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Abstract— Inertial sensors such as accelerometers and 

gyroscopes have been widely used since the early 1990s to monitor 

the condition of transportation assets. Recent improvements in 

their performance, a reduction in cost, and sensor miniaturization 

has resulted in a growing interest expanding their use. This 

research is an extensive and systematic review of their application 

considerations, challenges, and opportunities for improvements in 

railroad track condition monitoring. Research questions were 

developed to guide the selection of relevant articles from 

databases.  The authors report key findings in the areas of sensor 

specification, sensor location, and sensor signal processing. 

Index Terms— Digital signal filtering, Sample rate, Sensors, 

Track geometry monitoring 

 

I. INTRODUCTION 

N inertial sensor is an electronic device designed to 

measure orientation with gyroscopes and accelerations 

with accelerometers. Inertial sensors are widely used in 

transportation infrastructure inspection and condition 

monitoring. Some studies such as Velaga et al and Zhang et al 

[1], [2] describe how the information from global positioning 

systems (GPS) can be fused with inertial sensors to generate the 

vehicle trajectory to enhance the map-matching in vehicle 

navigation system. Another study by Stocker et al [3] uses 

vibration (accelerometer) sensors to monitor pavement 

acceleration and magnetometer sensors for vehicle detection. 

However, the use of inertial sensors for monitoring railroad 

infrastructure is limited.  For the railroad industry, the process 

of monitoring is to identify faults, understand their causes, and 

to predict their occurrence by identifying and characterizing 

track irregularities. Track inspection, on the other hand, mainly 

focuses on using measurement technologies such as a track 

recording vehicle (TRV) or hauling a track recording coach 

(TRC) around to accumulate data on the track geometry. The 

scope of this paper focuses on the use of inertial sensors to 

monitor transportation infrastructures, especially railroad tracks 

to identify faults. 

The railroad industry has a significant impact on the nation’s 

economy and energy consumption. Track condition monitoring 

is fundamental and critical for ensuring the safety, reliability, 
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and cost-efficiency of railroad operations [4]. Federal track 

safety regulation require railroads to inspect all tracks in 

operation as often as twice weekly. Railroad companies deploy 

expensive and relatively slow methods using human inspectors 

and expensive automated inspection vehicles to inspect and 

monitor their rail tracks. The current practice is expensive and 

also decreases the rail productivity by reducing track time for 

railroad industry to perform inspection which also increases the 

safety risk for railway inspection workers. 

Sensors such as inertial sensor, accelerometers, gyroscopic 

sensors, and global position system (GPS), are carried on a 

railway vehicle to continuously monitor and inspect rail assets 

to meet the growing needs of safety improvement, reliable and 

low-cost rail operations. Therefore, this research reviews the 

current literature to understand the challenges and opportunities 

for further research to optimize and reduce the cost of the 

application. 

This paper presents a review of the application of inertial 

sensors to track condition monitoring. The review focuses on 

developments from the early 90s to the present time. The paper 

covers the proof of concept on track condition monitoring using 

inertial sensing during the early stages, the development, the 

evolution, and the application over the past decade, and future 

research directions. 

II. METHODS 

A set of research questions guided the literature review and 

subsequently focused the selection of articles for detailed 

review. 

A. Research Questions 

The following research questions focused the literature 

review on methods and considerations in railroad track 

condition monitoring using inertial sensors: 

1) What existing applications use inertial sensors to 

identify track issues? 

2) What types of track faults were identifiable? 

3) What types of inertial sensors were used? 

4) What are the sensor data processing algorithms? 

5) Where are the sensor installed and how are their 

locations determined? 

Transportation and Logistics, North Dakota State University, ND 58108 USA.  

* Corresponding author: Pan.lu@ndsu.edu 

 

Railroad Track Condition Monitoring Using 
Inertial Sensors and Digital Signal 

Processing: A Review 

Leonard Chia, Bhavana Bhardwaj, Pan Lu*, Raj Bridgelall 

A 

mailto:Pan.lu@ndsu.edu


1558-1748 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2018.2875600, IEEE Sensors
Journal

 2 

6) What are the challenges that researchers face? 

B. Article Selection 

The authors systematically searched published peer-

reviewed journal articles and papers found in the Web of 

Science: Core Collection (Thomas Reuters), ProQuest SciTech 

Collection, Engineering Village (Elsevier), Transport Research 

International Documentation (TRID) and IEEE Xplore from 

January 1, 1990 to April 30, 2017. Coverage and relevance in 

engineering and transportation were the important factors in 

selecting these five electronic databases. The searched keyword 

string was “("inertial sensor" OR accelerometer OR gyroscope 

OR IMU) AND (track OR rail OR railroad) AND ("health 

monitoring" OR condition)” for the title, abstract, and keyword 

fields of their search engines.  

The initial total number of articles identified was 4,654. The 

first selection stage involved a review of the title and abstract 

of each article. After excluding unrelated and duplicated 

articles, the number of relevant articles reduced to 40. The 

second selection stage involved a careful review of these 40 

articles, obtained from North Dakota State University Library. 

The criteria for including an article in the final literature review 

were: (1) the study involved inertial sensors, and (2) the study 

reported on track fault detection, track condition monitoring, 

fault estimation, or fault location. 

III. FINDINGS 

This section organizes and summarizes the findings from the 

literature review in terms of the key considerations and the 

technical challenges of using inertial sensors to monitor the 

condition of railroad tracks. The key considerations are to 

determine the sensor specifications, the sensor locations, and 

the design of the signal processing methods. 

A. Sensor Specification 

Many varieties of inertial sensors are available on the market, 

ranging from uniaxial accelerometer/gyroscopes to inertial 

measurement units (IMUs) with 6 degrees of freedom. The 

dynamic range of the measurements varied, depending on the 

sensor type and implementation characteristics. For 

accelerometers the dynamic range was from ±2 g to ±500 g, 

where g is the g-force unit. For gyroscopes, the dynamic range 

of the measurements was from ±50 ° s-1 to 1,000 ° s-1. 

The inertial sensors were all sampled at different rates, and 

the signal filtered within different frequency ranges, depending 

on the purpose of the study and the system design. Inertial 

sensors and their configurations varied, depending on the 

purpose of the study. Table 1 summarizes the specifications and 

sensors used in these studies. The articles reported no clear 

indication of the sensor selection, and most did not report on the 

sensor types, their configurations, or the rationale for their 

selection. In general, the selection of sensor type (accelerometer 

and/or gyroscope) was independent on the faults or track 

irregularities analyzed. For example, a direct integration based 

approach required measurements of both acceleration and 

angular velocity. In some cases, the selection of sensor dynamic 

range of measurement was determined by the location of the 

sensor. In most cases, a more remotely attached sensor had a 

larger measurement dynamic range. 

B. Sensor Attachment Location 

Most of the reviewed studies subjectively chose to attach the 

inertial sensors to the axle-box or the bogie. One study by 

Bocciolone et al [12] attempted to collect data from inside the 

cabin on an overhead luggage rack. A study by Wei et al [34] 

attached the sensors to the floor of the train and processed 

signals to identify faults in terms of track geometry 

irregularities. Six studies [7], [8], [13], [16], [29], [31]  attached 

inertial sensors to the car body to identify track geometry 

irregularities. Table 1 summarizes the sensor characteristics and 

their attachment locations.  

None of the reviewed articles reported on the effect of the 

sensor attachment locations on the quality of signal 

measurements and the selection of signal processing 

algorithms. However, some studies found that the following 

factors need to be considered while selecting a sensor location: 

(1) The linkage between sensor measurement and the 

train speed. Even traveling at the same speed, the 

characteristics of acceleration and angular 

velocity are different from location to location. 

Therefore, the performance of fault detection 

algorithms depend on the sensor location [23]. 

(2) The vibration of the wheel to rail contact and the 

suspension system. Vibration and other noise 

introduced during sensor data collection may 

corrupt the measured signals and result in false 

positives or missed detections [18], [20], [24]. In 

particular, one study by Wei et al [34] found that 

it was difficult to detect low frequency car body 

vibrations using threshold processing methods. 

Most of the reviewed studies focused on using inertial 

sensors to detect certain types of rail defects (Table 2). In 

general, the literature review provided evidence that researchers 

have successfully applied inertial sensors to identify track 

geometry issues.  Almost all of the applications focused on 

either vertical track defects or rail corrugation. The exception is 

one study that focused on squat and thermite weld detection. 

Sensor locations were subjective, and they varied even for the 

same type of fault identification. Therefore, the authors identify 

considerations for sensor placement as a gap in the literature 

[23]. One study by Li et al used a fault classification method 

with fault identification and isolation systems to identify the 

fault type and level [37]. That application included signal 

filtering techniques, which is discussed further in the next 

section. 

C. Signal Filtering Techniques 

Signals from inertial sensors contain noise and other unwanted 

signal elements, including low-frequency components such as 

undesirable offsets. Therefore, the selection of the appropriate 

signal filtering technique is crucial to the success of the 

application. Signal filtering reduces or eliminates unwanted 

signal features or enhances the desirable features in some 

frequency ranges that could help to identify faults [38]. 

D. Track Fault Identification 

To understand the basics of the filter, it is essential to 

comprehend how the information is contained in the signals. 

There are two domains that contain information of interest: 
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• Time domain where the phase and amplitude of a 

signal contains information. 

• Frequency domain where the spectral content of the 

signal contains information [39].  

Complete information about the filter can be represented by 

an impulse response, a step response, and a frequency response. 

All three responses describe how the filter will react in different 

circumstances [40]. However, filters are most easily understood 

by either their step responses or their frequency responses [39].  

In the time domain, the impulse response is the output 

sequence when the input is an impulse preceded and followed 

by zero-valued samples [41]. Frequency response is obtainable 

by calculating the discrete Fourier transform (DFT) of the 

impulse response [42].  

The step response is the filter’s output given an abrupt 

change in the input signal. It is also used to measure how well 

a filter performs in the time domain. The following three 

parameters that are necessary to evaluate the performance of the 

filter: rise time, overshoot, and phase linearity [39], [40]. 

• Rise Time – the number of output samples between 

10% and 90% of the output change. 

• Overshoot – a filter generated distortion of the 

information contained in the time domain which 

appears as ripples at the edges of the output steps.  

• Phase Linearity – the symmetry of the step response 

above and below the 50% amplitude threshold. 

In the frequency domain, the purpose of the filters is to allow 

some frequency (pass band) to pass unaltered, while completely 

blocking other frequencies (stop band). The frequencies 

between the boundaries of the pass band and stop band are 

within the transition band, which occurs around the filter’s 

cutoff frequency. 

• Pass band - the range of frequencies over which a 

filter passes signal energy.  

• Stop band - the range of frequencies from which the 

filter removes signal energy. 

• Transition - the range of frequencies between the 

passband and the stopband. 

• Cut off frequency - a frequency located at the half-

power level between the pass band and the stop band. 

In the frequency domain, three parameters, namely the roll-off, 

passband ripple, and stopband attenuation characterizes the 

performance of four common type of filters: low-pass, high-

pass, band-pass, and band-reject.   

• Roll off – describes the steepness of the filter response 

in the transition region from the passband to the 

stopband. 

• Passband ripple – a distortion of signals occurring in 

the passband.  

• Stopband attenuation – the amount by which the filter 

lessens the range of frequencies that the filter blocks.  

1) Type of Filters 

High pass, low pass, band pass, or band reject filters are 

implemented as either analog or digital filters. A popular 

implementation of digital filters is the linear time invariant filter 

(LTI). Analog filters use analog electronic circuits, made up of 

resistors, capacitors, and operational amplifier, to produce the 

required filtering effect. These filters are widely used in 

applications such as noise reduction, graphic equalizers in hi-fi 

systems, and many other areas.  

Digital filters are a vital part of digital signal processing and 

have two general purposes: signal separation and signal 

restoration [40]. Various digital filters are based on the fast 

Fourier transform, which is a mathematical algorithm that 

quickly extracts the frequency spectrum of a signal, thus 

allowing the spectrum to be manipulated before conversion into 

the equivalent time-series signal. There are two categories of 

digital filters – recursive or non-recursive.  

Signal separation is required when a signal has been 

contaminated with interference, noise, or other unwanted 

signals. Signal restoration is used when a signal has been 

distorted in some way. Advantages of digital filters [43] are 

that: 

• They can be adaptive by using an algorithm and a 

programmable processor to adjust the frequency 

response automatically. 

• Thermal and environmental variations cannot change 

their performance.  

• They can handle low-frequency signals accurately. 

• They can be changed easily without affecting the 

circuitry.  

• Fast DSP processors can manage a complex 

combination of filters in parallel or in series 

The disadvantages of digital filters [43] are that: 

• They require a much longer time to design and build 

• The achievable signal bandwidth is much lower than 

that of the analog counterpart. 

Common frequency domain filters operate as: 

• Low-pass -- passes energy at low frequencies and 

attenuates energy at high frequencies. 

• High-pass -- passes energy at high frequencies and 

attenuates energy at low frequencies.  

• Band-pass -- passes energy in one frequency band and 

attenuates energy above and below that band. 

• Band-reject -- passes energies in frequencies other 

than those in a particular range.  

The selection of frequency domain filters depends on the 

research targets and application needs. Moreover, some 

common advantages and disadvantages of frequency domain 

filters are often important selection criteria. The advantages of 

frequency domain filters are: 

• Frequency filtering is more efficient when using 

convolution with large kernels  

• The reverse process of deconvolution is similarly 

efficient 

• Filters have a low cost and are easy to control 

The disadvantages of frequency domain filters are: 

• The filter is only a first-order filter and the transition 

band containing the cutoff frequency may not be 

sufficiently steep to achieve the desired results. 

2) Implementation of Digital Filters 

Linear time invariant filters (LTI) are those whose 

behavior does not change over time. They are described in 

terms of difference equations. Linearity means that the filter 

meets the following scaling and superposition properties: 

X[n] → y[n] => α x1[n] + β x2[n] → α y1[n] + β y2[n]  (1) 
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LTI filters are implemented using finite impulse response (FIR) 

or infinite impulse response (IIR) methods. The general 

representation of the FIR filter of length N is: 

𝑦[𝑛] = ∑ 𝑏𝑘𝑥[𝑛 − 𝑘]𝑀
𝑘=0               (2) 

 

where x[n] is the input signal, y[n] is the output signal, M is the 

filter order (order M = N- 1), bk is the value of the impulse 

response at the kth instant for 0 ≤ k ≤ M. Characteristics of an 

FIR filter is as follows [44]: 

• The output is based on weighted delays of the input 

signal 

• It is entirely a discrete time domain method 

• It is a feedforward filter 

• Its implementation is non-recursive or transversal 

• It has only zeros (no poles), also known as all-zero 

filters. 

• Its advantage are that it is: always stable, prevents 

phase distortion (linear phase), offers great flexibility 

in shaping their magnitude response 

• Its drawbacks are that it: requires more computation 

than IIR filters with a similar effect and requires more 

memory 

The basic structure of the FIR filter requires a multiplier, an 

addition, and a unit delay. The general representation of the IIR 

filter is: 

𝑦[𝑛] = ∑ 𝑎𝑙𝑦[𝑛 − 𝑙]

𝑁

𝑙=1

+ ∑ 𝑏𝑘𝑥[𝑛 − 𝑘]

𝑀

𝑘=0

 (1) 

where bk are the feed-forward coefficients, al is the feedback 

coefficients. To implement such a system, computing each 

output signal value requires N + M + 1 multiplies. However, the 

system is of Nth order since the number of poles has a significant 

influence on the system properties. Characteristics of IIR filters 

are as follows [45]: 

• based on transforming a continuous-time analog filter 

into discrete-time filter 

• incorporates delays of the output signal 

• allow both zeros and poles 

• Ccn be implemented with recursion  

• is a feedback filter  

• advantages include: leverages decades of experience 

in designing analog filter; less expensive than FIR 

filters; allows for greater shaping potential  

• drawbacks include: can have phase distortion and 

ringing; are not guaranteed to be stable 

Kalman filter: A Kalman filter (KF) is a model based method. 

A Kalman filter offers more practical implementations based on 

the recursive concept [37]. A KF consists of a predictive block 

and correction block. Time update uses the dynamic equation 

to predict the next time step. Measurement update explains how 

the information available in the new measurement is 

incorporated into the estimate. The time update of the KF 

consists of the current state prediction and system process 

covariance calculation [37]. The current state prediction is: 

𝑋𝑘 = 𝐴𝑋𝑘−1 + 𝐵𝑈𝑘 (2) 

and the covariance calculation is: 

𝑃𝑘 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 (3) 

where Uk is the input of the system. A and B are the system 

matrices of the linearized vehicle model, 𝑋𝑘 is an a priori state 

estimate at step k given knowledge of the process prior to step 

k, 𝑋𝑘−1 is an a posterior state estimate at step k-1, and Q is the 

covariance of the system process. 

The measurement update consists of Kalman gain, state 

update, and covariance update. The Kalman gain is: 

𝐾𝑘 = 𝑃𝑘𝐻𝑇(𝐻𝑃𝑘𝐻𝑇 + 𝑅)−1 (4) 

and the state update is 

�̂�𝑘 = 𝑋𝑘 + 𝐾𝑘(𝑍𝑘 − 𝐻𝑋𝑘). (5) 

The covariance update is 

�̂�𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘 (6) 

where 𝐾𝑘 is the Kalman gain, X̂k is the predicted result at time 

step k, R is the covariance of the measurment noise Vk and I is 

the identity matrix of 1. The KF is widely used for linear 

systems and can offer an effective and efficient estimation for 

them. However, it cannot provide accurate estimation for 

nonlinear systems. Rather, the Extended Kalman filter is used 

for nonlinear system estimation, but it has some constraints 

[37]: 

• Sufficiently small time steps for stability 

• Sufficiently small time step intervals inevitably 

increase the analysis time.  

Convolution is the mathematical process of combining two 

signals to form a third signal that has much better performance 

than those created by recursion filters, but execute much more 

slowly [40]. They are also called finite impulse response filters. 

However, use of these filters creates a delay so that all incoming 

samples receive the same treatment, this preserving the signal 

phase relationship [39]. An algorithm called FFT convolution 

is used to increase the speed of the convolution, which allows 

the FIR filter to perform faster. 

In DSP, an impulse is a signal composed of all zeros except 

a single non-zero point. Here, three important terms are used: 

delta function (δ[n]), which is a normalized impulse frequently 

called the unit impulse. An impulse response (h[n]) is the output 

of a linear system when the input is a delta function. The input 

and output signals are often represented as x[n] and y[y].  

If the input to a system is an impulse, which can be expressed 

as a shifted (integer quantity) and scaled delta function, i.e. x(k) 

 δ[n-k], where k is the sample index number (coefficient), an 

input signal x[n] enters a linear system with an impulse 

response h[n], resulting in an output signal y[n]. In the equation 

form: 

  

𝑌[𝑛] = 𝑥[𝑛] ∗ ℎ[𝑛] (7) 

 

where the * symbol represents the convolution operation. The 

convolution sum is a general expression of a filter’s output in 

terms of the impulse response such that 

𝑦(𝑛) = ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘].

𝑀

𝑘=0

 (8) 

Deconvolution is a filtering implementation that reverses the 

process of convolution. Recreating the signal as it existed 

before the convolution took place. Deconvolution works well 

in the frequency domain. It usually requires knowing the 

characteristic of the convolution, which is the impulse response 

and the output vector (spectra). Researchers [40], [46] have 

applied deconvolution filtering to measure railcar body vertical 

accelerations. The authors used Laplace transform theory and 
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pole-zero plots to achieve the deconvolution. In essence, 

deconvolution filtering eliminates or at least reduces the 

amplification and attenuation effects of the railcar suspension 

system. The advantages of deconvolution filtering are that they 

are often linear, deterministic, non-iterative and fast. The 

disadvantages are their sensitivity to noise, which can result in 

noise amplification and the difficulty of incorporating available 

a priori information 

3) Track Fault Identification 

Model-based methodologies are preferred when there is no 

direct measurement of parameters but the relationship between 

the input signals and output signals are known. The evaluation 

of residuals of the model-based methodologies can identify 

faults or irregularities in the dynamic systems. Inputs for the 

model are the sensor collected data, which are then used to 

predict the dynamic behavior of the vehicle system. A 

comparison of the model outputs with the real-time measured 

output produces residuals. Minimizing of the residuals by 

adjusting the model parameters could yield an estimation of the 

faults/irregularities in tracks. 

The Kalman filter is widely used as an effective health 

monitoring method for linear systems and the extended Kalman 

filter is normally used for nonlinear stochastic systems. The 

Kalman filter is widely used for state and parameter estimation. 

In [47], a 2-axle railway vehicle with solid axle wheelsets 

was studied using a KF-based state observer. The researchers 

used three accelerometers and five gyroscopes to estimate the 

vehicle dynamics and track information that are related to the 

18 state variables from the sensors. The estimation errors of 

low-frequency components increase dramatically with the 

increase in accuracy of estimation due to the reduction of sensor 

noises.  

The extended Kalman filter was used in a fault detection and 

isolation system for a secondary and anti-yaw dampers of a 

Coradia Class 175 railway vehicle [48], [49]. Only lateral 

motion and yaw motion of two wheelsets and one bogie and 

lateral motion of the car body is considered when developing a 

half train model of the vehicle. A limitation of Kalman filter is 

that is only able to deal with white noise, so the dynamic 

equations of this model are extended with a sharper filter to 

cover the later track irregularities. Fault detection and isolation 

are calculated using the residual of measurements and 

estimation with extended Kalman filtering. Simulation results 

using the extended Kalman filter are found to be acceptable. 

Signal-based methods are developed for use when the output 

signal is the only signal available. Such methods analyze the 

output signals directly by extracting fault related characteristics 

in various ways. Once extracted from noise, the amplitudes or 

amplitude densities within a certain bandwidth of a signal could 

be indications of the fault relevant signal characteristics. 

Changes in the frequency and amplitudes can be analyzed to 

estimate the parameters from the parametric signal models. The 

signal processing methods used are spectral analysis, wavelet 

analysis and band-pass filters [50]. 

Spectral analysis is widely used to acquire more intuitive 

fault-relevant features than time-domain analysis [51]. 

However, the performance of spectral methods will depend 

heavily on the selection of the signal window size. In another 

study [52], two different approaches were used to detect faults 

in the suspension of a Shinkansen vehicle. In the first approach, 

“healthy” and “unhealthy” parts are used for suspension fault 

detection using the peak distribution of acceleration signals. In 

the second approach, “healthy” and “unhealthy” vehicles with 

faults in one bogie were compared using the vibration states. 

Based on the ideal fault-relevant frequencies, faults can be 

detected. Sensor-collected data were analyzed using a band pass 

filter. Differences in vibration state distribution are taken as 

fault indicators. 

IV. CONCLUSION AND CHALLENGES 

This paper presents an overview of the existing techniques used 

for inertial sensors on-board railway vehicles for railroad track 

condition monitoring. Model-based and signal based methods 

are both discussed, including a presentation of the basic 

theories, applications, and analysis. 

A. Inertial Sensor Application 

 The application of inertial sensors is being introduced on 

railway vehicles for track condition monitoring. Inertial 

sensors deliver robust performance, and are readily available 

at a low cost, with low power consumption, and are small in 

size. The displacement information of the vehicle can be 

acquired based on the acceleration signals from inertial 

sensors but there is still a need to improve their accuracy. 

Inertial sensors can be attached or mounted at various parts of 

the vehicle such as the axle boxes, bogies, car-bodies or the 

overhead luggage rack. Due to the high-magnitude impact 

forces of wheel-rail interaction, the life cycle of sensors that 

are mounted on axle boxes or any other position below the 

suspension system is limited. Moreover, the effects of sensor 

location on signal data quality and fault identification 

accuracy needs further research. 

Previous research show that the application of inertial 

sensors was successfully used on railway vehicles going over 

known track faults and after the digital signal processing of 

the inertial data, can identify several track faults such as 

vertical track defects, rail corrugation, track alignment, 

vertical rail profile, squat and thermite weld, track irregularity 

and track geometry. Even so, their locations varied for the 

same fault target. Previous research shows that sensor 

positioning decisions are subjective. Further research is 

needed on methods of objective decision-making for 

positioning the sensor. 

One challenge for sensor monitoring analysis is to identify 

the right measurements. Reliable and valid measurements are 

important for an effective condition monitoring approach.  

There is the question of finding relevant and correct 

parameters in order to obtain the most relevant measuring 

data. Subsequently, a transformation of that data into relevant 

and understandable information will help decision-makers in 

the maintenance management process. 

B. Challenges of Filter Practices  

The sample rate of the inertial sensors may vary during 

operating because of slight variations in processing speed and 

sensor data acquisition between samples. That is, in practice, 

sensors do not sample at exactly the rate requested. 

Furthermore, different sensor platforms or embedded systems 

may sample at different rates, despite identical settings. 

Subsequently, different sensor platforms will capture inertial 
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energy from various frequency bands at the higher end of the 

spectrum. 

Filters in electronic systems have cutoff frequencies that 

applies to an edge in a low-pass, high-pass, band-pass or band-

reject characteristic – a frequency characterizing a boundary 

between a passband and a stopband. A cutoff frequency is 

determined by the -3dB point of a filter magnitude response 

relative to a peak passband value. Digital filtering at a fixed 

cutoff frequency will normalize the sampled signals from 

different sensors or different sensor platforms and remove 

unwanted or noisy components. 

Aliasing is an effect that causes different signals to become 

indistinguishable when sampled. In other words, high-

frequency input signals will appear as low-frequency signals at 

the output. If aliasing occurs, no signal processing operation 

downstream of the sampling process can recover the original 

continuous time signal. Aliasing occurs when a signal is 

sampled too slowly. To prevent aliasing, the signal must be 

sampled at least twice as fast as the highest frequency 

component (Nyquist criterion). Also, aliasing is avoided by 

applying an anti-aliasing filter (a low-pass filter) with a cut-off 

frequency of f_s∕2. This filter removes frequencies greater than 

f_s∕2 where f_s is the sampling frequency. The Nyquist 

sampling theorem dictates that the maximum cutoff frequency 

of a digital filter must be less than half the minimum sample 

rate of the sensor. 

Group delay distortion occurs when signals at different 

frequencies take a different amount of time to pass through a 

filter. If the phase response is linear, the group delay of the filter 

is constant, which means that each frequency component 

experiences the same delay. Otherwise, the frequency 

components have different delays, which causes a smearing 

phenomenon in the time-domain signal. It is important to 

describe a filter’s passband characteristics or evaluate the 

filter’s phase nonlinearity.  

In practice, due to tradeoffs in roll-off steepness, filter delay 

and computational complexity, the maximum cutoff frequency 

should be set much lower than half the minimum sample rate of 

the sensor. Therefore, some practices use as high a sample rate 

as possible, within some reasonable considerations for 

minimizing the data accumulation rate and the sensor power 

consumption. 

Inertial sensors suffer from bias instability, noisy output, and 

insufficient resolution. Digital filtering is an important 

technique used to address such issues. Many studies have been 

conducted or proposed to obtain “good” digital filters that have 

high performance. However, in practical applications, few 

research results are used efficiently. Because the research field 

of digital filters has become diverse and complicated, there is a 

lack of understanding of what constitutes a good digital filter 

and how to obtain it. 

C. Future Research 

In future work, the authors will address these gaps in the 

literature in terms of system design, implementation, and 

evaluation. The effort will include an analysis to optimize the 

number and positions of sensors, develop methods of 

appropriate digital signal filtering, develop techniques of signal 

feature extraction, and study their linkages to track fault 

identification. 
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TABLE I  Inertial Sensor Specifications in Reviewed Studies 

Source Year Sensor 

Model 

Number 

of 

Sensors 

Types and Specification Sampling 

Frequency 

(Hz) 

Position of 

the Sensor Accelerometer Gyroscope 

Measuring 

Axes 

Measuring 

Range 

Measuring 

Axes 

Measuring 

Range 

Naganuma 

et al [5] 

2000  4 2  3   Axle-box 

Weston et 

al [6] 

2006  15 3 ±100g; ±10; 

±4g 

3  4000 Bogie frame 

Kojima et 

al [7] 

2006  3 3    2000 Vehicle 

body, axle-

box 

Hayashi et 

al [8] 

2006  3 3    2000 Vehicle 

body and 

axle-box 

Weston et 

al [9] 

2006   3  3   Bogie, axle-

box 

Weston et 

al [10] 

2007  4 2  3   Bogie 

Weston et 

al [11] 

2007  4 2 ±10g 3 ±50 ° s-1  Bogie  

Bocciolone 

et al [12] 

2007  9  ±250g   3000 Each axle-

box of 

bogie 

Tsunashima 

et al [13] 

2010  3 3  3  2000 Car body 

and bogie 

Uhl et al 

[14] 

2010  3 3     Bearing box 

of wheelset 

Molodova 

et al [15] 

2011   3     Axle-box 

Tsunashima 

et al [16] 

2011  3 3  3   Car body 

Lee et al 

[17] 

2011   3  3  2048 Axle-box 

and bogie 

Heirich et 

al [18] 

2011 XsensMTx 1 3    100 Overhead 

luggage 

rack 

Boronakhin 

et al [19] 

2011  4 3  3  4000 Axle boxes 

Real et al 

[20] 

2011  5 3     Axle-box, 

bogie 

Lee et al 

[21] 

2012  2     2048 Axle-box 

and bogie 

Herráiz et 

al [22] 

2012 PCB 

354C02 

4 3 ±500g   100 Lead bogie 

axle-box 

Bagshawe 

[23] 

2013  2 3 ±3g    Bogie 

Tsunashima 

and Saito 

[24] 

2013  3 3  3  1000 On board 

Yeo et al 

[25] 

2014  3 3  3   Bogie 

Ákos [26] 2014  2 3     Driving 

wheels; free 

running 

wheels 

https://en.wikipedia.org/wiki/I
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Tanaka et 

al [27] 

2014  3 3  3   On-board 

Tsunashima 

et al [28] 

2014  2 3  3  82 On-board 

Qin et al 

[29] 

2014 acc: 

ADIS16223; 

ADIS16240; 

ADIS16003 

3 3;3;2 ±70g; 

±18g;±1.7g 

  79,200 

4000 

10,000 

Axle-box; 

bogie; car-

body 

Real et al 

[30] 

2014 acc: PCB 

354C02 

4 3     Lead bogie 

axle-boxes 

Zhang et al 

[31] 

2015  4 3    2000 Car body 

Li et al [32] 2015   3     Wheel axles 

boxes 

Salvador et 

al [33] 

2016 acc: 

KS76C100 

2 3 ±60g    Motor 

bogie, 

trailer bogie 

Wei et al 

[34] 

2016  8 3 2g, 10g   2000 Car body 

floor, bogie 

frame 

Tanaka et 

al [35] 

2016  4 3 ±50g   2000 Axle-box of 

bogie 

Lederman 

et al [36] 

2017 acc: 

vibrametric 

model 5102; 

PCB 

354C02 

 

 

5 2,3    1,600 Wheel 

truck; inside 

cabin 
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TABLE II Targeted Fault and Location of Sensors in Reviewed Studies 

Research 

Year 

Target Fault Sensor Type and Method Location of Sensors 

2000 Vertical track defects Accelerometer Railcar axle 

2006 Rail corrugation Accelerometer Axle box and car body 

2006 Rail corrugation Accelerometer Car body 

2007 Rail corrugation Accelerometer Bogies  

2007 Track alignment Accelerometer/gyroscope Bogie 

2010 Vertical track defects Accelerometer/gyroscope Bogie 

2011 Vertical and lateral track defects Accelerometer Car body 

2011 Vertical rail profile Accelerometer Railcar axle 

2011 Squat and thermite weld Accelerometer Axle box 

2011 Orientation and Basic Track 

Geometry 

Accelerometer/gyroscope Car body 

2011 Vertical defects and level Accelerometer/gyroscope Axle box 

2012 Vertical defects and alignment Accelerometer Bogie 

2012 Track irregularity Accelerometer Axle box and bogie 

2013 Vertical track defects Accelerometer/gyroscope Car body 

2013 Track irregularity Accelerometer/gyroscope Car body 

2014 Lateral Alignment Accelerometer Axle box 

2014 Track Geometry Accelerometer Car body 

2014 Rail corrugation Accelerometer/gyroscope Car body 

2016 Track alignment and track geometry Accelerometer Car body and bogie 
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