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ABSTRACT 

The ongoing proliferation and diversification of remote sensing platforms offers greater 

flexibility to select from a range of hyperspectral imagers as payloads. The emergence of 

low-cost unmanned aircraft systems (drones) and their launch flexibility presents an 

opportunity to maximize spectral resolution while scaling both daily spatial coverage and 

spatial resolution simultaneously by operating synchronized swarms. This article presents a 

model to compare the performance of hyperspectral-imaging platforms in terms of their 

spatial coverage and spatial resolution envelope. The authors develop a data acquisition 

framework and use the model to compare the achievable performance among existing 

airborne and spaceborne hyperspectral imaging vehicles and drone swarms. The results show 

that, subject to cost and operational limitations, a platform implemented with drone swarms 

has the potential to provide greater spatial resolution for the same daily ground coverage 

compared to existing airborne platforms. 

 

Keywords: adaptive resolution, autonomous systems, daily ground coverage, pushbroom, 

resolution agile, sensor fusion, spatial resolution, surveillance, swarm sensing, unmanned 

aircraft systems 

 

INTRODUCTION 

Hyperspectral imaging has the potential to identify land cover materials, obstacles, and 

dynamic targets that would otherwise be difficult or impossible to discern with conventional 

image sensors (1). However, the trade-offs between spatial resolution, spectral resolution, and 

daily coverage for existing hyperspectral imaging platforms pose practical limitations. 

Applications such as multimodal transportation infrastructure monitoring places high 

demands on performance in terms of spectral resolution, spatial resolution, and ground 

coverage rate during daylight hours (coverage per day) (1). Important emerging applications 

in transportation include condition monitoring of railroads, pipelines, and roadways (2). 

Complementary applications such as traffic flow modelling, post-disaster evaluation, and 

environmental health monitoring place similarly high demands on performance (3). 

Insufficient spatial or spectral resolution could result in high false positives that lead to 

unnecessary expenses from conducting verification missions or field inspections in hostile 

terrain. Practitioners, therefore, will benefit from a comparative framework for hyperspectral 

image acquisition that can provide practical guidance for the budgeting, acquisition, and 

configuration of appropriate equipment and sensor packages. 

Each so-called hyper-pixel of a hyperspectral image sensor captures the spectrum 

from radiated or reflected electromagnetic (EM) energy, which includes invisible and visible 

light (4). The device optically separates the EM spectrum from a scene so that dozens of 

physical pixels from an image sensor can sample the dispersed energy into closely spaced 

wavelength bins (5). The two main methods of capturing a hyperspectral scene during the 

same sensor integration time are the sweeping optical slit (so-called pushbrooming) and 

snapshot hyperspectral imaging. The pushbrooming method sweeps a linear array of imaging 

pixels across the scene such that each row of a two-dimensional (2D) planar image sensor 

captures the same line of the scene in different wavelength bands (6). In contrast, full-frame 

hyperspectral image sensors use optical filters to subdivide the available 2D planar pixel 

array into groups of pixels (hyper-pixels), such that each pixel within a group simultaneously 

integrates energy from a different wavelength band (7). Both techniques require image 

stitching to assemble complete hyperspectral scenes after a mission. Various methods of 

geometric and orthographic corrections for image stitching are available (8-9). Subsequently, 

given the same 2D sensor and assuming that the scene changes relatively slowly (10), the 

pushbrooming approach can achieve both higher spatial and spectral resolutions. Therefore, 
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this article focuses on characterizing the performance of sweeping optical slit methods across 

different platforms. 

Given a desired spectral resolution, constraints in the design of optical systems for 

hyperspectral image acquisition force an inherent trade off in their daily ground coverage 

(square-kilometers per day) and the spatial resolution (square-meters per pixel). Spaceborne 

platforms typically move faster than airborne platforms and cover a broader swath, but the 

spatial resolution can be several-fold larger. On the other hand, airborne platforms can 

schedule flight paths and missions with the flexibility needed to achieve higher spatial 

resolution, but the daily ground coverage per aircraft is substantially less. Handheld 

spectrometers are available to conduct field inspections by foot to achieve even higher spatial 

resolution, but the remoteness and ruggedness of some terrain limit their accessibility. Hence, 

practitioners are currently limited to selecting an appropriate combination of different 

platforms to achieve the desired trade-off (Figure 1). 

Satellites that carry hyperspectral imager payloads are rare and relatively inaccessible 

for continuous scanning missions. As of 2017, there were only three such satellites, and 

researchers must complete an application process several months in advance and allow 

several weeks for data delivery after its collection (11). The growing availability of cube 

satellites (CubeSat) promises to reduce the cost of spaceborne hyperspectral image 

acquisition. CubeSats are miniaturized satellites that various manufacturers design to a set of 

standard specifications so that a single vehicle can launch several of them at once to reduce 

deployment cost (12). However, their size and power constraints limit the availability and 

performance of hyperspectral imagers. Manned aircraft equipped with hyperspectral imagers 

require nearby airports, and scheduling them can result in data collection lags of days to 

weeks (13). 

The emergence of small UAS (sUAS) or small drones and lightweight, low-power 

hyperspectral imagers for commercial applications promises greater flexibility and a wider 

range of mobility and spatial resolution options (14). The steady pace of cost reduction and 

the relaxation of regulations are creating many new application opportunities. In particular, 

the authors of this article have been experimenting with concepts in swarming unmanned 

aircraft system (UAS) configurations to reconstruct hyperspectral scenes in three-dimensions 

(15). One aspect of that development incorporates rapid hyperspectral image classification to 

adjust the flight altitude adaptively (16). That is, sensor parameters and flight paths change in 

response to target tracking so that spatial resolution and signal quality improves only for 

selected scenes, thereby reducing the data load and processing requirements. 

Swarm robotics incorporates sensing, artificial intelligence, and local communications 

to achieve collective behavior directed toward a common goal (17). As swarming operations 

evolved from the field of artificial swarm intelligence, its implementation involves many 

individual rules, cost minimization functions, and many constraints that require significant 

computing capabilities to mimic social insect behaviors in the natural world. 

Communications among swarm members involve a system of constant feedback. To focus 

this article, the authors do not cover the enabling technologies or the related issues of 

practical swarm operations such as flight path management, airspace access planning, and 

aircraft refueling (including recharging) strategies. Rather the authors point to a diverse set of 

important research by others who are advancing those solutions for more effective drone 

operations (18-19). 

The main contribution of this article is a model to evaluate the performance of 

sweeping aperture hyperspectral-imaging platforms in terms of their daily spatial coverage 

and spatial resolution envelope. The authors develop a data acquisition framework and use 

the model to compare the achievable performance among existing airborne and spaceborne 

hyperspectral imaging vehicles and drone swarms. 
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The organization of this paper is as follows:  the next section presents fundamentals of 

the optical geometry and the image acquisition methods that lead to the model for evaluating 

the performance of sweeping aperture hyperspectral-imaging platforms. Section 3 develops a 

framework for gathering and translating the available data for each platform into the model 

parameters. Section 4 presents results from applying the model to compare the achievable 

performance among platforms. The final section offers conclusions that could benefit others 

who utilize the model. 

 

METHODS 

This section develops the model by applying fundamentals of the optical geometry and the 

methods of image acquisition and scene assembly that requires a sweeping aperture 

(Figure 2). To follow the steps in the model development, it is convenient to summarize all of 

the parameters and their units of measure (Table 1). 

A hyperspectral scene consists of points Sθϕh where the triplet {θ, ϕ, h} are the 

latitude, longitude, and elevation of the geospatial position on the surface S. Each point on the 

surface radiates or reflects electromagnetic (EM) energy with intensity Rλ(Sθϕh, t) where t is 

the integration sample interval and λ is wavelength span of the EM energy spectrum where 


i

i
 

(1) 

and λi is a discrete wavelength band i within the spectral range. Hyperspectral image sensors 

map the aggregate EM reflectance from a ground sample area (GSA) to each pixel px,y,i of the 

image sensor at time window t[n] such that: 
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

 
(2) 

Gx,y is the center of the GSA with dimensions ϕx and θy. Hence, the spatial resolution of the 

GSA is ϕx θy meters. 

 

Optical Geometry 

The sensor captures image frame n at discrete times t[n] with a integration interval of Δt. Each 

planar photosite px,y of the image sensor is associated with a radiometric vector 
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with each element Rλi representing the charge accumulation associated with the EM 

reflectance integrated across the GSA, within the individual spectral bands λi. 

The focusing element of the generalized optical system has a focal length of df and is 

positioned at a distance ds above the image plane. The subject in focus will be a distance of hs 

away where, for a relatively thin-lens, the approximation is 
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For pixels of dimension cx cy where cx = cy, the GSA GA will be 
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Therefore, the GSA is directly proportional to the pixel area pa and inversely proportional to 

the ratio of the image-to-focal plane distance. Hence, the optical area magnification factor Mη 

is 
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This magnification depends on the separation distance δ between the image plane and the 

focal plane where 

fs dd   (7) 

Hence, the magnification factor is 
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The image plane distance constrains at least one dimension in the overall size of the sensor 

system. The size also depends on the volume required to accommodate optical path folding 

elements along the focal length. Given an optically symmetric system and square pixels the 

area magnification factor must be 
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Hence, given a swath width of Gx, the sensor length Sx must be 

2
1

ηxx


 MGS

 
(10) 

The number of pixels per row of the sensor Nx is 
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Equating Equations (6) and (9) and solving for the image plane distance gives 
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Image Acquisition 

For a desired image overlap of γ the sample interval Ly along the ground track must be 

)1(yy  L
 (13) 

The length of the ground (nadir) path LG is a function of the aircraft ground speed VG and 

flying time of Tf seconds such that 

fGG TVL   (14) 

in units of m s-1. Hence, the number of frames NF needed along the flight path is 

1
y

G
F 

L

L
N  (15) 

Note that there will be two frames if the flight path length is identical to the ground sample 

interval such that LG = Ly. Given the maximum frame rate Fr and counting the initial frame at 

the starting position, this is equivalent to 

1frF  TFN  (16) 
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Combining Equations (13), (15), and (16) and solving for the minimum required frame rate 

Frm yields 

)1(ηy
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The aperture of a pushbroom type of imaging system typically limits the field-of-view (FOV) 

to one row of the image sensor or to a linear image sensor array such that the swath height Gy 

is 
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(18) 

Hence, a single sensor payload would capture images that cover a ground area Wa (square-

meters) of  
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 (19) 

This model is extensible to full-frame image sensor types that utilize a larger sweeping 

aperture for scene assembly. 

Reflecting the ground sampling distances to the image sensor pixel sizes yields 
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Given the ground speed and flying time of a single platform, and substituting Equation (14) 

into Equation (20), the expression becomes 
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(21) 

If the minimum frame rate is achievable, then this expression provides the ground coverage 

area as a function of the sensor, optical, and flight parameters. 

These expressions describe the fundamental trade-offs in sensor pixel area, pixel 

density, optical system package size, the image capture rate and overlap percentage, the flight 

time, and the equivalent ground speed of the platform. For the same swath width, the flight 

altitude of a single platform is directly proportional to the ratio of the image plane distance 

from the focusing element and the image sensor size such that 
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(22) 

Hence, by decreasing the size of the optical system, the image plane distance will decrease. 

The focal length must also decrease to maintain the same magnification factor. Consequently, 

the aircraft must fly at a lower altitude to maintain the swath width and GSD. Given the 

instantaneous field of view (IFOV) denoted IV, the GSD is 
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(23) 

where hs is the flight altitude. For small angles, tan(θ) ≈ θ, hence ϕx ≈ hs × IV. The frame rate 

Fr of the optical system is in frames per second and the maximum speed of the platform is in 

m s-1. Hence, the daily ground coverage Ws for swarms containing An aircrafts with γs 

percentage lateral overlap is 
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 .1 snas  AWW  (24) 

This model guides the design of a lateral swarming configuration with overlapping fields-of-

view, using identical aircrafts and cameras. Given the scarcity of publicly available data, the 

simplicity and linear scalability of this model can guide design and budgeting decisions prior 

to the acquisition of multiple expensive aircrafts and sensor packages to collect hyperspectral 

data, and to validate performance expectations for specific application objectives. 

 

DATA 

The data available for each type of hyperspectral imaging platform that currently exist is 

scattered throughout the literature. A review process compiled, calculated, and validated the 

values of the relevant parameters (Table 2). The next section describes the dataset and 

explains the derivations of the needed model parameters. 

 

EO-1 Satellite 

The Hyperion imager aboard the Earth Observer-1 (EO-1) satellite provides 220 spectral 

channels that range from 400 to 2500 nanometers (20). The typical revisit for an area is 16 

days. The optical system splits the incoming electromagnetic energy into two beams, each 

focusing on 256 spatial pixels with 60-micrometer sides. The GSD is nominally 30 meters; 

therefore, the IFOV is 42.55 micro-radians (Equation 23). The system records images at the 

rate of 220 frames per second. At an orbit of 705 km, the effective ground path velocity is 

23,760 km h-1. At the maximum capture rate of the imaging system of 223.4 Hz, the image 

overlap will be 1.5% (21). 

Each data collection event (DCE) produces five files that include calibration and 

image data. The calibration files are pre-image dark collect, post-image dark collect, internal 

calibration lamp collect, and post-lamp dark collect (22). The timing of a Hyperion DCE 

before and after the image capture event is summarized in minutes and seconds (mm:ss) 

format (Figure 3). The total overhead time is 14 minutes and 31 sections. The maximum 

image capture time is 24 seconds. Therefore, the daily coverage efficiency, which is the ratio 

of the image capture time to the total camera operation time, is only 2.6%. 

Approximately 10 minutes of standby time is required to temperature stabilize the 

analogue signal processors for signal-to-noise ratio calibration. Spacecraft maneuvering is 

necessary to orient the optical system for the solar calibration. The maneuvering, calibration, 

standby, and temperature stabilization constraint of every DCE limit the time efficiency of 

the image acquisition to 2.7%. The EO-1 can schedule a maximum of 11 DCE per day (22). 

Hence, the system has an ability to image 14,600 square-kilometers per day. However, the 

system has the potential to provide up to 96 DCE per 24-hour period with a sun synchronous 

orbit. At the maximum acquisition rate, the platform could capture up to 114,000 square-

kilometers of imagery per 24-hour period. 

 

Manned Aircraft Systems 

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor is one of the most 

popular. It provides 224 spectral channels that range from 360 to 2500 nanometers (23). The 

flight altitude and the optical geometry of the sensor dictate whether the frame rate or the 

aircraft speed becomes the bottleneck in daily ground coverage. Operators determine the 

flight altitude based on barometric conditions, aircraft capabilities, cloud cover, sun angle, 

and other factors such as local regulations and government policies. 

The AVIRIS optical system splits the incoming light into four paths that focus the 

light onto four individual linear image sensor arrays. The nominal dimensions of the charge-

coupled detector (CCD) elements are 200 micron × 200 micron (24). Three 64-element and 
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one 32-element detector provide the 224 spectral channels. The device utilizes rotating 

elements in the optical path to scan a field of view across the ground trajectory while 

focusing the image on one spatial pixel at a time (25). The scanning operation provides an 

equivalent of 677 pixels of lateral spatial resolution. The IFOV of the optical system is 

1 milliradian. Therefore, when flown at a nominal altitude of hs = 17 kilometers on the NASA 

ER-2 aircraft, the GSD is 17 meters (Equation 23). The ER-2 flies at a nominal ground speed 

of 730 km/h to accommodate a line scan rate of 12 Hz. From Equation (17), the maximum 

aircraft speed provides less than 1% of image overlap. 

The on-board tape memory capacity of the AVIRIS sensor limits the amount of image 

capture and recording time to approximately 1.1 hours. Given the maximum flight duration of 

6.5 hours, the calculated AVIRIS image capture efficiency is approximately 17%. Therefore, 

the AVIRIS system is capable of producing a maximum of 9,292 square-km of hyperspectral 

scene per day. When flown on a Twin-Otter (TO) aircraft at an altitude of 4 km, the AVIRIS 

will provide a much higher spatial resolution of 4 meters but the daily ground coverage will 

be reduced to 387 square-kilometers, given the same set of optical system constraints. 

 

Small Unmanned Aircraft Systems 

From Equation (17), the optical system configuration, maximum frame rate, and maximum 

flight altitude will constrain the maximum ground speed to 

 .1ηyrmG  McFV
 

(25) 

The maximum frame rate of a compact hyperspectral imager that is suitable for deployment 

on sUAS is 250 frames per second (26). Given the aperture (f/2.5) and slit length (10.5 mm), 

the effective focal length is 26 millimeter. The image sensor pixel sizes of 6.5 micrometers 

and the focal length defines the IFOV as 0.3 milliradian (mr). At the maximum flight altitude 

of 121.2 meters, the GSD is 3 centimeters (Equation 23). Hence, the ground swath is 48 

meters. With a desired frame-overlap of 30% to enable frame stitching, this optical geometry 

and the maximum frame rate of the imager limits the ground speed to 5.3 m s-1 (19 km h-1). 

The daily coverage efficiency of a UAS that operators can launch from a mobile 

platform at the target area will be higher than that for one that relies on the availability of an 

airport or an airstrip nearby. The additional time overhead includes lifting the payload, 

reaching a stable velocity at the start of image acquisition, time to descend, and the duration 

lost to battery replacement. A small rotary aircraft has the greatest agility and could ascend 

and descend without traveling significant distances horizontally to reach the beginning of 

their image acquisition coordinates. A suitable rotary aircraft carrying a payload of one 

kilogram (2.2 lbs.) and using a 22.2-volt battery with 16600 milliamp-hour (mA-h) charge 

capacity will provide a maximum flight time of approximately 35 minutes (27). The selected 

reference provides a conservative estimate because battery life will likely improve over time. 

With an average lift speed of 5 m s-1, the rotary craft will reach the maximum allowable flight 

altitude in 24 seconds. Experienced operators can change batteries in less than one minute. If 

a launch vehicle can follow the ground path to accommodate rapid descent and battery 

changes, then the daily coverage efficiency for the rotary craft of this capability will be 

94.8%. Even further improvements are achievable if the launch vehicle carries pre-charged 

vehicles to alternate missions. 

The frame rate of the image sensor and the optical geometry limits the maximum 

ground speed for this platform to 19 km h-1. Therefore, the sUAS will image approximately 

0.5 square-kilometers per mission. The sun will be at a suitable range of angles to provide 

proper irradiance for approximately four hours (4). Therefore, operators can fly 

approximately seven data collection missions per aircraft. Consequently, with the sensor, 

flight altitude, and battery life constraints, the sUAS platform can provide 3.5 square-
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kilometers of hyperspectral images per aircraft per day. If placed on a larger UAS that can fly 

at the same altitude as the Twin-Otter, the image sensing system will provide a spatial 

resolution of one meter and a daily ground coverage of 2,417 square-kilometers. 

 

RESULTS AND DISCUSSION 

Applying the derived parameters from the dataset to the model for each platform produces 

their daily coverage shown in the last column of Table 1. The altitude (hs) is in kilometers 

(km), the pixel dimension in micrometers (μm), the GSD in meters, the IFOV in milliradians 

(mr), the frame rate is in frames per second, the ground velocity in km h-1, the image capture 

efficiency ηI, and the daily ground coverage Wa is in square-kilometers. The daily ground 

coverage and the spatial resolution achievable by each platform is summarized graphically 

(Figure 4). The figure shows that the smaller IFOV typical of lightweight imaging systems 

has the potential for providing greater spatial resolution for the same daily ground coverage 

of existing airborne platforms. The arrow shown indicates the scaling direction of the 

coverage-resolution bound per Equation (24), for each additional sUAS added to the swarm. 

The figure also includes the daily ground coverage and spatial resolution of a panchromatic 

imaging platform aboard the GeoEye-1 satellite for comparison. Hyperspectral imagers force 

a lower coverage-resolution bound because, given an image sensor, they trade off spatial 

resolution for spectral resolution. The time overhead needed to begin the actual image 

acquisition during available natural lighting conditions tends to limit substantially the daily 

ground coverage of existing aerospace platforms. Hence, system designers must carefully 

consider their operational details and logistics to minimize the time overhead between data 

collection events. 

Drone swarms can have a distinct advantage if they incorporate mobile launch and 

refueling/recharging platforms at the deployment site to minimize the time overhead. 

Positioning the platform at the deployment site before the time of optimal sun angle will 

minimize the overhead to begin a data capture mission. Furthermore, the launch vehicle could 

potentially carry two drone fleets to accommodate launches during the time that the previous 

fleet is landing. This approach will minimize the time between data capture events and 

increase the daily coverage efficiency per launch system. These considerations offer 

important insights towards the design optimization of swarming aircraft systems for high-

efficiency operations. Given their advantages, practitioners must also consider the 

precautions of using drones. Considerations include compliance with federal and state 

regulations to assure airspace and public safety. According to the Federal Aviation 

Administration (FAA) website at the time of this publication, operators must register drones 

that weigh between 0.55 and 55 pounds, and are not flying under the special rule for model 

aircrafts. The authors recommend that potential practitioners of the method do regularly visit 

the FAA website because the situation and rules evolve steadily. 

 

CONCLUSIONS 

Many applications are emerging that demand simultaneously vast ground coverage, high 

spatial resolution, high spectral resolution, and high data collection efficiencies during 

available lighting conditions. The continuous cost and size reduction of high-performance 

electronic and optical systems will lead to a proliferation and diversification of aerospace 

platforms that afford greater flexibility in trading off performance bounds. Nevertheless, a 

fundamental trade-off between spatial resolution and daily coverage for hyperspectral 

imaging acquisition sets a practical limitation that constrains their use. Therefore, using the 

framework for data acquisition and the performance evaluation model developed in this 

article can help other researchers and practitioners in their work. 
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The finding that drone swarms has the potential to provide greater spatial resolution 

for the same daily ground coverage of existing airborne hyperspectral imaging platforms 

points to their potential for use in new applications that demand high-performance imaging. 

Given an image sensor of some spectral resolution, the flight height, fight speed, and image 

capture efficiencies fundamentally constrains spatial coverage and spatial resolution. 

Therefore, an ability to scale economically the swarm size will push the daily spatial 

coverage dimension without diminishing the spatial or spectral resolutions. Furthermore, the 

potential for flight path adaptation based on target identification can further improve 

performance in terms of reducing false positives. However, this potential comes with the 

caveat that practical and high-performance methods must be in place to stitch hyperspectral 

image frames into hyperspectral scenes, and to enable the refueling and alternating of swarm 

fleets, without the need for manual interventions. These are all important and ongoing areas 

of research that this article does not address. 

Future research will use the models to design a variety of swarming configurations to 

enable the three-dimensional reconstruction of hyperspectral scenes for various applications 

in transportation. 
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TABLE 1  Parameters of the Performance Evaluation Model 

 
Parameter Units Description 

θ degrees Latitude 

ϕ degrees Longitude 

h meters Elevation 

Sθϕh unit-less Point in 3D space 

t seconds Energy integration sample interval 

λ meters Wavelength span 

Rλ Joules Electromagnetic energy 

px,y,i unit-less Hyper-pixel identification number 

Gx,y unit-less Center of ground sample area corresponding to hyper-pixel 

ϕx meters lateral dimension of the ground sample area 

θy meters vertical dimension of the ground sample area 

Δt seconds Energy integration interval 

Rλi Coulombs Spectral charge integration vector of each hyper-pixel 

df meters Focal length of the optical system 

ds meters Distance of focusing element above the image plane 

δ meters Separation between the image plane and the focal plane 

hs meters Distance of focused subject in the ground sample area 

cx meters Lateral dimension of the image sensor pixel 

cy meters Vertical dimension of the image sensor pixel 

pa sq-meters Pixel area 

GA sq-meters Ground sensing area (GSA) 

Mη unit-less Optical magnification factor 

Sx meters Image sensor length 

Nx unit-less Number of pixels per row of the 2D planar sensor 

γ unit-less Image overlap fraction 

Ly meters Sample interval along the ground track 

LG meters Length of ground (nadir) path 

VG m s-1 Ground speed 

Tf seconds Flying time 

NF unit-less Number of frames needed to cover the flight path 

Fr frames s-1 Frame rate 

Frm frames s-1 Minimum required frame rate 

Gy meters Swath height 

An unit-less Number of aircrafts in the swarm 

IV degrees Instantaneous field-of-view 

Wa sq-meters Ground area coverage 
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TABLE 2  Parameter Values of the Performance Evaluation Model 

 
Platform hs Nx cx ϕx IV Fr γ VG ηI Wa 

 (km)  (μm) (m) (mr) (s-1) (%) (km h-1) (%) (km2) 

Hyperion 705 256 60 30 0.043 220 0.6 23,760 2.7 14,600 

AVIRIS-ER2 17 677 200 17 1.0 12 1.5 730 16.9 9292 

AVIRIS-TO 4 677 200 4 1.0 12 25 130 16.9 387 

UAS 4 1600 6.5 1 0.3 250 30 630 58.7 2,417 

sUAS 0.12 1600 6.5 0.03 0.3 250 30 19 94.8 3.5 

 


