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Policy Implications of Truck Platooning and Electrification 
 

Abstract 

Trucks in North America account for more than 23% of the transportation sector’s greenhouse gas 

emissions. Truck platooning and truck electrification are potential technologies for reducing 

emissions and operating cost. However, adoption uncertainties result in speculations about their 

potential impact. Traditional modeling techniques to inform policymaking use large datasets, trained 

professionals to calibrate complex software, and take hours to run a single scenario. This paper 

provides a closed-form model that rapidly calculates trends of the potential national petroleum 

consumption reduction for a range of technology adoption scenarios. The primary finding is that 

truck electrification would have a substantially larger impact on fuel consumption reduction than 

platooning. The limitations of platoonable miles create an upper bound in benefits. When calibrated 

for the base year fuel-efficiency, the model shows that petroleum consumption reduction would be 

less than 4% at full adoption of platooning. The electrification of single unit trucks results in more 

than a 13-fold reduction of national petroleum consumption relative to platooning. However, without 

the electrification of combination unit trucks, petroleum consumption will eventually begin to 

increase again. Therefore, policies to encourage the reduction of greenhouse gas emissions should 

not overlook incentives to electrify combination unit trucks. 

Keywords: Closed-Form Model; Cooperative Adaptive Cruise Control; Fuel Efficiency; 

Greenhouse Gas Emissions; Platoonable Miles; Technology Adoption 
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1 Introduction 

The trucking industry has developed an interest in platooning and electrification technologies 

because of their potential to reduce petroleum consumption and ultimately cut operating costs. 

Petroleum is the second highest variable cost behind driver wages and benefits. Petroleum purchases 

accounts for approximately 25% of operating costs (Bao & Mundy, 2018). Even though only 4% of 

U.S. vehicles are medium- and heavy-duty vehicles, they account for approximately 20% of the 

transportation fuel consumed (Union of Concerned Scientists, 2012). In the United States, medium 

and heavy-duty trucks (HDT) account for 23% of the greenhouse gas (GHG) emitted by the 

transportation sector (EPA, 2018). In Canada, trucks account for 35% of the GHG emitted by the 

transportation section (Sharpe, 2019). Hence, governments worldwide have been pushing for heavy 

vehicle electrification and many cities recently adopted electrification for their entire fleet of public 

transit buses (Zhou & Rood, 2019). 

A combination of truck platooning and truck electrification has the potential to reduce both 

petroleum consumption and GHG emissions. The next two subsections present a literature review of 

developments in truck platooning and truck electrification technologies. The third subsection 

explores theoretical developments to model technology adoption. The fourth section describes the 

goals and objectives for simulating the impacts on national petroleum consumption based on 

scenarios that include an interplay between the adoption of truck platooning and truck electrification. 

1.1 Developments in Truck Platooning 

The earliest initiatives to test truck platooning began in the early 1990’s with a proof-of-concept 

program from the United States Department of Transportation’s Automated Highway System (Ferlis, 

2007) and the 1996 European CHAUFFER project (Crolla, 2015). Europe extended their efforts into 

the 2000’s by funding the SARTRE (Safe Road Trains for the Environment) project in Sweden and 
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Spain (Robinson, Chan, & Coelingh, 2010), and the Konvoi  project in Germany (Deutschle, et al., 

2010). Those initial efforts used a mix of simulations and experiments to quantify the potential 

reduction in petroleum consumption. A common finding was that the reduction in petroleum 

consumption depends on the control strategy to reduce air turbulence by managing the distance gaps 

between trucks. Theoretically, the more streamlined airflow across a convoy reduces the overall 

drag, thereby increasing energy efficiency for all participating trucks (Vegendla, Sofu, Saha, Kumar, 

& Hwang, 2015). 

Most of the recent studies about truck platooning focus on fluidic modeling or 

experimentation to determine the achievable drag reduction, and then translate that to an achievable 

reduction in energy consumption. One of the most recent studies found that a three-truck platoon can 

reduce fuel consumption by 5% to 13%, depending on the gap distance maintained (McAuliffe, et 

al., 2018). The recent emergence of vehicle-to-vehicle (V2V) communication standards provide an 

ability to improve control of the distance gap by synchronizing acceleration and braking (Tsugawa, 

Jeschke, & Shladover, 2016). 

Even with more than one decade of research and development, truck platooning is still in its 

infancy. An early study by the University of California in 2004 suggested that the industry will apply 

platooning technology first to trucks. The rationale offered was that trucks already have many of the 

onboard electronics needed to implement a complete system. Other rationales were that there are 

fewer safety concerns because professional drivers operate trucks and carriers maintain trucks more 

regularly than private vehicle owners do (Shladover, 2004). 

1.2 Developments in Truck Electrification 

In 1997, the Prius sedan became the first mass-produced hybrid electric vehicle in the world [link]. 

Nine years later, Tesla Motors, a Silicon Valley startup, produced a luxury sports car that could 

https://www.energy.gov/articles/history-electric-car
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travel 200 miles on a single charge. These two events spurred nearly all major automobile 

manufacturers to accelerate their electric vehicle initiatives for cars [link]. Truck electrification, 

however, is still in its infancy and only a few manufactures demonstrated protypes before the year 

2020. However, the recent development of electric motors to propel cars more cost efficiently and 

the economies of scale in battery production will likely accelerate the pace of truck electrification.  

Even with battery range extension beyond the average truck travel distance, the rate of 

adoption will ultimately depend on the availability of adequate infrastructure to charge vehicle 

batteries quickly. Evolving research investigated the potential for dynamic charging systems to 

obviate the need for stopping to recharge batteries. Such systems include overhead and in-road 

electric supply. The overhead system requires a roof mounted pantograph that automatically extends 

to connect with overhead catenary power lines when power is available and retract where the service 

is not available. Inroad charging systems are less developed than catenary systems but have the 

potential to replace overhead lines with hidden power lines. A report by the University of California 

Institute of Transportation Studies provides an excellent review of both types of systems and their 

potential costs (Zhao, Wang, Fulton, Jaller, & Burke, 2018). The report pointed out that Sweden 

tested the world’s first inroad charging system in 2016 and opened the service to the public in 2018. 

1.3 Technology Adoption Theory 

The traditional approach to estimate impacts of technology adoption involve complex software, large 

datasets, and trained professionals to calibrate data-driven models. The results are overly sensitive to 

model assumptions such as travel demand, freight movements, route choice, and mode choice 

(Soteropoulos, Berger, & Ciari, 2019). With such models, the evaluation of a single scenario can 

take hours.  

https://www.energy.gov/articles/history-electric-car
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Everett Rogers developed one of the oldest social science theories of product adoption in 

1962, which researchers now call the diffusion of innovation theory (Rogers Everett, 2003). The 

theory posits that a product or idea spreads over time based on its perception of being new or 

innovative. Rogers found that the rate of adoption differs among five distinct categories of 

consumers: Innovators, Early Adopters, Early Majority, Late Majority, and Laggards. Innovators are 

more willing to try innovations and take risks. Early Adopters embrace change opportunities but 

need support materials to adopt the product. Early Majority adopt innovations before the average 

person, but they require evidence that the innovation works. Late Majority are skeptics who adopt 

innovations after many others have tried them. Laggards are conservatives who adopt innovations 

after seeing statistics or experiencing pressure from other adopters. Innovators, Early Adopters, 

Early Majority, Late Majority, and Laggards typically make up 2.5%, 13.5%, 34%, 34%, and 16% of 

the target market, respectively. The group statistics form a Gaussian distribution such that the 

cumulative distribution results in an s-shape curve that is typical of a technology adoption curve. 

1.4 Goals and Objectives 

The main contribution of this paper is a closed form model to determine quickly the expected 

national trends in truck petroleum consumption, fuel cost, and GHG emissions over time for a range 

of scenarios. The goal is to account for anticipated changes in truck fuel efficiency, petroleum 

prices, and the lag in policy-changes over time. The objective is to demonstrate the use of the model 

by calibrating it to U.S. data for single unit (SU) and combination-unit (CU) trucks. The model 

accounts for differences in national petroleum consumption reductions between SU and CU trucks as 

well as differences in their adoption rates for platooning and electrification.  

The organization of the remainder of this paper is—Section 2 describes the development of 

the closed-form model. Section 3 describes the model parameters and the values used for calibration 
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based on data from various sources. Section 4 evaluates the model for different scenarios of 

technology adoption to explore trends in petroleum consumption, GHG emissions, and savings from 

the reduced petroleum purchases. Section 5 discusses the results, utility, and limitations of the work. 

Section 6 provides concluding remarks about the findings, policy-implications, and comments on 

future work. 

 

2 Methods 

This section details the development of the closed-form model. Historical and forecasted vehicle 

miles traveled (VMT) data for SU and CU trucks calibrate the model for an overall national 

prediction. Mean statistics for the reduction of petroleum consumption from platooning, and market 

forecasts for the adoption of platooning and truck electrification provide additional calibration. CU 

trucks currently account for a greater proportion of the VMT. However, they are likely to lag SU 

trucks in the adoption of both platooning and electrification because of the more stringent 

requirements for braking and battery performance. Hence, the model includes this potential lag in 

technology adoption as a variable.  

The model also accounts for the fact that only portions of a route will be suitable for 

platooning. The National Renewable Energy Laboratory (NREL) classified platoonable miles as 

those where trucks can travel at least 50 mph for at least 15 consecutive minutes (Lammert, et al., 

2018). Based on that requirement, the NREL found that only 63% of truck miles in the U.S. are 

platoonable. Hence, platoonable miles contribute significantly to the upper bound on fuel 

consumption reduction from platooning. The model also determines the sensitivity of petroleum 

consumption reductions to platooning capability in any future year by using fuel efficiency as a 

variable. 
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2.1 VMT Growth 

The VMT growth model for all SU trucks as a function of year y and follows a compounded growth 

model where 

𝑀𝑠𝑎(𝑦) = 𝑀𝑠𝑌0(1 + 𝛼s)(𝑦−𝑦0). (1) 

The parameter MsY0 is the VMT in the base year y0 and s is the average annual rate of increase. The 

model for CU trucks is similar but the parameters are McY0 for the base year VMT and c is the 

average annual increase. 

2.2 Adoption of Truck Electrification 

The electrification of trucks will reduce VMTs traveled by petroleum-powered trucks. Therefore, 

petroleum consumption will diminish over time. The model does not account for any additional 

fossil fuels consumed to produce the electricity needed to charge truck batteries. Equation (2) 

models the proportional increase in truck electrification in future year y by using the logistic model 

for technology diffusion (Rogers Everett, 2003). The model is 

𝛾ev(𝑦) =
𝑀ev

1 + 𝑒−𝑘𝑒𝑣(𝑦−𝑦𝑚)
 (2) 

where kev is the adoption rate, Mev is the maximum proportion of adoption in the horizon year, and 

ym is the median year between the horizon and base years. This model produces the typical s-curve 

of technology adoption. Figure 1 illustrates the difference between the VMT growth model and the 

technology adoption model. The shifted s-curve simulates a 15-year delay in the adoption of 

electrification for CU trucks. The model simulates this lag in adoption simply by adding the offset 

year to ym. The plot shows a calibration for less than 5% adoption by 2030. The VMT erosion Ms 

from electrification for petroleum powered SU trucks is  

𝑀𝑠(𝑦) = 𝑀𝑠𝑎(𝑦)[1 − 𝛾ev(𝑦, 𝑀ev, 𝑦m)]. (3) 
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Similarly, the VMT erosion Mc for diesel CU trucks from electrification is 

𝑀𝑐(𝑦) = 𝑀𝑐𝑎(𝑦)[1 − 𝛾ev(𝑦, 𝑀ev, 𝑦m + 𝛥𝑦c)]. (4) 

The parameter yc is the adoption lag for CU trucks in years. 

 

Figure 1  VMT growth and technology adoption as a function of time. 

2.3 Platoon Technology Adoption 

The adoption of connected vehicle technology and the platoon scheduling system follows a similar 

technology adoption curve 

𝜌(𝑦) =
𝜌Tx

1 + 𝑒−𝑘𝑝(𝑦−𝑦𝑚)
 (5) 

where kp is the adoption rate and ρTx is the maximum proportion of trucks that would be enabled. 

2.4 Platoonable Miles 

The number of platoonable miles depends on the allocation of infrastructure to facilitate truck 

platooning and the modification of regulations that currently restrict platooning. In general, policy-

making and infrastructure preparation lags technology adoption. The technology adoption model 

accounts for the lag by shifting the median year. The model is 
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𝛾(𝑦) =
𝑀Ix

1 + 𝑒−𝑘𝛾(𝑦−𝑦𝑚−𝛥𝑦i)
 (6) 

where k is the adoption rate, yi is the lag in years, and MIx is the maximum proportion of VMT that 

would become available for platooning. Consequently, the miles platooned by SU trucks are 

𝑀𝑝𝑠(𝑦) = 𝛾(𝑦, 𝑦m)𝜌(𝑦, 𝑦m)𝑀𝑠(𝑦, 𝑀ev, 𝑦m) (7) 

and those by CU trucks are 

𝑀𝑝𝑐(𝑦) = 𝛾(𝑦, 𝑦m)𝜌(𝑦, 𝑦m)𝑀𝑐(𝑦, 𝑀ev, 𝑦m, 𝛥𝑦c). (8) 

2.5 Fuel Efficiency 

The U.S. Energy Information Administration (EIA) forecasts that fuel economy of HDT SU trucks 

will increase by 2 MPG from 2018 to 2050 (EIA, 2019). The growth model for an increase in fuel 

economy for SU trucks is 

𝜇𝑛𝑠(𝑦) = 𝜇𝑛𝑠𝑌0(1 + 𝛽ns)(𝑦−𝑦0) (9) 

where μnsYo is the fuel economy in the base year and ns is the average annual percentage increase. 

The model is similar for CU trucks where 

𝜇𝑛𝑐(𝑦) = 𝜇𝑛𝑐𝑌0(1 + 𝛽nc)(𝑦−𝑦0) (10) 

The petroleum consumption reduction in gallons with platooning SU trucks is 

𝜇𝑝𝑠(𝑦) =
1

𝜇𝑛𝑠(𝑦)
(1 − 𝜂ps) (11) 

where μps is in units of gallons/mile and ηps is the percentage of petroleum consumption reduction 

per mile. Similarly, the petroleum consumption reduction from platooning CU trucks is 

𝜇𝑝𝑐(𝑦) =
1

𝜇𝑛𝑐(𝑦)
(1 − 𝜂pc). (12) 

The total petroleum consumed when not platooning is 
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𝐹𝑛(𝑦) =
𝑀𝑛𝑠(𝑦, 𝑀ev, 𝑦m)

𝜇𝑛𝑠(𝑦)
+

𝑀𝑛𝑐(𝑦, 𝑀ev, 𝑦m, 𝛥𝑦c)

𝜇𝑛𝑐(𝑦)
 (13) 

where Mns and Mnc are the miles traveled by SU and CU trucks, respectively, while not platooning. 

The total petroleum consumed while platooning is 

𝐹𝑝(𝑦) = 𝜇𝑝𝑠(𝑦, 𝜂ps)𝑀𝑝𝑠(𝑦, 𝑀ev, 𝑦m) + 𝜇𝑝𝑐(𝑦, 𝜂pc)𝑀𝑝𝑐(𝑦, 𝑀ev, 𝑦m, 𝛥𝑦c) (14) 

Hence, the total petroleum consumed by both truck types throughout their travel is 

𝐹𝑇(𝑦) = 𝐹𝑛(𝑦) + 𝐹𝑝(𝑦) (15) 

Combining equations produces the stand-alone model 

𝐹𝑇(𝑦, 𝑦𝑚, 𝛥𝑦c, 𝜂ps, 𝜂pc, 𝜌Tx, 𝑀Ix, 𝑀ev) = 

1 − 𝜂ps ∙
𝜌Tx

1 + 𝑒−𝑘𝑝(𝑦−𝑦𝑚) ∙
𝑀Ix

1 + 𝑒−𝑘𝛾(𝑦−𝑦𝑚−𝛥𝑦i)

𝜇𝑛𝑠𝑌0(1 + 𝛽ns)(𝑦−𝑦0)
 × 

𝑀𝑠𝑌0(1 + 𝛼s)(𝑦−𝑦0) ∙ [1 −
𝑀ev

1 + 𝑒−𝑘𝑒𝑣(𝑦−𝑦𝑚)
] + 

1 − 𝜂pc ∙
𝜌Tx

1 + 𝑒−𝑘𝑝(𝑦−𝑦𝑚) ∙
𝑀Ix

1 + 𝑒−𝑘𝛾(𝑦−𝑦𝑚−𝛥𝑦i)

𝜇𝑛𝑐𝑌0(1 + 𝛽nc)(𝑦−𝑦0)
 × 

𝑀cY0(1 + 𝛼c)(𝑦−𝑦0) ∙ [1 −
𝑀ev

1 + 𝑒−𝑘ev(𝑦−𝑦m−Δ𝑦c)
] 

(16) 

 

where all parameters can be variables or calibrated constants based on base year data and forecasts. 

For example, market forecast data for platooning technology, fuel efficiency, and truck 

electrification determines values for the growth rate parameters kp, s, c, and kev. 

A simplified notation of the model provides a more intuitive understanding of how the 

factors interact to determine petroleum consumption Fx(y) for truck type x as a function of years y as 

follows: 
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𝐹𝑥(𝑦) = [
1 − 𝜂p ∙ 𝜌(𝑦) ∙ 𝛾(𝑦)

𝜇𝑛(𝑦)
]  × 𝑀𝑥(𝑦)[1 − 𝛾ev(𝑦)]. (17) 

The term on the left of the multiplication sign is the fuel efficiency factor and the term on the right is 

the VMT by petroleum powered truck type x. As the fuel efficiency μn grows, the petroleum 

consumption Fx declines. As the platooning efficiency ηp increases, the numerator decreases and the 

petroleum consumption Fx declines. Similarly, as the platooning technology proportion ρ and the 

supporting infrastructure proportion  increase the petroleum consumption Fx declines. Furthermore, 

as the truck electrification proportion grows the factor on the right of the multiplication sign 

diminishes. This makes petroleum consumption less sensitive to the fuel-efficiency factor on the left 

of the multiplication sign. At 100% adoption of truck electrification, the term on the right becomes 

zero—reflecting that trucks are no longer consuming petroleum. It is important to note that these 

parameters change non-linearly with time and reflects different rates of adoption. 

2.6 Costs and Emissions 

The EIA forecasts nominal, low, and high annual percentage increases in diesel cost at 1.7%, 0%, 

and 3.5%, respectively (EIA, 2019). The model for petroleum price changes follows the average 

annual growth model 

𝐶𝑓(𝑦, 𝜙f) = 𝐶𝑌0(1 + 𝜙f)
(𝑦−𝑦0) (18) 

where CY0 is the average price per gallon of diesel in the base year and φf is the annual percentage 

increase. 

The model uses the standard EIA emissions coefficient to determine the carbon dioxide 

(CO2) release reduction along truck routes (EIA, 2016). The EIA carbon dioxide emissions 

coefficient per gallon of petroleum consumed provides a direct conversion for CO2 emissions (EIA, 

2016). For diesel, the conversion is 22.4 pounds of CO2 per gallon consumed. 



  13 

3 Data 

The data needed to evaluate the model is not available in scholarly articles. Hence, this section uses 

data from available sources such as government reports and websites. Table 1 lists the model 

parameters, values, and data sources. 

Table 1 Model Parameters, Values, and Data Sources 
Var Description  Value Data Source 

y0 Analysis base year 2017 Scenario variable 

yH Analysis horizon year 2060 Scenario variable 

MsY0 Base year VMT for all SU trucks in the U.S. (million) 116,102 (FHWA, 2019) 

McY0 Base year VMT for all CU trucks in the U.S. (million) 181,490 (FHWA, 2019) 

s VMT mean annual growth rate for SU trucks in the U.S. (%) 1.9 (FHWA, 2018) 

c VMT mean annual growth rate for CU trucks in the U.S. (%) 1.6 (FHWA, 2018) 

Mev Proportion of SU trucks electrified in the horizon year (%) 100 Scenario variable 

kev Calibration for 5% of SU fleet electrified by 2030 0.289 (Heid, Hensley, Knupfer, & 

Tschiesner, 2017) 

yc Lag in electrification for CU trucks (years) 10 Scenario variable 

MIx Maximum proportion of infrastructure platoonable (%) 56 (Lammert, et al., 2018) 

kp Calibration for market forecast of 7.4% by 2023 0.149 (Mordor Intelligence, 2019) 

k Calibrate infrastructure to follow truck technology adoption  0.149 (Mordor Intelligence, 2019) 

yi Lag in infrastructure preparation for platooning (years) 5 Scenario variable 

μnsY0 SU truck fuel efficiency in base year (MPG) 7.4 (FHWA, 2019) 

μncY0 CU truck fuel efficiency in base year (MPG) 6.0 (FHWA, 2019) 

ns Annual increase in fuel efficiency for SU trucks (%) 0.917 (EIA, 2019) 

nc Annual increase in fuel efficiency for CU trucks (%) 0.917 (EIA, 2019) 

ηps Petroleum savings per mile from SU truck platooning (%) 13 (McAuliffe, et al., 2018) 

ηps Petroleum savings per mile from CU truck platooning (%) 5 Scenario variable 

CY0 Average price per gallon of diesel in the base year ($) 2.50 (EIA, 2019) 

φf Baseline annual increase in diesel price (%) 1.7 (EIA, 2019) 

f Pounds of CO2 released per gallon of diesel consumed 22.4 (EIA, 2016) 

PY0 Base year U.S. population (million) 319 (Colby & Ortman, 2015) 

φp Annual increase (%) 0.585 (Colby & Ortman, 2015) 

 

NREL found the total petroleum savings for a three-vehicle SU platoon ranged from 11.5% to 5% 

for travel separation distances of approximately 6 meters to 58 meters, respectively (McAuliffe, et 

al., 2018). The savings for a two-vehicle SU platoon ranged from 7% to 3.5% for the same range of 

travel separation distances. This suggests that total petroleum savings for the SU platooning team 

can increase further with a greater number of SU trucks participating and traveling more closely. 

Adding the trailer of the trailing truck as a second trailer to the leading truck to create a CU 
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increased the combined petroleum savings from 7% to 28%. This suggests an upper bound for the 

petroleum savings as a function of the achievable travel separation distance. It is conceivable that 

future technologies can reach the upper bound. Evaluation of the model uses the highest NREL 

petroleum savings of 13% for a three SU truck platoon traveling with 4 meters of separation. 

Platooning CU trucks will likely achieve a lower fuel efficiency gain because the efficiency gains 

from hauling additional trailers are already high. Furthermore, the potentially longer stopping 

distance from the increased load may require a larger travel separation, which decreases platooning 

fuel efficiency. Hence, the baseline scenario uses a 5% petroleum savings for CUs. 

4 Results 

The NREL report (Lammert, et al., 2018) stated, “Class 8 combination trucks in the freight sector 

consumed 29.6 billion gallons of fuel in 2016.” Model evaluation for the base year of 2017 showed 

that CU trucks consumed 30.2 billion gallons of petroleum. This is consistent with the FHWA 

reported annual VMT increase of 1.6% and validates the model calibration for the base year. The 

next two sub-sections estimate the petroleum consumption trends and monetary savings from 

petroleum purchase reductions under several technology adoption scenarios. 

4.1 Annual Petroleum Consumption 

Table 2 summarizes the petroleum consumption trends for a baseline scenario and four adoption 

scenarios. The baseline scenario is no adoption of either technology. Scenario 1 is the adoption of 

truck platooning only. Scenario 2 adds the adoption of electrification for SU trucks with a peak 

adoption rate beginning in 2040. Scenario 3 advances the scenario 2 peak adoption year to 2030. 

Scenario 4 adds the adoption of electrification for CU trucks with a 10-year lag behind SU trucks. 
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Table 2  Observations of Annual Petroleum Consumption for Five Adoption Scenarios 
Scenario Description Trend Result 

Baseline There is no adoption of 

platooning or truck 

electrification. 

Diesel consumption increases in direct proportion to heavy truck VMT 

from approximately 46 billion gallons in the base year to 64 billion gallons 

in the horizon year, representing a 40% increase. 

1 The industry adopts 

truck platooning but not 

electrification. 

The increase in petroleum consumption slows to an annual volume of 

approximately 2.5 billion gallons in the horizon year, representing a 3.8% 

annual reduction from the baseline scenario. 

2 Truck platooning and SU 

truck electrification with 

peak adoption rate in 

2040. 

Petroleum consumption begins to slow dramatically by 2030 but then 

begins to increase again after 2050 when the adoption of truck platooning 

and SU truck electrification begins to plateau. By the horizon year, SU 

truck electrification dominates the reduction in annual petroleum 

consumption by a factor of 8.5 over platooning alone. 

3 Truck platooning and SU 

truck electrification with 

peak adoption rate in 

2030. 

The dramatic slowing of petroleum consumption begins earlier as expected 

but then begins to increase again after the adoption of truck platooning and 

SU truck electrification plateaus. Earlier adoption increases the total 

reduction in petroleum consumption but equalizes by the horizon year 

because there are no additional gains from platooning or SU truck 

electrification. 

4 Truck platooning and SU 

truck electrification with 

peak adoption rate in 

2030, and CU 

electrification with a lag 

of 10 years. 

The dramatic slowing of petroleum consumption by 2025 continues until 

full adoption where trucks no longer consume petroleum. The 

electrification of CU trucks has a prominent effect because their VMT was 

56.3% higher in the base year alone, and their proportional annual increase 

of VMT is comparable. 

 

Figure 2 shows trends in the annual fuel consumption for the four scenarios relative to the baseline. 

Without the adoption of either technology, petroleum consumption will increase by 40% from the 

base year to the horizon year. This includes forecasted improvements in fuel-efficiency and the 

projected VMT for SU and CU trucks. The national reduction in petroleum consumption from 

platooning reaches 2.8 billion gallons by the horizon year, which represents a proportional impact of 

4.3%. Evaluation of the model with no platooning for the horizon year showed that the 

electrification of SU trucks alone could reduce petroleum consumption by 36.8 billion gallons. That 

is a factor of 13.2 larger than the impact of platooning. The limitations on platoonable miles place an 

upper bound on further reductions of petroleum consumption. 

The model reveals that once electrification for SU trucks plateau, the petroleum consumption 

from CU trucks causes the trend to reverse. Since CU trucks will account for a substantially larger 
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proportion of the truck VMT than SU trucks, it is important that the industry encourage for their 

electrification even if adoption lags SU trucks. 

 

Figure 2 Trends in annual petroleum consumption for different adoption scenarios. 

4.2 Annual Savings 

Figure 3 shows trends in the annual monetary value of reduced petroleum costs for different 

scenarios of technology adoption. Table 3 quantifies the achievable annual savings in the horizon 

year. By the horizon year, the reductions in petroleum costs can range from $14.3 billion to $330.8 

billion, depending on the technology adoption scenarios, and based on the EIA reference trend for 

diesel price increases. For perspective, the average selling price of a SU truck in 2018 was $117,426 

(ATD, 2018). Hence, the reduction in petroleum cost annually from the horizon year due to 

platooning is equivalent to approximately 122 thousand trucks, with a scenario that truck prices 

remain similar. With the full adoption of truck electrification, the horizon year annual petroleum cost 

avoided increases to the equivalent of approximately 2.8 million trucks. Although these 
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approximations do not account for inflation or the future price of trucks, the conversion provides 

perspective on the value of technology adoption to the industry. 

 

Figure 3 Monetary value of reduced petroleum cost for four technology adoption scenarios. 

The petroleum cost reduction resulting from truck platooning at the anticipated maximum 

team efficiency amounts to 4.3% per mile by the horizon year. This amount increases to 7% if CU 

trucks realize the same fuel efficiency enhancements from platooning as SU trucks do. The 

proportion could increase to 13% if platooning can achieve the upper bound in reduced petroleum 

consumption for both SU and CU trucks. Truck electrification more dramatically affects the national 

petroleum cost reduction. However, it is important to highlight the model does not reflect any 

replacement cost for electricity purchase. The amount of CO2 release prevented by adopting the two 

technologies is easier to calculate. An estimate of the reduction in release per capita provides more 

perspective. This calculation uses the forecasted annual population growth (Colby & Ortman, 2015) 

and the EIA diesel conversion factors (EIA, 2016) mentioned earlier. The result is that by the 
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horizon year, platooning alone could prevent an annual release of 148.5 pounds of CO2 per person. 

With the adoption of vehicle electrification, the amount increases to 3.4 thousand pounds per person. 

Table 3  Trends in reduced petroleum cost for four technology adoption scenarios. 
Scenario Description Trend Result 

1 The industry adopts truck 

platooning but not 

electrification. 

By the horizon year, the industry can reduce spending $14.3 billion 

annually by deploying truck platooning at the maximum expected fuel 

efficiency. This incorporates the EIA nominal forecast for an average 

annual increase in diesel price. This avoided cost per mile is equivalent to 

an average of 4.3%. 

2 Truck platooning and SU 

truck electrification with a 

peak adoption rate in 2040. 

By the horizon year, the industry can avoid spending $113 billion 

annually on petroleum by adoption electrification for SU trucks. This 

uses the same diesel price change forecast as scenario 1. 

3 Truck platooning and SU 

truck electrification with a 

peak adoption rate in 2030. 

The earlier adoption of electrification for SU trucks accelerates the 

avoided petroleum cost. At full adoption, the cost reduction equalizes to 

$125.5 billion and then continues to increase in line with petroleum price 

increases. 

4 Truck platooning and SU 

truck electrification with 

peak adoption rate in 2030, 

and CU electrification with 

a lag of 10 years. 

Adding electrification of CU trucks with a lag of 10 years from SU trucks 

accelerates the avoided petroleum cost to $330.8 billion by the horizon 

year. Avoided petroleum cost continues to increase in line with petroleum 

price changes. 

 

5 Discussion 

The scientific value of the closed-form model is that it provides an aggregate estimate of the 

potential reduction in national petroleum consumption by adopting truck platooning and vehicle 

electrification technologies. Accounting for jurisdictional differences in emissions or for differences 

in the operating profile among trucks such as the time spent accelerating, braking, hoteling, and 

idling will require a more complex data-driven model (NAS, 2019). The main trade-off is the 

computational time to achieve a desired geospatial accuracy and precision. The closed-form model 

uses an annual average VMT growth rate for calibration. Therefore, the model will not provide an 

accurate prediction for future years if the actual VMT deviates substantially from the forecasted 

average growth trend. 

The main findings from the scenario simulations are that: 
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1) The number of platoonable miles and the number of trucks available for platooning on any 

given trip establishes a significant upper bound on the potential benefit of petroleum 

consumption avoided. 

2) Vehicle electrification could produce a more dramatic reduction of national petroleum 

consumption than platooning could. 

The simulation of platooning effects could include additional factors such as the number of 

participants typically available on a given route, and possible legal restrictions on the number of 

participants in a platoon. To account for this, the model can restrict the proportion of trucks that 

participate in platooning by a factor that depends on the proportion of time that platoons form along 

platoonable routes. It is not possible to determine a value for such a factor until platooning becomes 

widespread and fully adopted. Model calibration uses the maximum proportion of reduced petroleum 

consumption currently achievable for a three-truck platoon. It is possible that future technologies 

could achieve further enhancements in fuel efficiency by enabling longer convoys and achieving a 

further overall reduction of drag by dynamically optimizing the separation distances among different 

trucks. 

As with all forms of technology, the adoption of truck platooning will evolve over time. 

Truck platooning offers additional benefits beyond enhanced fuel efficiency. For instance, 

platooning can improve traffic safety by reducing reaction times, smoothing out traffic flows, 

improving lane throughput, increasing driver comfort, and removing opportunities for human error 

(Bhoopalam, Agatz, & Zuidwijk, 2018). The energy savings from reduced drag can increase the 

range of batteries by 60 to 120 miles (Guttenberg, Sripad, & Viswanathan, 2017). 

Today, the industry views platooning as a stepping-stone to autonomous or self-driving 

trucks because carriers can eliminate back-up drivers in following vehicles (Haas & Friedrich, 
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2018). The formation of platoons during the early phases of adoption will rely on a service provider 

to match partners, synchronize departures, and schedule rendezvous (Gerrits, 2019). As adoption 

increases, trucks will use various algorithms to engage dynamically along their route (Saeednia & 

Menendez, 2016). The entire platoon formation and disengagement process will likely become fully 

automated once self-driving trucks become the norm. 

The results of this analysis is meaningful because it shows that a dramatic reduction in 

national petroleum consumption from truck electrification will result in a similarly dramatic 

reduction of GHG releases along truck routes. We caution, however, that the electrification of all 

trucks will require a continuous improvement in battery technology, cost reduction, and the 

widespread availability of dynamic and static charging stations. Furthermore, a net reduction in 

GHG releases will require the use of alternative fuels to compensate for the additional electricity 

needed to charge batteries. The model does not account for this net reduction in GHG emissions. 

6 Conclusion and Policy Implications 

The demand for freight movements by trucks will steadily increase with the growth of population 

and trade. Currently, combination unit (CU) trucks account for approximately 56% more vehicle-

miles-traveled (VMT) than single unit (SU) trucks. Various studies predict this trend will continue. 

The model indicates that without truck electrification, petroleum consumption will increase in direct 

proportion to VMT. The electrification of SU trucks is underway, but the electrification of CU trucks 

is likely to lag because of the additional power needed to haul double or triple the load of SU trucks. 

Past studies about platooning focus on the achievable fuel efficiency enhancements for SU trucks. 

However, those studies did not account for potential national impacts from the adoption interplay 

between truck platooning and truck electrification. 
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Uncertainties about the timing and levels of adoption have led to a substantial amount of 

speculation based on various assumptions. Traditional methods of modeling technology adoption 

and forecasting travel demand require vast amounts of data that could be expensive to obtain. Such 

methods depend on complex software, trained professionals with experience using the software, and 

ample time to run and explore various scenarios. There are no alternative closed-form models to 

assess quickly the coupled effects from adopting truck platooning and electrification technologies. 

This work contributes a closed form model that considers the interplay of technology adoption, fuel-

efficiency changes, petroleum price changes, and freight demand over time. 

The scientific value of the closed-form model is that it complements complex data-driven 

models by enabling rapid first-order exploration of various scenarios for further microscopic 

analysis. The explicit structure of a closed-form model provides insights, intuition, and a clear 

understanding of the adoption interplays among the various technologies. The model provides a 

macroscopic view of the potential national benefits for a wide range of scenarios. Planners and 

policymakers can apply the model to any country or region by calibrating it with regional VMT data. 

However, users should be aware of the limitations in predictive accuracy because the model hinges 

on the accuracy of forecasts for technology adoption, petroleum price changes, and VMT. 

It is possible to explore jurisdiction-specific emissions with the closed-form model by 

calibrating it with local VMT and truck type proportion data for the base year. The model is a non-

linear function of time. After calibration with base year data for 2017, the model quantified the 

potential national fuel consumption reduction for various scenarios of technology adoption. The 

industry’s annual reduction in petroleum consumption from platooning alone approached a ceiling of 

less than 4% in the horizon year of 2060. Based on the Energy Industry Association nominal forecast 

for diesel price changes and the U.S. Federal Highway Administration forecast for truck VMT, the 
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horizon year petroleum cost reduction from platooning alone averaged 4.3% per mile. The number 

of platoonable miles, opportunities to rendezvous, and the minimum achievable travel separation gap 

limit further gains in platooning fuel efficiency. The model shows that at full adoption, SU truck 

electrification alone could enable more than a 13-fold reduction in petroleum consumption relative 

to platooning. However, without adding CU electrification, total petroleum consumption reverses its 

downward trend after the adoption of platooning and SU electrification plateaus. 

The findings of this research suggest that policy making should in general encourage the 

adoption of both technologies because of their combined benefits beyond GHG reduction and cost 

reduction. General policy levers should include adoption incentives and the modification of 

legislation and infrastructure to remove barriers that currently make platooning impractical. In 

addition to the general policy implications, the scenario simulations suggest the following specific 

policy considerations: 

1) Define and standardize platoonable miles within states and across state boundaries. 

Definitions should account for bridge loading restrictions that limit the number of trucks 

in a platoon and underscore any influences on route choice. 

2) Modify following-too-closely (FTC) laws that currently prohibit platooning. 

3) Emphasize the importance of electrifying combination unit trucks. 

4) Incentivize the continuous improvement of battery technology and their cost reduction. 

5) Promote infrastructure investments that will lead to the widespread availability of 

dynamic charging systems and rapid charging stations. 

6) Incentivize the use of alternative fuels to feed the battery charging infrastructure. 

In future research, the authors will explore ways to modify traditional models using simulation 

software and big data to determine impacts from a similar range of scenarios. Comparing the black-
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box approach of traditional but more accurate methods with the close-form model will provide 

insights to complement each other. 
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