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Abstract 

On-demand shared mobility services such as Uber and micro-transit are steadily penetrating the 

worldwide market for traditional dispatched taxi services. Hence, taxi companies are seeking 

ways to compete. This study mined large-scale mobility data from connected taxis to discover 

beneficial patterns that may inform strategies to improve dispatch taxi business. It is not practical 

to manually clean and filter large-scale mobility data that contains GPS information. Therefore, 

this research contributes and demonstrates an automated method of data cleaning and filtering 

that is suitable for such types of datasets. The cleaning method defines three filter variables and 

applies a layered statistical filtering technique to eliminate outlier records that do not contribute 

to distributions that match expected theoretical distributions of the variables. Chi-squared 

statistical tests evaluate the quality of the cleaned data by comparing the distribution of the three 

variables with their expected distributions. The overall cleaning method removed approximately 

5% of the data, which consisted of errors that were obvious and others that were poor quality 

outliers. Subsequently, mining the cleaned data revealed that trip production in Dubai peaks for 

the case when only the same two drivers operate the same taxi. This finding would not have been 

possible without access to proprietary data that contains unique identifiers for both drivers and 

taxis. Datasets that identify individual drivers are not publicly available. 
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Introduction 

In many major cities of the world, on-demand shared mobility services are disrupting the 

business model of traditional street hailing and dispatched taxi services. On-demand shared 

mobility services involve popular transportation network companies (TNCs) such as Uber and 

Lyft, and micro-transit services such as Ford-owned Chariot [1]. This escalating competition for 

passengers has been motivating taxi companies to mine dynamic mobility data to reveal insights 

that could benefit operations [2], locate more customers [3], and forecast demand [4]. 

The goal of this study is to mine large-scale dynamic mobility data from connected vehicles 

to reveal potentially beneficial patterns that can help taxi services improve their business in the 

midst of growing competition from non-traditional shared mobility services. Privacy policies in 

many parts of the world require that, before making such data publicly available, the data owner 

must remove information that could identify persons. By contrast, the authors of this paper 

obtained a proprietary and unique dataset of Dubai taxi operations with the names of drivers 

replaced with a unique identification number. This enabled data mining to reveal driver-vehicle 

sharing patterns, which to the best of the authors’ knowledge, is a gap in the available literature.  

This paper contributes details of the Dubai case study, the proposed automated data cleaning 

method, and the main finding that a beneficial driver assignment pattern exists. This finding 

could inform tactics that encourage more of the beneficial assignments to help improve the 

efficiency and effectiveness of Dubai taxis, and perhaps shared mobility services in general. 

Typical connected vehicle data from taxis include messages and variables such as geospatial 

position, meter-engaged, meter-vacant, door-open, idling, speed, timestamps, and dozens of 

other status indicators. The data size grows rapidly as tens of thousands of vehicles attempt to 

upload data packets every second to every few minutes. Aside from being so-called big data, 

dynamic mobility data can also be rather messy [5]. Data cleaning to enhance data quality is 

critically important in data mining, but the literature on data cleaning methods is sparse [6]. 

Manually cleaning large-scale mobility data is impractical. Therefore, a primary objective of this 

research is to develop and apply an automated method of data cleaning and filtering that is 

suitable for large-scale dynamic mobility datasets. A secondary objective is to develop a method 

for validating the quality of the cleaned dataset. 

Dirty data from connected vehicles that operate in the vehicle-to-infrastructure (V2I) mode 

arises from many factors. They include unexpected malfunctions and various errors in the output 

of on-board sensors, trip meters, and the V2I communications system itself. In particular, 

standard global positioning system (GPS) receivers produce inaccurate or missing location 

coordinates because tall buildings and other occlusions distort or block the direct path of the 

satellite radio frequency signals [7]. Trip meters often encounter radio frequency interference as 

they attempt to upload data and receive acknowledgements. Hence, they tend to re-transmit and 

create duplicate records. Meter malfunctions or resets due to spurious electrical faults also 

produce inaccurate timestamps and odometer readings. To minimize the cost of data storage and 

communications, on-board systems seek to minimize the frequency and regularity of the 

geospatial position sampling [8]. Therefore, using filtering and interpolation techniques to 

reconstruct vehicle paths and speed profiles becomes ineffective [9]. 

Obvious errors such as missing GPS data and incorrect timestamps are easy to detect and 

remove. However, errors in trip length and trip durations are not as obvious. The literature lacks 

studies of automated methods to clean such non-obvious errors from large-scale dynamic 

mobility data. Work by others affirmed that the sampling variability of vehicle position data 



 

 

reduces the accuracy of link travel time and route choice estimates [5]. In general, researchers 

found that the inaccuracy of GPS data requires some form of data cleaning for route estimation 

[10]. Other studies confirmed that the non-uniform sampling of GPS data results in large gaps 

that reduce the accuracy of recovery methods such as linear interpolation and historical 

averaging [11]. 

The organization of this paper is as follows: the next section (Methods and Data) describes 

the dataset in terms of its variables, its original structure, and a distillation process to restructure 

the data into trip records. The methods section also describes the three key filter variables and 

the layered statistical filtering technique that automatically eliminates non-obvious errors. 

Section 3 (Results) validates the quality of the cleaned data by comparing the overall distribution 

of the key variables with their expected theoretical distributions. The results section also 

describes the data mining results and reveals a potentially beneficial driver assignment pattern 

that maximizes trip productivity while minimizing overhead. Section 4 (Discussion and 

Conclusions) discusses the results, concludes the study, and describes future work to leverage the 

uniqueness of the dataset. 

Methods and Data 

The Road and Transport Authority (RTA) of Dubai, United Arab Emirates provided the authors 

with an exclusive dataset of their taxi activity. The data records combine information from both 

“dispatch-only” and “street-hailed” taxis. Emirates refer to the dispatch-only taxis as Hala taxis. 

Dispatchers often call on non-Hala taxis when Hala taxis are unavailable. Unlike publicly 

available dynamic mobility datasets such as those from New York City [12], the Dubai Taxi 

dataset contains the unique license plate number of each vehicle. The RTA anonymized the 

driver information by replacing their names with unique identifiers. A literature search indicates 

that this is the first study to report the results of mining dispatch-taxi mobility data that contain 

unique identifiers for both drivers and taxis. 

Data Reduction and Restructuring 

The dynamic mobility data obtained from Dubai taxis covered a 185-day period from March 15, 

2016 to September 15, 2016. Analysis of the data revealed that Dubai taxi companies employed 

nearly 21,000 drivers who operated nearly 10,000 vehicles during that period. Dubai taxis 

provide service any time of day, every day. Each taxi has an on-board unit that contains a trip 

meter, a GPS receiver, and a wireless system that enables V2I communications. On average, the 

on-board unit transmits the status and position of the taxi approximately every minute. 

Subsequently, the dynamic mobility database annually accumulates more than five billion 

records, each with numerous variables. 

In addition to the unique taxi and driver identifiers, each data record contains the fleet 

identifier, the vehicle status, its speed, its position in latitude and longitude, and a timestamp. 

The vehicle status indicates 45 different events, one of which is when a driver accepts a dispatch 

request. Therefore, the first step in data distillation was to extract records of dispatched versus 

street-hailed trips. The status also indicates instants of trip meter engagement and vacancy. When 

paired, this information forms a trip record containing the times and positions of pick-up and 

drop-off events. Hence, the second data reduction step was to extract only those records that 

indicate when the meter engaged and then became vacant. Subsequently, the data distillation 



 

 

process substantially reduced the data size by building approximately 3.4 million trip records 

from the much larger dynamic mobility dataset. 

Layered Statistical Filtering 

The proposed layered statistical filtering technique incorporates three layers of filtering that use 

known likelihood distribution functions for trip duration, trip length, and average trip speed. The 

main concept of the proposed technique is that likely errors would be outlier records that also 

collectively do not contribute to the formation of an overall distribution that matches the 

expected distribution of a key variable. The first layer of filtering was the trip duration, which is 

the timestamp difference between paired drop-off and pick-up events. The second layer of 

filtering was the trip length in terms of total path distance. However, it was not directly available 

because of the non-uniform sampling of the geospatial positions. That is, the high variability of 

position update rates resulted in distance gaps that span several kilometres. Such large gaps made 

it impossible to determine the actual path taken between two points that frame the street grids. 

However, the geodesic distance between pick-up and drop-off positions provided a suitable 

proxy. The algorithm used the recursive Vincenty method to derive the geodesic distance [13]. 

The third layer of filtering was the average trip speed. However, it was also not directly 

available. Therefore, the authors developed a proxy dubbed the mobility index (MI), which is the 

ratio of the geodesic distance to the trip duration. Intuitively, the MI represents the average rate 

that taxis typically cover the geodesic distance between two geospatial coordinates. 

Data Reduction and Cleaning Approach 

The first step of the data cleaning method removed obvious errors. More than 1.5% of the 

records contained obvious errors such as zero trip times, negative trip times, duplicate records, 

and blank identifiers (Table 1). The second step was the layered filtering. Repeated attempts to 

remove records and re-test distributions for fitness is computationally intensive. Therefore, the 

strategy used was to run the algorithm on substantially fewer records, namely those within the 

lower and upper outlier 2.5 percentile. This approach effectively adds outlier records to the 95% 

confidence interval only if they likely contribute to an overall distribution that matches the 

expected distribution of the filter variable for that layer. 

Previous research demonstrated that the expected distribution of trip lengths and trip 

times is lognormal [14], [15], [16]. Figure 1 shows the distributions of only the upper and lower 

2.5 percentile of each filter variable. The algorithm then identified a cut-off point to eliminate 

those outlier records that likely fell outside of the overall expected distributions. For the trip 

duration distribution (Figure 1a), a significant number of records clustered very close to zero 

minute. A minimum slope analysis (first derivative) of that distribution identified a threshold of 

approximately one minute and one percentile (the arrow) below which it is unlikely that those 

outlier records (1% of the low outliers) belong to the overall expected distribution. The minimum 

slope, which was zero in this case, corresponded to the lowest point of a parabola that fits that 

portion of the distribution. Hence, the algorithm automatically eliminated them. In a similar 

manner, the upper 2.5 percentile (Figure 1b) had a large number of trips with durations near 62 

minutes. The outliers that followed were obvious errors because their trip durations exceeded 

60,000 minutes. 



 

 

 
Figure 1: Distribution of outlier trip times, distances, and mobility indices. 

 

An amplified view of the trip time distribution between one and five hours revealed a lognormal 

distribution followed by a very long tail of outlier records that represent less than 1% of the 

upper 2.5 percentile. The algorithm automatically eliminated records that did not contribute to 

the expected lognormal distribution. Possible sources for the extremely short trip duration errors 

may be passengers changing their mind about a trip after entering a vehicle, or electromagnetic 

noise interference in the trip meters. A possible source for the extremely long trip duration errors 

may be trip meter malfunctions that uploaded drop-off times from a memory buffer after 

restarting. 

 



 

 

Table 1  Summary of Data Reduction and Cleansing 

  
Low Tail High Tail Reduction 

Records Description Count % Count % Count % 

3,444,310 185-day dispatched trip records 
      

3,444,304 Remove duplicate records 
    

6 0.0002% 

3,444,304 Remove invalid latitude or longitude 
    

0 0.0% 

3,391,795 Remove (pickup time) ≥ (drop-off time) 
    

52,509 1.5% 

3,391,770 Remove records missing a Driver ID 
    

25 0.001% 

3,331,032 Filter by trip time distribution 20,836 0.6% 39,902 1.2% 60,738 1.8% 

3,259,001 Filter by trip distance distribution 52,400 1.6% 19,631 0.6% 72,031 2.2% 

3,258,218 Filter by mobility index distribution 0 0.0% 783 0.02% 785 0.02% 

 

Applying this statistical filtering technique to the second filtering variable further eliminated 

more than 70,000 records (Table 1). They included trip records with distances of approximately 

zero kilometres (Figure 1c), and obvious outliers that extended well beyond 32 kilometres 

(Figure 1d) that did not contribute to the expected lognormal distribution. GPS signal reflections 

from tall structures in Dubai may be a source for the unlikely trip distances. 

In the third layer of filtering, the algorithm did not eliminate records in the lower 2.5-

percentile of mobility indices (Figure 1e) because removing them did not move the overall 

distribution any closer to the expected theoretical distribution. However, the algorithm did 

eliminate outlier records in the upper 2.5-percentile tail (Figure 1f) with mobility indices that 

distanced the overall distribution from the expected distribution for that variable. This resulted in 

the elimination of records that exceeded mobility indices of 92 km h-1. This is a reassuring result 

because the highest mobility index should be less than the highest speed limit in Dubai, which is 

100 km h-1. Table 1 summarizes that the overall data cleaning process, including the layered 

filtering, eliminated approximately 5.5% of the trip records, hence retaining those within a 

94.5% confidence interval (Table 1). 

Results 

This section evaluates the effectiveness of the layered statistical filtering method by examining 

the degree of agreement between the distribution of the key variables of the remaining data and 

their expected theoretical distributions. This section also describes the results of the data mining 

on the cleaned dataset. A key lesson learned from this research is that the data collection, data 

preparation, and data cleaning efforts are far greater than that of the actual data mining. 

Consequently, the organization of this paper reflects those proportions. 

Data Quality Evaluation 

The criterion for evaluating the effectiveness of the proposed data cleaning method is the degree 

to which the distribution of the key variables of the cleaned data agrees with the expected 

theoretical distributions of the key variables. Figure 2 plots the distribution of the key variables 

of the cleaned data.



 

 

 
Figure 2: Distribution of trip times, distances, and mobility indices after cleaning. 

The line plot is the continuous distribution that best fits the histogram of cleaned trip times 

(Figure 2a), geodesic distances (Figure 2b), and mobility indices (Figure 2c). The iterative 

Levenberg-Marquardt nonlinear least squares method of curve fitting identified the parameters of 

the best-fit distributions [17]. The model for estimating the best-fit lognormal distribution DLN(ξ) 

is 

0

2

ln

ln

2
ln

ln
ln

)ln(

2

1
exp

2

)(

























 










D

 

(1) 

The constants γln, μln, and σln are estimates of the amplitude, mean, and standard deviation 

parameters, respectively. Trip distances are highly correlated to trip times, hence they distribute 



 

 

similarly. The mobility index is a random variable derived from the ratio of the travel distance 

and the travel time, therefore, it also follows a lognormal distribution. Prior knowledge 

establishes that the mobility index cannot be zero or infinite because neither the travel distance 

nor the travel time will be zero or infinite. Therefore, the mobility index is limited to a finite 

interval. Table 2 lists the statistics of the key variables and parameters of the distributions that 

best fit their histograms. The variable ΔT is in minutes and ΔL is in km. 

 
Table 2: Parameters of the cleaned distributions. 

Histogram ΔT ΔL MI 

Bins 160 29 47 

Mean 19.3 10.1 30.3 

STD 12.6 8.5 16.6 

Min 1.0 0.2 0.1 

Max 160.0 56.0 92.2 

  
 

 
Chi-Squared Lognormal Lognormal Lognormal 

χ2 DF 157 26 44 

γ 101.6 234.6 214.4 

μ 2.9 2.2 3.4 

σ 0.6 1.3 0.7 

χ2 Critical 187.2 38.9 60.5 

χ2 Statistic 21.1 8.4 10.9 

p-value (%) 100 100 100 

 

The chi-squared goodness-of-fit test [19] indicates when there is a significant difference 

between the expected frequencies and the observed frequencies of the variables. The null 

hypothesis H0 is that the observed distribution of the variables is the same as the candidate 

distribution. Failure to reject the null hypothesis will result in accepting the alternative 

hypothesis that there was no significant departure of the observed distribution from the candidate 

distribution. 

The chi-squared statistic (χ2) is 
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The random variables Ok are the histogram values observed in bin k and Ek are the expected 

values of the hypothesized distribution. The chi-squared test rejects the null hypothesis if the 

χ2-statistic exceeds the critical χ2 value of a chi-squared distribution evaluated at degrees-of-

freedom DF and a specified significance percentage. Statisticians typically set the significance 

value to 0.05, which represents a low probability of 5% that the test will reject the null 

hypothesis when in fact it is true. The alternative approach calculates the chi-squared probability 

values (p-values) that correspond to the observed χ2-statistic, evaluated at the DF. The tests reject 

the null hypothesis when the p-values are less than the selected significance percentage. 

As shown in Table 2, the chi-squared tests could not reject the null hypothesis for the 

distributions tested. Therefore, the tests conclude that the trip times and the trip distances of the 

cleaned and filtered data do not depart significantly from the expected lognormal distribution. By 



 

 

extension, the mobility indices do not significantly depart from the lognormal distribution 

because it is a dependent variable of the trip times and the trip distances. Subsequently, these 

tests validated the effectiveness of the proposed layered statistical filtering method of removing 

records that are likely erroneous. 

Data Mining of Trip Production 

Several different drivers can operate a taxi, and a driver can operate several different taxis. The 

data mining quantified the number of drivers that operated a unique taxi as the level of “taxi-

split” and the number of taxis operated by a unique driver as the level of “driver-split.” Given the 

uniqueness of the dataset, the focus of the data mining was to examine the distribution of taxi- 

and driver-split. Figure 3 captures the data mining results, which shows the distribution of taxi- 

and driver-splits by fleet type. For brevity, the figures show the frequency of cases for up to 20 

taxis, but the maximum was actually 137. The pattern revealed was that the productivity factor, 

in terms of the number of trips-per-taxi-per-driver, peaked when only two to three drivers 

operated a given taxi. This two-driver taxi case dominated for non-Hala taxis whereas two- and 

three-driver taxi cases dominated equally for Hala taxis. These cases accounted for 33.5% and 

15.2% of the non-Hala (Figure 3a) and Hala (Figure 3b) taxi-split cases, respectively. Scenarios 

of single-driver taxis accounted for only 2.5% and 0.4% of the non-Hala and Hala taxis, 

respectively. They were also among the least productive of cases in terms of the trips-per-taxi 

productivity factor. 

The data mining results also indicate that a given taxi in Dubai sustains high trip production 

by assigning as many drivers to them as needed to minimize their parking times (Figures 3a-3b). 

However, driver changes incur significant overhead or off-duty time that reduces a taxi’s trip 

production efficiency. The off-duty time includes time spent in depositing collected cash fares at 

specific bank locations, and then driving to designated locations to accommodate driver shift 

changes. 

Using the productivity factor of trips-per-driver-per-taxi revealed that the factor peaked 

for cases of drivers operating a single taxi. These cases accounted for 35.3% and 20.5% of the 

non-Hala (Figure 3c) and Hala (Figure 3d) driver-split cases, respectively. Further inspection of 

the driver-split for the two-driver taxi pools (Figures 3a-3b) revealed that their operators came 

from the pool of drivers of a single taxi (Figures 3c-3d). By induction, trip productivity tends to 

peak when the same two drivers operate a given taxi. RTA was previously unaware that this 

pattern dominated. However, the pattern was not surprising because they provided two 

explanations for its commonness. Firstly, drivers can minimize their insurance costs by 

minimizing the number of different vehicles they operate. Secondly, the logistical complexity 

and time overhead involved with shift-changes increases with the number of drivers of a given 

taxi. The observed pattern along with the RTA explanation suggests that new tactics to 

encourage or facilitate more of the beneficial taxi assignment would likely lead to reduced 

overhead and enhanced trip production. 



 

 

 
Figure 3: Distribution of taxi and driver splits by fleet type. 

Discussion and Conclusions 

The proliferation of shared mobility services worldwide and their growing variety has led to 

intense competition with traditional dispatch taxi services. Hence, the goal of this study was to 

mine large-scale dynamic mobility data from connected taxis to discover beneficial patterns that 

could inform tactics to improve the competitiveness of dispatch taxi services. However, the huge 

size, non-uniform composition, variable update rates, and GPS errors complicate the task of data 

mining. Therefore, the main objective and contribution of this research was to improve the 

quality of the dataset by developing an automated data cleaning and filtering method, tailored for 

such datasets. During the course of this research, the authors learned that the data collection, data 

preparation, and data cleaning efforts are far greater than that of the actual data mining effort. 

Therefore, the organization and relative focus of this paper reflects their relative magnitude. 

The proposed layered statistical filtering algorithm automatically eliminated outlier records 

that contained both obvious errors and likely errors. The main idea of the technique was to 

remove records that moved the distributions further away from the known theoretical 

distributions of the key filter variables. Validation of the quality of the cleaned data used chi-

squared statistical tests to compare the distribution of the three variables with their expected 

distributions. The tests determined that the overall cleaning procedure, including the filtering 

algorithm, removed obvious outliers and other poor quality records that represented 

approximately 5% of the dataset. 

Subsequently, the data mining focused on examining taxi trip production as a function of 

taxi-driver pairing patterns. Such an analysis would not be possible without the uniqueness of the 

dynamic mobility dataset, which includes identifiers to distinguish individual drivers. The 

revealed pattern was that taxi trip production peaks for the case where only the same two to three 

drivers operate the same taxi. The RTA explanation was that drivers could minimize their 



 

 

insurance costs by minimizing the number of different vehicles that they operate. Fewer drivers 

per vehicle also reduce the logistical complexity and the time overhead of shift-change and cash 

deposit procedures. Hence, taxi companies in Dubai can use this finding to develop tactics that 

would encourage more of the beneficial assignment pattern. At this point, it is unknown whether 

similar patterns exist for dispatch taxi services in other cities of the world. 

A limitation of the proposed layered data filtering method is that it relies on known statistical 

distributions of the selected filter variables. This necessitates the transformation of dynamic 

mobility data into trip records containing the timestamps and geospatial positions of trip origins 

and destinations. 

Future research will mine the Dubai taxi data to characterize the spatial-temporal dynamics 

in supply and demand to guide decisions in zonal taxi allocations. The authors will also 

investigate various methods of predictive analysis to guide driver recruitment, fleet acquisition, 

network management, scheduling, and revenue management decisions. 

Data Availability 

As previously described, the unique dataset used in this research is proprietary. Special 

arrangements with the Dubai Road and Transport Authority are necessary to gain access. 
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