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 ABSTRACT 1 

GPS loggers and cameras aboard connected vehicles can produce vast amounts of data. Analysts 2 

can mine such data to decipher patterns in vehicle trajectories and driver-vehicle interactions. An 3 

ability to process such large-scale data in real time can inform strategies to reduce crashes, 4 

improve traffic flow, enhance system operational efficiencies, and reduce environmental 5 

impacts. However, connected vehicle technologies are in the very early phases of deployment. 6 

Hence, related datasets are extremely scarce, and the utility of such emerging datasets is largely 7 

unknown. Subsequently, this paper provides a comprehensive review of studies that used large-8 

scale connected vehicle data from the United States Department of Transportation Connected 9 

Vehicle Safety Pilot Model Deployment program. It is the first and only dataset available to the 10 

public. The data contains real-world information about the operation of connected vehicles that 11 

organizations are testing. The authors provide a summary of the available datasets, their 12 

organization, the overall structure, and other characteristics of the data captured during pilot 13 

deployments. Subsequently, the authors classify the data usage into three categories: driving 14 

pattern identification, development of surrogate safety measures, and improvements in the 15 

operation of signalized intersections. Finally, the authors identify some limitations experienced 16 

with the existing dataset. 17 

 18 

Keywords: Connected vehicle, Intelligent Transportation Systems, Smart cities, Signal phase and 19 

timing, Surrogate safety measures, Risky driving pattern, Intersection safety. 20 

 21 

INTRODUCTION 22 

Connected vehicle (CV) technology enables real-time communications among users, vehicles, 23 

and the multimodal infrastructure. Producers and transportation agencies assert that CV 24 

technology will dramatically reduce the number of fatalities and serious injuries caused by 25 

accidents on our roadways. The technology will achieve this by notifying and alerting drivers 26 

about potentially dangerous driving situations. Examples include pedestrians or bicyclists 27 

approaching an intersection, vehicles in blind areas beyond a curve, and oncoming cars swerving 28 

into a lane to avoid an object or pothole on the road (1). CV technology can also smooth out 29 

traffic flows, diminish congestion, and reduce travel time. Agencies can analyze CV data to 30 

inform eco-friendly transportation planning (2).  31 

GPS loggers and cameras aboard CVs can produce abundant travel data. CV data 32 

exchanges include vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). CVs 33 

communicate basic safety messages (BSM) among vehicles and with roadside equipment (RSE) 34 

(3-4). BSMs contain information such as vehicle location, speed, acceleration, and time. In 35 

addition to BSMs, CVs also produce trajectory data, various driver-vehicle interaction data, and 36 

contextual data. Analysts can mine such data to inform strategies that can reduce crashes, 37 

improve traffic flow, enhance system operational efficiencies, and reduce environmental 38 

impacts. 39 

CV development is still in its infancy. Hence, there is very little information about 40 

practical challenges and quantifiable benefits of real-world deployments. Therefore, the United 41 

States Department of Transportation (USDOT) launched a one-year Connected Vehicle Safety 42 

Pilot Model Deployment (SPMD) in August 2012 in Ann Arbor, Michigan to advance 43 

knowledge about practical deployments. The deployment included 30 roadside equipment (RSE) 44 

installations along approximately 75 lane-miles of roadway and approximately 3,000 equipped 45 

vehicles (4). The data collected is now available to the public via the USDOT’s public data 46 
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portal (https://data.transportation.gov/ or https://www.its.dot.gov/data/) (4). As part of the 1 

USDOT CV pilot programs, the agency awarded in 2015 a three-phase pilot to two cities and one 2 

state—New York City, Tampa, and Wyoming (5). All three sites finished a 12-month period of 3 

concept development (phase I) and a 24-month period of deployment design, build, and test 4 

(Phase II). Each site is now entering the final deployment phase to operate and test deployed CV 5 

systems for a minimum of 18 months. The sites will monitor key performance measures of the 6 

CV pilot. Some datasets from this program are available at the USDOT’s public data portal. 7 

Based on the current literature, analysts can use the CV data by itself or combine it with 8 

other data sources to identify driving patterns, develop surrogate safety measures, evaluate 9 

location-based intersection safety, and improve operations at signalized intersections. The 10 

contributions of this paper are a comprehensive snapshot-in-time review of previous studies that 11 

used connected vehicle data, and potential areas that researchers can advance using the newly 12 

released large-scale CV data from the USDOT Pilot Deployment Program. This paper contains 13 

all the information in one place to facilitate ongoing research about the potential value and utility 14 

of emerging CV data. 15 

The remainder of this paper includes: a methodology section which describes the 16 

approach to the literature review and the strategy to classify the usage of the CV data; a results 17 

section which summarizes the data usage and applications of the CV dataset, a conclusion 18 

section which provides overall remarks about the usability and limitations of the CV dataset and 19 

briefly discusses future work. 20 

 21 

METHODOLOGY 22 

The authors first researched the newly released large-scale CV datasets from the United States 23 

Department of Transportation (USDOT) Pilot Deployment Program to understand its 24 

organization, structure, and content. After conducting extensive literature searches using all the 25 

traditional scientific databases of research output, the authors organized the data usage into three 26 

categories of application development. The publication sources included the Transportation 27 

Research Information Services (TRIS) Database and the International Transport Research 28 

Documentation (ITRD) Databases. 29 

 30 

SPMD Dataset 31 

The SPMD data comprises of the following datasets: two driving datasets that include the Data 32 

Acquisition System 1 (DAS1) and Data Acquisition System 2 (DAS2), a BSM dataset, an RSE 33 

dataset, and three contextual dataset that include weather, network, and schedule. Each table in a 34 

database contains comma-separated value (CSV) formatted information collected during a 24-35 

hour period (6).  36 

DAS1 and DAS2 contain data from the DAS that the University of Michigan 37 

Transportation Research Institute (UMTRI) and the Virginia Tech Transportation Institute 38 

(VTTI) developed, respectively. The BSM dataset includes messages that a participating vehicle 39 

transmitted and/or received, irrespective of the DAS installed. The RSE dataset contains data that 40 

roadside units transmitted and/or received. The contextual datasets contain information about 41 

conditions at the time of data collection. Contextual data include information about network 42 

configuration and performance, weather, schedules (transit and special events), roadwork 43 

activity, and traffic incidents.  44 

Several studies indicated that the CV data was available at the Research data Exchange 45 

(RDE, https:www.its-rde.net/home), but this link is no longer active. The CV data is now only 46 
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available at the USDOT’s public data portal (https://data.transportation.gov/ or 1 

https://www.its.dot.gov/data/). The DataWsu and DataFrontTargets are considered as part of the 2 

DAS1 dataset but they available as separate data files at the USDOT’s public data portal.  The 3 

SPMD Sample Data Handbook provides a detailed introduction for each dataset and all the data 4 

files under that dataset (6). Table 1 summarizes the datasets and a list of their accompanying files 5 

(6). The DAS1 dataset was mentioned most as a data source in the reviewed studies. Table 2 6 

further describes each file in the DAS1 dataset. The DataWsu and DataFrontTargets files are 7 

most commonly used to capture the position and motion information of host vehicles. The 8 

DataWsu file contains 27 fields, which is the most of all the DAS1 data files. Most of the data 9 

logged in the DataWsu file comes from the onboard Wireless Safety Unit (WSU) that produces 10 

GPS and inertial sensor data, and the Controller Area Network (CAN) that communicates vehicle 11 

performance and status information. Table 3 describes the data elements in the DataWsu file. 12 

The Mobileye system the Intel Corporation is a vision-based system that enables various 13 

Advanced Driver Assistance System (ADAS) capabilities. The DataFrontTargets file contains 14 

information from the installed Mobileye system that collects information from the scene ahead of 15 

the vehicle. The system uses communicates measures and warnings based on a serious of 16 

proprietary algorithms. Table 4 briefly describes the data elements of DataFrontTargets file. 17 

 18 

CV Pilot Deployment Program Dataset 19 

The program scale of the three-phase pilot sites is much larger than that of the SPMD program. 20 

Furthermore, the estimated program duration of 54 months is more than four times that of the 21 

SPMD program. At the time of this writing, there were only six sample RSE data files available 22 

from the USDOT’s public data portal. They are: 23 

1. Wyoming 24 

a. BSM one-day sample file 25 

b. Two traveler information message (TIM) sample files 26 

2. Tampa 27 

a. One signal phasing and timing (SPaT) sample file 28 

b. One BSM sample file 29 

c. One TIM sample file 30 

3. New York 31 

a. None. 32 

Because the data from the three CV Pilot Deployment sites are limited, this paper focuses 33 

on studies that use the SPMD data or other CV data sources or probe data to determine the 34 

research areas that can be advanced using emerging CV datasets from the three CV Pilot 35 

Deployment sites. 36 

 37 

https://data.transportation.gov/
https://www.its.dot.gov/data/
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Table 1  Files Associated with the SPMD Dataset. Source: SPMD Sample Data Handbook (6). 1 
Driving Data Message Infrastructure Contextual 

DAS1 DAS2 BSM RSE Weather Network Schedule 

AudioTimes* HV_Radar BrakeByte1Events BSM Weather/ 

climatic data 

Pointer to 

Resources 

Pointer to* 

Resources 

DataFrontTargets HV_Primary BrakeByte2Events Geometry      

DataLane  DAS2_Trip_Summary* BsmP1 Lane      

DataWsu 
 

ExteriorLightsEvents LaneNode      

DAS1_Trip_Summary* 
 

PosAccurByte1Events MAP      

 
 

PosAccurByte2Events Packet      

  PosAccurByte3Events PCAPFile      

  PosAccurByte4Events SPAT      

  SteerAngleEvents SPATMovement      

  ThrottlePositionEvents TIM      

  TransStateEvents TIMRegion      

  WiperStatusFrontEvents TIMRegionNode      

  BSM_Trip_Summary*       

 2 
*Not available at USDOT’s public data portal (https://data.transportation.gov/). 3 
 4 
 5 
Table 2  Description of the Files in the DAS1 Dataset. Source: SPMD Sample Data Handbook (6). 6 

File Number File Description Update Frequency 

1 DataFrontTargets Data collected by the Mobileye sensor. It captures information 

about the (vehicle) or object that is in front of the host vehicle. 

10Hz 

2 DataLane Stores lane marking quality adjacent to the host vehicle and 

the distances between each side of the vehicle and each lane 

line. 

10Hz 

3 DataWsu Logs of the GPS and CAN Bus data produced by an onboard 

device. 

10Hz 

4 DAS1_Trip_Summary* A list of summary measures for each vehicle trip. 1 per trip 

 7 
*Not available at USDOT’s public data portal (https://data.transportation.gov/). 8 

https://data.transportation.gov/
https://data.transportation.gov/
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Table 3  Data Elements of the DataWsu File. Source: SPMD Sample Data Handbook (6). 1 
Field Name Type Units EnumId Description 

Device Integer none - A unique numeric ID assigned to each DAS. This ID also doubles as a vehicle’s ID. 

Trip Integer none - Count of ignition cycles—each cycle starts and ends when the ignition is in the on and off positions, respectively. 

Time Integer centiseconds - Time (centiseconds) since the DAS started, which (generally) starts when the ignition is in the on position. 

GpsValidWsu  Integer none  1 Indicates whether or not a GPS data point is valid. 

GpsTimeWsu  Integer millisecond 
 

Epoch GPS time received from the remote vehicle that has been targeted by the host vehicle’s WSU. 

LatitudeWsu  Float  deg  - Latitude from WSU receiver . 

LongitudeWsu  Float  deg  - Longitude from WSU receiver. 

AltitudeWsu  Real m  - Altitude from WSU receiver. 

GpsHeadingWsu  Real deg  - Heading from WSU GPS receiver . 

GpsSpeedWsu  Real m/sec  - Speed from WSU GPS receiver. 

HdopWsu Real none  - Horizontal dilution of precision. 

PdopWsu  Real none  - Position dilution of precision. 

FixQualityWsu  Integer none  - GPS Fix Quality. 

GpsCoastingWsu  Integer none  - GPS Coasted. 

ValidCanWsu  Integer none  1 Valid Vehicle CAN Bus message to WSU. 

YawRateWsu  Real deg/sec - Yaw rate from vehicle CAN Bus via WSU. 

SpeedWsu  Real kph  - Speed from vehicle CAN Bus via WSU. 

TurnSngRWsu  Integer none  11 Right turn signal from vehicle CAN Bus via WSU. 

TurnSngLWsu  Integer none  11 Left turn signal from vehicle CAN Bus via WSU. 

BrakeAbsTcsWsu  Integer none  - Brake, ABS, and traction control from vehicle CAN Bus via WSU. 

AxWsu  Real m/sec2  - Longitudinal acceleration from vehicle CAN Bus via WSU. 

PrndlWsu  Integer none  403 Current transmission state (Park, Reverse, Neutral, Drive, Low) from vehicle CAN Bus via WSU. 

VsaActiveWsu  Integer none  - Stability control active from vehicle CAN Bus via WSU. 

HeadlampWsu  Integer none  - Headlamp state from vehicle CAN Bus via WSU. 

WiperWsu Integer none  - Wiper state from vehicle CAN Bus via WSU. 

ThrottleWsu  Real  none  - Throttle position from vehicle CAN Bus via WSU. 

SteerWsu  Real deg  - Steering angle/position from vehicle CAN Bus via WSU. 

 2 
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 1 

Table 4  Data Elements of the DataFrontTargets File. Source: SPMD Sample Data Handbook (6). 2 
Field Name Type Units EnumId Description 

Device Integer none - A unique numeric ID for each DAS, which also doubles as a vehicle’s ID. 

Trip Integer none - Count of ignition cycles that begins and ends when the ignition is in the on and off position, respectively. 

Time Integer centiseconds - Time (centiseconds) since DAS started, which (generally) starts when the ignition is in the on position. 

TargetId Integer none - Numeric ID that the Mobileye sensor assigns to different objects being tracked, with a value of 1 assigned to the closest. 

ObstacleId Integer none - ID of new obstacle that the Mobileye sensor assigns—the value is the last used free ID. 

Range Integer m - Longitudinal position of an object (typically the closest) relative to a Mobileye defined reference point on the host vehicle. 

RangeRate Real m/sec - Rate of change of the Range variable.  

Transversal Real m - Mobileye assigned lateral position of the obstacle. 

TargetType Integer none 409 Object classification (car, truck, pedestrian, etc.) 

Status Integer none 410 Motion classification (stopped, moving, etc) of an identified obstacle/target. 

CIPV Integer none 1 Indicates whether an obstacle in the vehicle’s path is the closest.  

3 
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RESULTS 1 

Several studies reported on the use of CV data from SPMD. This section classifies them into 2 

three categories: driving pattern identification, development of surrogate safety measures, and 3 

improvement of signalized intersection operation.  4 

 5 

Driving Pattern Identification 6 

Driving pattern is one of the key factors that affect traffic safety. Vehicle speed, acceleration, and 7 

deceleration are primary factors in the classification of driving patterns. Agencies consider that 8 

driving above the speed limit is hazardous and risky. Speed restrictions can be a dynamic 9 

function of road conditions and traffic situations. Researchers proposed several acceleration 10 

thresholds to classify driving behavior as calm, normal, and aggressive (7-11). Risky driving 11 

happens when longitudinal or lateral accelerations exceed certain thresholds. Researchers found 12 

that risky driving patterns are highly correlated with the likelihood of crashes or near-crash 13 

events (8-9) (11-13).   14 

Three recent studies used the CV data from the SPMD program to propose 15 

methodologies that use critical information from the instantaneous BSM exchanges between CVs 16 

and roadside equipment to determine repeatable driving behaviors (14-16). Study (14) 17 

investigated the longitudinal and lateral motion of the driving decision from BSMs and 18 

established reasonable thresholds to identify potentially dangerous events such as hard 19 

accelerations or braking, and quick lane changes. They used the DAS datasets and the 10-Hertz 20 

motion data that contain speed along with longitudinal and lateral acceleration to visualize the 21 

driving behavior. They investigated the relationships between speed and acceleration by 22 

visualizing the distributions of acceleration in longitudinal and lateral directions. The results 23 

validated that instantaneous driving decisions could provide valuable information to identify 24 

extreme driving events such as sudden lane changes. The distributions of directional variations in 25 

acceleration informed the thresholds of extreme acceleration in different directions. The study 26 

presented valuable information on establishing context-relevant alerts, warnings, and control 27 

assistance to nearby vehicles.  28 

Study (15) conducted a time-series analysis to categorize driving patterns into different 29 

regimes based on their volatility and average duration. The study explored correlations to 30 

examine dwell times and switching times between regimes. The study used Google Earth to 31 

visualize vehicle trajectories from the DAS dataset and to classify trips based on roadway type. 32 

Aggregating the DAS datasets into one-second groups enabled a detailed econometric analysis of 33 

instantaneous driving decisions. They analyzed the data using an expectation-maximization and 34 

Dynamic Markov switching models of two-regimes and three-regimes. The results revealed that 35 

acceleration and deceleration are two distinct regimes. The rate of deceleration was higher than 36 

the rate of acceleration, and braking was more volatile during deceleration than during 37 

acceleration. 38 

Machine learning methods can identify the importance of motion-related variables in 39 

classifying driving data into aggressive and normal driving patterns (17-18). The authors of (16) 40 

applied machine learning to the CV data from the SPMD program to identify aggressive driving 41 

patterns on horizontal curves. They used the random forest method of machine learning to 42 

develop an aggressive driving detection model based on a time-to-lane crossing (TLC) metric, 43 

under three scenarios. This detection model provided high classification accuracy in all three 44 

scenarios, and it ranked the importance of the variable candidates in identifying aggressive 45 

driving behaviors.   46 
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A common limitation for these three studies that used the SPMD dataset was the limited 1 

number of observations. Study (14-15) used the one-day sample datasets but deleted some 2 

observations that contained errors. Study (16) used a one-month dataset. Larger datasets require 3 

more processing capacity to produce results in a reasonable amount of time, but they can 4 

facilitate the removal of outlier situations, such as extremely bad weather conditions that could 5 

bias the results.   6 

 7 

Surrogate Safety Measures Development 8 

Historical crash data can identify high-risk locations. However, because historical crash data 9 

usually take a significant amount of time to collect, researchers developed surrogate safety 10 

measures (SSMs). They are proactive solutions to assess safety risks by capturing near-crash 11 

events when crash data is absent or limited. SSMs can quantify safety-related performance at a 12 

road segment or evaluate the effectiveness of a safety treatment more efficiently (19). Data 13 

collected from sensors can inform the development of SSMs to identify high-risk locations 14 

accurately. The newly available CV data collected from CV devices and RSEs give researchers a 15 

new opportunity to conduct SSM research. Some researchers attempted to develop SSMs from 16 

the vehicle trajectory data of the SPMD program (20-21). 17 

Study (20) proposed a framework to process CV data, calculate SSMs and their safety 18 

indices, and analyze the correlation between crash records and the calculated safety indices. 19 

They calculated three SSMs, which were time-to-collision (TTC), modified time-to-collision 20 

(MTTC), and deceleration rate to avoid collision (DRAC), at the vehicle-level and their safety 21 

indices at both the trip-level and the link-level. They used a negative binomial model to analyze 22 

the relationship between crash records and the safety indices of three SSMs. They found that the 23 

MTTC model provided the best overall performance. The study concluded that using SSMs with 24 

motion-related CV data could improve overall safety evaluation. 25 

Study (21) developed a new SSM called time-to-collision with disturbance (TTCD) 26 

which can capture rear-end conflict risks in car-following scenarios. They used the CV data to 27 

access the risk identified with the TTCD model by comparing that risk with the risk identified by 28 

historical crash data. The result was that, among all accessed SSMs, TTCD can capture risk data 29 

at the highest level of correlation with historical rear-end crash data. The associated high-risk 30 

locations identified by TTCD were very similar to those identified by historical crash data. This 31 

study suggested that researchers could use real-world CV data to identify high-risk locations as 32 

crash predictors. This result validated the results from study (22), which presented a framework 33 

and used simulated CV data to examine surrogate measures for evaluating the risk of secondary 34 

crashes on highways. 35 

Both studies (20-21) presented detailed procedures for cleaning and processing the CV 36 

data from the SPMD program. They determined that CV data could help predict high-risk 37 

locations in a very short period (one month and two months) before a substantial number of 38 

crashes occur. Thus, CV data can help to develop proactive safety measures to improve road 39 

safety management (21).  40 

Intersections are one of the most dangerous locations on roadways based on their annual 41 

crash history (23-24). Traditionally, the safety evaluation of an intersection depends on historical 42 

crash frequency data and survey feedback from active users. Analysis of CV data can detect 43 

high-risk intersections where historical crash data is limited. Three studies (25-27) combined 44 

historical crash data and real-world CV data from the SPMD program to evaluate location-based 45 

intersection safety. The purpose of this type of study is to conduct proactive safety measures on 46 
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specific intersections before the occurrence of crashes, and to seek solutions for improving their 1 

safety. Studies (20-21) attempt to identify high-risk locations which are not limited to 2 

intersections, whereas studies (25-27) focused on evaluating location-based intersection safety 3 

due to the high crash frequency detected at intersections.  4 

One study (25) provided an example of using CV data to assess location-based risk by 5 

detecting extreme driving decisions. Researchers used the results of previous work that identified 6 

extreme driving events to estimate crash risk as a function of instantaneous driving decisions at 7 

specific locations. They introduced the concept of location-based volatility (LBV) to calculate 8 

the coefficient of variation as a standardized measure of dispersion. The coefficient of variation 9 

indicates the fluctuation of the longitudinal acceleration and deceleration at a specific location. 10 

The study used rigorous fixed- and random-parameter Poisson regression models to investigate 11 

the relationship between LBV and crash frequency. Results suggested that there is a statistically 12 

significant relationship between LBV and crash frequencies for signalized intersections. One 13 

limitation of the study was the limited number of variables available after the deletion of 14 

inaccurate observations. 15 

Another study (26) combined the CV BSM data with the crash and inventory data at 16 

several intersections to investigate the relationship of different measures of volatility with crash 17 

frequency. The study evaluated thirty-seven different measures of volatility. The researchers 18 

used fixed- and random-parameter Poisson regression models in two levels of bulk passing and 19 

individual passing to investigate the relationship between each measure of volatility and crash 20 

frequency. Several methods investigated showed positive and statistically significant association 21 

with crash frequency. They methods were the three measures at bulk passing level, the time-22 

varying stochastic volatility of speed, the percent laying beyond threshold-bonds of speed 23 

created using mean plus two standard deviation at intersections, and the percent laying beyond 24 

threshold-bonds of acceleration created using mean plus two standard deviation at intersections. 25 

One research group (27) proposed a methodology to quantify driving volatility at each 26 

intersection to assess intersection-based crash risk based on CV BSM data, crash data, and traffic 27 

and intersection inventory data. They proposed to quantify driving volatility based on speed, 28 

acceleration/deceleration, vehicular jerk, eight different volatility measures, coefficient of 29 

variation, mean absolute deviation around mean, percentage of outliers, and time-dependent 30 

dynamic volatility, at both aggregate intersection level and trip level. Subsequently, they used 31 

Poisson and Poisson-lognormal regressions models to test the correlations between crash 32 

frequency and intersection-based volatility with consideration of unobserved heterogeneity. They 33 

used Full Bayesian estimation method and Markov Chain Monte-Carlo Gibbs Sampler 34 

techniques to estimate the parameters. They calculated Moran’s I statistics to investigate the 35 

correlation between crash frequency and spatial factors. The results suggested that the crash 36 

frequency significantly correlated with three measures: the two standard deviations threshold at 37 

the intersection level, the coefficient of variation of speed at the pass level, and the mean 38 

absolute deviance of vehicular jerk at the passing level.    39 

The common limitation of the three studies was the limited CV data available during the 40 

research period. The one-month or two-month CV data were relatively small sample sizes to 41 

explain 5-year average crash rates. In addition, all studies only considered crash frequency but 42 

not crash severity as a risk factor.  43 

 44 
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Signalized Intersection Operation Improvement 1 

Signalized intersections are usually hot spots for traffic congestion, especially during rush hour. 2 

They cause significant hours of delay and crash volume every year. Agencies often consider 3 

adaptive signal control to accommodate varying demands. However, their significant cost to 4 

install and maintain is a deterrent to deployment. A less-expensive alternative is to re-time the 5 

signal by analyzing CV data from RSEs to estimated traffic volume (28-30). A downside of this 6 

approach is the currently low penetration rate of CVs. Study (31) conducted a proof-of-concept 7 

by using CV data in a low penetration rate environment to optimize signal coordination. They 8 

could not use vehicle trajectories because the data was from a fixed location. Estimating traffic 9 

volume from vehicle trajectories is an essential input for signal operation and algorithm design 10 

optimization.  11 

Study (32) proposed a method to estimate traffic volumes by using trajectory data from 12 

CVs or trajectory data from navigation devices at locations with low CV penetration rates. The 13 

study used the BSM data from the RSE in the SPMD program to capture trajectory variables 14 

such as motion and position, and data from the signal phase and timing (SPaT) data to capture 15 

the timing periods and signal status. They combined the data to produce a space-time trajectory 16 

dataset. They modeled traffic arrivals as a time-dependent Poisson process. An expectation 17 

maximization (EM) procedure provided an estimate of the arrival rate. They tested the estimation 18 

procedure with CV trajectory data and vehicle trajectory data from navigation service users. The 19 

results suggested that their proposed approach was effective and that agencies could use it to 20 

improve signal control operation in environments with low CV penetration rates.  21 

Monitoring queue status at signalized intersections could help optimize the available 22 

capacity (33-35). For example, CV data can enable improved route selection through real-time 23 

notifications of traffic status. Study (36) proposed an integrated macroscopic and microscopic 24 

traffic flow model to estimate time-space queueing dynamics at signalized intersections using 25 

RSE and SPaT data from the CV BSM repository. They identified the three regions of queue 26 

formation region, queue region, and queue dissipation under the normal scenario and 27 

oversaturated scenario based on vehicle deceleration, stop, and acceleration behaviors. This 28 

integrated method estimated queue process in both queue length and queue time at signalized 29 

intersections. Thus, this method could help to improve real-time traffic status estimation at the 30 

signalized intersections equipped with connected vehicle technologies.  31 

 32 

Data Manipulation 33 

 34 

Error Checking  35 

Best practices in the use of large-scale data begin with quality evaluation and cleaning before 36 

conducting any analysis or data mining tasks. However, relatively few studies reported 37 

experience with error-checking and deep-cleaning SPMD datasets. The U.S. National Highway 38 

Traffic Safety Administration published an independent evaluation of safety applications for 39 

passenger vehicles in the SPMD program (37). They found several errors in the programing of 40 

Volkswagen-Audi’s forward-collision warning (FCW), intersection movement assist (IMA) 41 

applications, and issues with a GPS on one vehicle that led to inaccuracies in some data records 42 

in the SPMD datasets. Other researchers found errors in the DAS dataset such as speeds faster 43 

than 200 mph and altitudes greater than 30,000 ft (14) (21). Another research found that a 44 

significant portion (42%) of the “lateral acceleration” observations exceeded the maximum value 45 
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that the wireless communications device could record (25). Duplicated records and invalid 1 

messages were found in DAS dataset (21).  2 

 Studies (15, 26) checked dataset and claimed that no error has occurred. Study (15) 3 

indicated that they conducted error-checking process by linking microscopic trip data with a trip-4 

summary file to check the information consistency at trip-level and didn’t state error-checking 5 

for data values. Study (26) performed an error-checking process for its spatial data by mapping 6 

data and resulted with a good match with the real map.  7 

Among all the studies, study (21) presented a detailed data process procedure by a 8 

detailed data preparation description and a data flow chart, which provides great guidelines for 9 

both data cleaning and data process for later researches. Study (20) presented data process and 10 

indicated the software applied for data process. Study (26) presented data integration and process 11 

steps in a data flow chart. The authors of (38) demonstrated an automated method of cleaning the 12 

data of a taxi probe dataset that utilizes known distributions of vehicle operations to detect 13 

possible outliers for removal. Table 5 summarizes data shortcomings and provides 14 

recommendations for data cleaning based on knowledge synthesized from the literature search. 15 

Table 6 summarizes the data cleaning and processes, and the software tools used. 16 

 17 

Data Mining Approaches 18 

Data mining techniques extract patterns from large-scale data that are interesting (39). Common 19 

data mining approaches include statistical regression models and machine learning methods (39). 20 

Statistical regression models estimate the numerical relationships between variables and can 21 

predict new values, whereas machine learning methods recognize complex patterns and facilitate 22 

decision-making based on data (39).  23 

Statistical regression models are the most commonly used methods among all the studies 24 

reviewed. As shown in Table 7, seven studies (14-15, 20, 25-27, 32) applied different regression 25 

models to investigate the numerical relationships between factors. Study (21) calculated 26 

Pearson's correlation coefficients as test statistics to quantify correlations between developed 27 

measures and crash frequency. One study used the machine learning method of Random Forest 28 

to identify aggressive/risky driving (16). Additional studies suggested potential application of 29 

machine learning methods in CV data. Random forest and Support Vector Machines have been 30 

applied to the driving style classification and transportation mode recognition problem (39-40). 31 

Study (33) used CV data, without machine learning, to demonstrate the developed model.   32 

  33 

Data Mining Challenges 34 

As summarized in Table 5, a common data cleaning recommendation is to detect and remove 35 

erroneous records from the dataset, and to abandon data fields where there is a considerable 36 

number of data records with errors. However, data elimination may reduce the data size, which 37 

could result in lower model accuracy (15). Computation capacity may become another issue 38 

when the dataset is very large. Studies (27) indicated that the workstation level computer (Dell 39 

Precision T7600, 3.1 GHZ (32 CPUs) took a considerable amount of time to compute data 40 

models for a data size of 230 million observations.41 
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Table 5  Data Shortcomings and Recommendation for Data Cleaning 1 
Type Description Examples Recommendations for Data Cleaning 

Outliers Data values exceed maximum 

allowable value that can be 

recorded, or does not represent 

fact. 

Value exceed maximum allowable value: 

Speeds > 200 mph [14]. 

Speeds > 415 mph and acceleration rate > 10 m/s/s [21]. 

Removed outliers [14][21]. 

Avoid to use all the values in the variable if outliers 

take a large portion of the data values (42% of data) 

[25]. Do not represent fact:  Altitude > 30,000 ft [14]. 

Duplicated 

records 

Duplicated records Duplicated records in DataWsu data [21]. Check for duplicated data records and removed such 

records if they exist [21]. 

Invalid 

message 

Invalid message Invalid WSU or CAN Bus Message in DataWsu [21]. Filter records to remove invalid messages, e.g. filter 

with criterion "GpsVaildWsu = 1 and 

VaildCanWsu=1" [21]. 

Improperly 

recorded 

message 

Activity recorded out of the scale 

that a sensor is designed for, thus 

recorded data values didn't fall into 

a normal data range.   

Mobileye sensors may record the speed of vehicles in opposite 

directions if the road is narrow and doesn't have a median. 

Thus, the Rangerate values (speed of leading vehicle - speed 

of the following vehicle) in DataFrontTargets data may be 

negative and its absolute value is greater than the host 

vehicle's speed, indicating that the leading vehicle is backing 

up at a speed of Rangerate-GpsSpeedWsu [21]. 

Filter records to improperly recorded message, e.g. 

filter with criterion "Rangerate-GpsSpeedWsu>1" 

[21]. 



Zhou and Bridgelall          14 

Table 6  Summary of Data Processing 1 
Topics Studies Dataset Data Sample 

Information 

Data Cleaning and Processing Software  

Driving 

Pattern 

Identification 

[14]  DAS  968,522 records of basic 

safety messages, from 155 

trips made by 49 vehicles 

Removed observations with errors. (Speed >200 mph, and 

altitude > 30,000 ft). Data visualization to show the extent of 

instantaneous driving volatility.  

R, MATLAB, and Google 

Earth for data processing 

and visualization. Stata for 

modeling 

[15] DAS 1,399,084 records of basic 

safety messages, from 184 

trips made by 71 vehicles 

Error-checked by linking microscopic trip data with a trip-

summary file. Two datasets matched in terms of trip-level 

information. Data aggregation from 10 BSM per second to 1 BSM 

per second.  

R, MATLAB, and Google 

Earth for data processing 

and visualization. 

Stata14.1 for modeling 

[16]  BsmP1 

(BSM) 

1.5 billion rows of data, 

data size 204 GB 

Data records on the eastbound of a horizontal curve were selected. 

East of (42.299469, -83.724666) were eliminated for study design.  

R for data processing and 

extract information, 

Google Earth for 

extracting GPS 

coordinates. 

Surrogate 

Safety 

Measures 

[20] DataWsu 

and 

DataFront

Targets 

(DAS1) 

DataWsu file of 12 GB 

and DataFrontTargets file 

of 4.34 GB from nearly 

100 vehicles.  

Two datasets were read by Python to check data type and data 

organization. Then import to Hadoop for query using Apache 

Hive. Next, datasets were exported into small files and joined in 

PostgreSQL database. Fourthly, ArcGIS were used to ingrate link 

and intersection information. Fifthly, the data points around the 

intersections were removed by a 75-ft buffer zones created in 

PostgreSQL. Data processing framework figure in page 8 

Python, Hadoop, Apache 

Hive, PostgreSQL, and 

ArcGIS, 

[21] DataWsu 

and 

DataFront

Targets 

(DAS1) 

62,589,725 BSMs from 90 

vehicles.  

DataFrontTargets file were filed for observations with vehicles in 

front of the host vehicle. Duplicates were removed from DataWsu 

file. Then DataWsu file were filtered remove invalid bus 

messages. Next, two cleaned datasets were merged, and cleaned to 

remove outliers. Finally, the datasets filtered out the vehicle 

movement in the opposite direction. Data process procedure figure 

in page 314 

R for data manipulation 

and ArcGIS for spatial 

processing. R package 

ggmap for data 

visualization.  

[25] Not stated Not stated Checked data values, 42% of data, 27,240,788 data point, had the 

lateral acceleration values exceeded the maximum value that the 

wireless communications device could record. Lateral acceleration 

variable was not used in this study.  

Not stated 
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[26] BSM 

(RSE) 

215,000,000 BSMs at 

selected intersections.  

Data examination and error-checking process before data 

integration. Extra intersection data using geocodes to map the 

intersection location data from BSM, well matched with the real 

map. Appropriate geocoded polygons are used to filter BSM data 

for each selected intersection. A data integration and processing 

steps showed as a figure in page 295 

Not stated 

[27] Not stated 230 million BSMs Appropriate geocodes are used to filter BSM data for each 

selected intersection. Zero speeds are removed from BSM data.  

Stata's MATA language 

for modeling, and 

WinBUGS software for 

MCMC Gibbs sampling. 

noted that computations 

took long time at 

workstation level 

computer (Dell Precision 

T7600, 3.1 GHZ 

(32CPUs)).  

Signalized 

Intersection 

Operation 

Improvement 

[32] BSM data 

and SPAT 

(RSE) 

Not stated First select an interested movement and select GPSdata associated 

with the movement and time period based on direction of CV 

trajectories and prepare corresponding signal status data. Then, 

based on road geometry, calculate CVs’ longitudinal position 

along the road from GPS positions, and generate time-space 

trajectories. Map GPS time into signal clock time and then 

aggregated trajectories to calculate the time dependent factor.  

Not stated 

[36] SPAT and 

V2I driving 

records 

data 

(inferred to 

be BSM in 

RSE 

database 

2150 vehicle's daily 

trajectories 

Not stated Not stated 
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Table 7  Data-Driven Methods Applied to CV Data 1 
Topics Studies Technique and Purpose 

Driving 

Pattern 

Identification 

[14]  Negative binomial regression model: Correlation of extreme event frequency. 

[15] Markov-switching dynamic regression model (time series analysis): Quantification and 

prediction of driving patterns. 

[16]  Random forest classification of risky driving behaviors. 

Surrogate 

Safety 

Measures 

[20] Negative binomial regression model: Statistical relationship between the link developed 

safety surrogate measures and crash frequency. 

[21] Pearson's correlation coefficients: correlation between developed safety surrogate 

measures and rear-end crashes. 

[25] Fixed-and random-Poisson regression models: Quantification of the relationship 

between intersection-specific violations and crash frequency. 

[26] Fixed-and random-Poisson regression models: Quantification of the relationship 

between intersection-specific violations and crash frequency. 

[27] Hierarchical fixed- and random-parameter Poisson and Poisson log-normal models: 

Model crash function of intersection-specific volatilities and other factors. Full Bayesian 

estimation method and Markov Chain Monte-Carlo Gibbs sampler techniques: estimate 

parameter in Poisson models. Moran's I statistics: investigate correlation between crash 

frequency and spatial factors.  

Signalized 

Intersection 

Operation 

Improvement 

[32] Time-dependent Poisson process: Model of traffic arrivals. Expectation Maximization: 

estimate parameter.  

[33] Developed a mathematical model (without data mining) and used CV data to 

demonstrate the model. 

 2 

CONCLUSION 3 

This paper surveyed the literature and identified ten studies that used the only real-world 4 

connected vehicle dataset currently available to the public—the large-scale CV datasets recently 5 

released from the United States Department of Transportation (USDOT) Pilot Deployment 6 

Program. This paper first provides a summary of the available datasets and describes their 7 

organization, overall structure, and characteristics of the data captured during pilot deployments. 8 

Secondly, the authors presented a summary of studies that used the data and classified the usage 9 

into three categories involving application development, identifying driving patterns, developing 10 

surrogate safety measures, and improving the operation of signalized intersections. 11 

One common limitation indicated in some of studies is that only part of the dataset is 12 

useful for analyses because of errors in the data collection processes and the large percentage of 13 

erroneous attributes. All studies used one-day, one-month, or two-month CV data from the 14 

USDOT program. A primary contribution of this review is a summary of current usage and 15 

applications of the first and only dataset available to the public that contains real-world CV data. 16 

This summary is in one place, thus providing a convenient reference to the research community. 17 

Future work will extend the survey as more data becomes available. 18 
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