1, 

5, 15, and 20 meters. The ESR generally declines as the window 

size increases because the EAR also decreases. This represents 

a tradeoff in data size for accuracy and precision in estimating 

the position of anomalies. 

D. Margin-of –Error 

The margin-of-error (MOE) is calculated with a 95% 

confidence interval (CI) as a function of number of traversals 

within the selected window sizes such that 

MOE = 𝑧 ∗
𝜎

√𝑛
                                                                           (4) 

where z is the critical value of 1.96 and σ is the standard 

deviation of the intensity of the peak RIF within the selected 

distance window sizes. The total number of traversals within 

the window size is n. Fig. 6 shows the MOE of the peak RIF for 

distance windows of 1, 2, 5, 10, 15, 20 and 40 meters. The chart 

shows that the MOE declines most substantially between 

window sizes of 1 and 5 meters. This suggests that that the 

reliability of the estimate is best for the window sizes in that 

range. 

IV. EXPERIMENTAL SETUP 

A. Data Collection Site & Sensor Specification 

Smartphones provide a flexible and convenient tool to 

develop and test the viability of an automated track monitoring 

system that uses dedicated sensors onboard regular service 

trains [27], [28].  In previous work, the authors verified that the 

inertial signal patterns observed from traversing irregular track 

geometry are similar to those observed when a sedan traverses 

pavement anomalies [9]. The study concluded that the method 
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applies identically on actual railroad detect and localize railroad 

track anomalies.  
For the first experiment, the authors used a sedan to emulate 

train traversals across irregular track geometry. A smartphone 

app named pavement analysis via vehicle electronic telemetry 

(PAVVET) logged the inertial and geospatial data from a sedan 

by driving a paved road segment (Cell 40) of the Minnesota 

road (MnROAD) research facility in the United States. 

MnROAD is an outdoor laboratory that supports the 

performance testing of various pavement types [29]. The 

smartphone was mounted flat onto the dashboard of the sedan 

with the y-axis pointing in the direction of travel  [26].  

The PAVVET iOS® app utilized all the required sensors on 

a smartphone [30]. The embedded sensors are an 

STMicroelectronics LIS331DLH accelerometer, a L3G4200D 

gyroscope, and a global positioning system receiver [31], [32].  

The smartphone (iPhone 4S®) sampled the accelerometer at a 

nominal rate of 128 hertz. The GPS receiver sampled at a 

nominal rate of one hertz. Additionally, it is well known that 

the geospatial position estimates from low-cost GPS receivers 

are inaccurate, mostly because of signal deterioration in urban 

environments and their low update rate. Thus, the author [27]  

presented a method to estimate the position of anomalies with 

greater accuracy when using low-cost GPS receivers onboard 

regular vehicles.  The estimated position is a simple function of 

the average traversal speed, the GPS update interval, and the 

system latency in tagging accelerometer samples with GPS 

coordinates. The experiment result shows that with a good 

estimate of the system latency, the method provides sub-meter 

accuracy. Moreover, iPhone 4 determined approximately 98% 

of its GPS points within 10 m of true positions and 

approximately 59% within 5 m  [33]. 

The authors conducted a second experiment on a local 

railroad by placing the same sensors on a hi-rail vehicle. The 

collect data was from the traversal of a rail grade crossing 

(RGC) because it reliably simulated the presence of a rail 

anomaly.  

B. Data Format 

Table 1 shows a fragment of the data and its format. The time 

column is the sample period in milliseconds. The inertial 

signals “Gx,” “Gy,” and “Gz” are linear accelerations in the 

lateral, longitudinal, and vertical directions, respectively, with 

values in units of g-force. The ground speed (GSpeed) is in units 

of meters-per-second (m s-1). The GPS receiver produced 

latitude (Lat) and longitude (Lon) in decimal format, and the 

RotX, RotY, and RotZ signals are the angular rotations in 

degrees-per-second around the X, Y, and Z-axis, respectively. 

Pitch, roll, and yaw are gyroscope angles in three dimensions 

that are instantaneous samples in units of degree. The dataset 

contains a consistent inertial event from a narrow bump at the 

beginning of each traversal. The distinct inertial signal from this 

bump produced a first major valley (FMV) in the accelerometer 

signal. This signal is identical to the inertial signal produced 

when a railroad car traversed a verified track irregularity near a 

rail-grade crossing. The isolated irregularity of the dataset 

served as a fixed position ground truth for position error 

evaluation. The non-uniform sampling of the accelerometer 

produced a non-linear sample period among traversals. Fig. 1 

shows the distribution of the sample period collected across 53 

traversals of the road segment. From the chart, the sample 

period is ranging from 1 to 18 milliseconds. However, it is also 

clear that the top bar is approximately 11 milliseconds, which 

is equal to a sample rate of 90 hertz. Moreover, the author  [31] 

found that the inertial sample rate must be at least 64 hertz for 

the reliable detection of roadway anomalies. 

The non-linear sampling decreases signal strength and 

increases noise. The authors also found that it is practically 

impossible to force the smartphone to sample uniformly at a 

specific rate, despite the settings for a sample rate. However, 

setting it at the maximum rate, and subsequently applying a 

low-pass filter normalized the effect of sampling at different 

rates because energy was removed after the same frequency for 

the data from each traversal [9]. 

 Consequently, pre-processing with an appropriate low-pass 

filter maximized the SNR for subsequent feature extraction [9]. 

The pre-processing includes ensemble averaging of the inertial 

signals from the same position along the traversal path. 

Therefore, the approach will increase the quality of the 

composite signal with each additional data stream combined. 

Basically, averaging reduces noise in the composite signal 

because noise is uncorrelated [34]. Moreover, the authors [27] 

demonstrated that the smartphones running the Android 

operating system and iOS operating system sampled at their 

highest rate. The iOS models sampled between 91 and 134 

hertz, whereas the Android sampled at approximately 385 hertz. 

The mean sample rate of the Android smartphones differed by 

approximately 1 hertz due to the statistical nature of the 

sampling, as described in [34].   

V. RESULT & DISCUSSION 

 

Before producing the EAR and ESR, the algorithm 

interpolated the distance from a reference position near the 

beginning of each traversal by using speed and time samples 

[34], and applied the RIF transform to extract inertial features 

within consecutive distance windows along the traversal path. 

From the road experiment, Fig. 4a and 4b show that the position 

of the maximum EAR is an estimate of the position of the 

irregularity. Fig. 4c and 4d show that the ESR declines as the 

window size increases, which is the expected outcome. As a 

function of window size, Table 2 summarizes the means and 

standard deviations (STD) of the peak RIF intensity and the 

center position of the window for the peak RIF relative to the 
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beginning of the traversals. A smaller window size increases 

the precision of locating an irregularity but also increases the 

variability of that estimate. The results show that an optimum 

window size exists that minimizes the STD of estimating the 

RIF intensity. A lower STD improves the consistency of 

detecting an anomaly and, therefore, reduces the false positive 

and false negative detection errors. Fig. 5a shows the mean and 

standard deviation of the intensity of the peak RIF within the 

selected distance window sizes. Fig. 5b indicates that keeping 

the distance window size below 5 meters maintains a stable 

estimate of the position of the peak RIF relative to the beginning 

of the traversal (approximately 53 meters for the experiment), 

and minimizes the STD of that estimate.  
Additionally, table 3 shows the margin-of-error (MOE) of 

peak RIF within the selected window size. Fig. 6 indicates that 

MOE provides the confidence of the measurements with an 

indication that there is an optimum window size selection.  

From the rail experiment, Table 4 represents the mean and 

STD of the peak RIF intensity relative from the beginning of 

each traversal. Fig. 7a shows that the RIF transform presents a 

stable trade-off between resolution and confidence as a function 

of window size with an asymptotic decrease of the mean value 

and a consistent decrease in the STD of the estimate. Fig. 7b 

reveals that a window size of 5 meters provides a stable estimate 

for locating rail anomalies relative to a linear reference at the 

beginning of the traversals, which was approximately 90 meters 

in these experiments. 

A window size of 5 meters in both the road and rail 

experiments balances the tradeoff in data size, precision, and 

accuracy of locating road or rail irregularities with sensors. The 

best window size is also within the visual range for inspectors 

to locate the anomaly. 

VI. CONCLUSION 

A reliable, low-cost method for detecting and identifying the 

location of irregular rail track geometry can enhance the 

efficiency of traditional track inspections by focusing 

inspection resources on high-risk locations. The use of sensors 

aboard regular service trains enhances coverage and monitoring 

frequency. However, GPS and sensor errors diminish the 

attainable accuracy and precision of detecting the presence and 

location of an irregularity.   

This paper introduces an analytic framework that includes 

mathematical and statistical methods to enhance the detection 

and localization accuracy of track irregularities by extracting 

and combining features of the inertial signals obtained from 

multiple traversals of a track segment. The method employs the 

Road Impact Factor (RIF) space-time transform, which 

provides the advantage of data reduction and feature extraction 

within adjustable and consecutive distance windows along the 

traversal path. The ensemble average of RIF-indices within 

each window provides an estimate for the intensity and position 

of an irregularity. Increasing the window size decreases the 

variability of the intensity estimate and decreases the data size. 

However, a larger spatial window size also reduces the 

accuracy and precision of position estimates. Both roadway and 

railway experiments were conducted to demonstrate the 

reliability and accuracy of the employed method. In both 

experiments, tradeoff analysis found that a window size of 5 

meters provided a good balance between data reduction, 

accuracy, precision, and the consistency of anomaly detection 

while minimizing the potential for false positives and false 

negatives. A significant benefit of the ensemble averaging 

approach is that both precision and accuracy increase with the 

number of traversals. 
Furthermore, the MOE of peak RIF values also validates 

confidence in the measurements and points to an optimal 

window size selection.  

Future work will focus on classifying and quantifying 

irregularity types including profile, alignment, and warp by 

using the proposed analytical framework. 
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TABLE I 

FORMAT OF DATA SAMPLE 

 

Time Gz Lat Lon GSpeed Pitch Roll Yaw Gx Gy RotX RotY RotZ 

44.142 -1.057 45.263 -93.71 9.586 6.693 4.886 -0.319 -0.088 -0.152 3.177 0.629 -0.452 

46.768 -1.216 45.263 -93.71 9.586 6.693 4.886 -0.319 0.047 -0.241 3.177 0.629 -0.452 

50.26 -1.087 45.263 -93.71 9.586 6.693 4.886 -0.319 0.026 -0.272 3.177 0.629 -0.452 

62.927 -0.854 45.263 -93.71 9.586 6.741 4.903 -0.329 -0.002 -0.212 1.246 -0.13 -0.332 

73.909 -0.912 45.263 -93.71 9.586 6.752 4.907 -0.332 0.022 -0.161 1.865 0.214 -0.258 

86.754 -0.942 45.263 -93.71 9.586 6.776 4.908 -0.341 0.038 -0.144 2.005 -0.67 -0.189 

 

                                                                                      
                                                                       TABLE II 

STATISTICAL PARAMETERS OF PEAK RIF WITHIN SELECTED RESOLUTION WINDOW. 
 

Window Size  
Peak RIF 

Mean Peak RIF STD 
Peak RIF Dist 

Mean 
Peak RIF Dist 

STD 

1 1.48 0.60 53.38 4.02 

2 1.21 0.57 53.59 4.02 

5 0.87 0.56 54.47 8.50 

10 0.70 0.56 56.79 15.91 

15 0.60 0.56 56.15 20.15 

20 0.53 0.57 51.98 5.91 

40 0.43 0.58 101.22 56.57 

 

 
                       
 

 

 
 

 

 
 

                          TABLE III 

MARGIN-OF-ERROR OF PEAK RIF WITHIN SELECTED WINDOW SIZE 
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Window 

Size 

No. of 

Traversals 

MOE Peak 

RIF 

1 53 0.162 

2 53 0.153 

5 53 0.151 

10 53 0.151 

15 53 0.151 

20 53 0.153 

40 53 0.156 

 

 
                                                     

 
 

 

 
 

 

 
                                                             TABLE IV 

STATISTICAL PARAMETERS OF PEAK RIF WITHIN SELECTED RESOLUTION WINDOW USING RAIL DATA. 

Window Size  

Peak RIF 

Mean 

Peak RIF 

STD 

Peak RIF Dist 

Mean 

Peak RIF Dist 

STD 

1 0.764 0.187 90.114 43.780 

2 0.635 0.145 86.713 30.112 

5 0.498 0.097 87.263 29.889 

10 0.424 0.074 91.513 21.590 

15 0.387 0.063 88.512 28.958 

20 0.370 0.054 86.013 27.988 

40 0.335 0.059 98.013 8.945 

 

 

Fig. 1.  Distribution of sample periods from accelerometer data across all traversals. 
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Fig. 2.  Workflow to identify and localize irregular track geometry. 

 

Fig. 3.  Position variation of the FMV among two signal streams. 
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Fig. 4.  a) EAR at resolution window of 1 and 5 meters b) EAR at resolution window of 15 and 20 meters c) ESR at resolution window of 1 and 5 meters d) ESR 

at resolution window of 15 and 20 meters.  
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Fig. 5.  a) The mean and STD of peak RIFs of varying window size. b) mean of peak RIF distance relative to STD of peak RIF distance at different window size. 

 

 
Fig. 6. Margin-of-error of peak RIFs of different window sizes. 
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Fig. 7. a) The mean and STD of peak RIFs of varying window size using rail data. b) mean of peak RIF distance relative to STD of peak RIF distance at different 

window size using rail data. 
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