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Characterizing pavement roughness at non-uniform speeds using 

connected vehicles 

Methods of pavement roughness characterizations using connected vehicles are 

poised to scale beyond the frequency, span, and affordability of existing methods that 

require specially instrumented vehicles and skilled technicians. However, speed 

variability and differences in suspension behavior require segmentation of the 

connected vehicle data to achieve some level of desired precision and accuracy with 

relatively few measurements. This study evaluates the reliability of a Road Impact 

Factor (RIF) transform under stop-and-go conditions. A RIF-transform converts 

inertial signals from on-board accelerometers and speed sensors to roughness indices 

(RIF-indices), in real-time. The case studies collected data from 18 different buses 

during their normal operation in a small urban city. Within 30 measurements, the 

RIF-indices distributed normally with an average margin-of-error below 6%. This 

result indicates that a large number of measurements will provide a reliable estimate 

of the average roughness experienced. Statistical t-tests distinguished the relatively 

small differences in average roughness levels among the roadway segments 

evaluated. In conclusion, when averaging roughness measurements from the same 

type of vehicle moving at non-uniform speeds, the RIF-transform will provide ever-

increasing precision and accuracy as the traversal volume increases. 

Keywords: connected vehicle; inertial profiler; intelligent transportation systems; 

pavement management; probe vehicles; ride quality; roughness index; suspension 

systems 

1 Introduction 

State highway agencies measure pavement roughness to monitor the condition of the 

network and for other important purposes such as to assess the quality of construction and 

to forecast maintenance needs. The federal Highway Performance Monitoring System 

(HPMS) requires that states report the International Roughness Index (IRI) annually for the 
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national highway system and on a 2-year maximum cycle for all other required sections 

(HPMS 2016). Apart from cycles in precipitation and temperature, heavy vehicles 

accelerate road deterioration (Bilodeau et al. 2015). Therefore, anomalies that become 

safety hazards are likely to appear between such long monitoring cycles. 

The current practice is to measure the road elevation profile at a constant speed 

using specially instrumented vehicles called inertial profilers. A mathematical procedure 

subsequently calculates the IRI from the elevation profile samples. The calculations 

produce the mechanical response of a specific quarter-car traveling at precisely 80 km h-1 

(Gillespie et al. 1986). The constant speed requirement makes ride quality measurements 

impractical for local roads and urban arterials where vehicles travel at non-uniform speeds. 

The National Cooperative Highway Research Program (NCHRP) recognized this 

shortcoming of the existing IRI procedure and commissioned a 5-year effort in 2013 “to 

identify/develop a means for measuring, characterizing, and reporting pavement roughness 

on low-speed and urban roads.” This effort is part of the NCHRP 10-93 research project 

(Karamihas 2017). 

Meanwhile, researchers have been developing methods to estimate the IRI from 

inertial, speed, and position data collected from sensors aboard regular vehicles (Islam, et 

al. 2014) (Nomura and Shiraishi 2015). In lieu of connected vehicles, the accelerometers, 

gyroscopes, and global positioning system (GPS) receivers embedded in smartphones serve 

as proxy sensors for collecting and analyzing the required data (Cruz and Castro 2015). The 

connected vehicle (CV) methods are likely to scale more cost-effectively than existing 

methods if the industry ratifies standards to make such data available for widespread use. 

The authors previously reported a CV method called the Road Impact Factor (RIF) 

transform that is capable of measuring roughness at any speed (Bridgelall 2014a). That 
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research demonstrated that, given any regular vehicle, the RIF-transform is directly 

proportional to the IRI when applied under the same constraint of a uniform speed. 

Practitioners know that roughness characterizations at a precise speed mask inertial 

responses to wavelength excitations that are outside of the sensitivity range of the fixed IRI 

model (Papagiannakis 1997). Therefore, the IRI cannot represent roughness that vehicles 

actually experience when traveling at speeds that are different from 80 km h-1. Conversely, 

the RIF-transform can characterize roughness experienced at any speed because it operates 

on the inertial responses measured directly from actual vehicles. In other words, the CV 

method extends the wavelength sensitivity of the RIF-transform beyond that of the IRI, as 

recently demonstrated (Bridgelall et al. 2017). 

The RIF-transform produces a direct measure of roughness called the RIF-index by 

averaging the RIF-indices derived from many CV traversals across a specified roadway 

segment. Speed variability and differences in suspension behavior require a large number 

of measurements to achieve some desired precision and accuracy (Bridgelall 2015). Hence, 

best practices of the method segment the data stream by vehicle type, for example, mid-

sized sedans, and then by speed bands, for example 40 km h-1 ± 5 km h-1. Previous studies 

show that such data segmentation enhances the precision of measurements within a margin-

of-error that diminishes below 1.5% within 50 traversals (Bridgelall et al. 2016a). 

Transportation agencies recognize that in addition to improving the precision of roughness 

measurements, CV-based methods will enable continuous monitoring that could detect 

cyclical anomalies (Dennis and Spulber 2016). 

The goal of this research is to evaluate the reliability of the RIF-transform under 

conditions of speed, suspension, and wheel-path variability. Subsequently, the objectives of 
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this research are to determine the degree to which repeated measurements of RIF-indices 

from different vehicles of the same type, traveling at non-uniform speeds: 

1) produce an unbiased estimate of the average roughness that riders experience 

2) could distinguish among the roughness levels of different roadway segments. 

 

The next section reviews the RIF-transform and its speed-dependent properties. The 

sub-sections describe data collection from public transit buses during their normal 

operations, and the statistical tests selected to achieve the above objectives. A description 

of the data analysis from the case studies then follows. The results and discussion section 

reveal that RIF-indices measured from the buses under stop-and-go conditions provide a 

reliable estimate of the mean roughness experienced, within a diminishing margin-of-error. 

The findings also indicate that the power to distinguish differences in segment roughness 

increases as the measurement volume of RIF-indices increase. 

2 Methods 

Given the detailed derivations of the RIF-transform referenced in the previous work 

(Bridgelall 2014a), this section provides only a brief review. 

2.1 The RIF-Transform 

The RIF-transform produces a RIF-index in units of g-force per meter (g/m) to characterize 

the actual roughness experienced in the sensing vehicle at any speed. For individual vehicle 

traversals, the RIF-transform summarizes roughness such that 
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where the RIF-index L

vR  is the average g-force magnitude experienced per unit of distance 
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L traveled (Bridgelall et al. 2016b). An on-board accelerometer produces the vertical 

acceleration gz[n] for signal sample n and a speed sensor produces the instantaneous speed 

vn. Previous research established that the sample rate, which is the inverse of the average 

sample period δt, should be at least 64 Hertz (Bridgelall 2014b). 

The RIF-transform is stable at non-uniform speeds because it integrates the speed. 

That is, the RIF-index is zero when the speed is zero and compresses as the square root 

with increasing speed. For additional insights, setting the speed and the segment length in 

equation (1) to constants yield 
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Although not used in this manner, this manipulation provides the insight that, for any fixed 

speed v, the RIF-index, which is the output of the RIF-transform, is directly proportional to 

the root-mean-square (RMS) of the vertical acceleration, scaled by the square root of a 

fixed speed. This result explains why using the RMS alone to characterize roughness 

produces results that do not account for speed variability (Wermers 1962). More recently, 

researchers attempted to account for the speed variations by applying heuristic calibration 

factors or machine-learning methods (Dawkins et al. 2011) (Du et al. 2014) (Stribling 

2016) (Alessandroni et al. 2017). 

2.2 Data collection 

The ride quality from road roughness varies with speed and with changes in the behavior of 

the vehicle’s overall suspension system. The latter could include suspension adaptations to 

loading conditions and to changes in tire pressure. Hence, practicing the CV method 

requires data stratification by vehicle class to improve the precision of the roughness 
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measurements. Therefore, the case studies use only buses for the data collection. The data 

set includes vertical acceleration, speed, and GPS receiver samples from 18 different buses 

traveling four different routes each day. The data collection device was a smartphone app 

called PAVVET (Bridgelall and Tolliver 2016). The authors selected two of the bus routes 

to contain a common roadway segment. This allowed for testing the ability of the selected 

statistical method to detect the overlap. By subjective observations, the tested roadway 

segment of one route was relatively smooth whereas one was relatively rough. The 

roughness of the overlapping roadway segment was intermediate. 

The data collection covered bus operation at different times of the day, including 

during weekdays and on weekends. Figure 1 shows the nature of the sensor data collected. 

Figure 1a plots the typical vertical acceleration (gz) signal and the corresponding RIF-

indices derived from it. The vertical acceleration is in units of g-force, which the sensor 

sampled at a rate of 128 Hz. The RIF-indices shown characterize roughness in 

g-force/meter for the previous 10 meters of a traversal. Hence, the L in equation (1) is 

approximately 10 with variances due to GPS errors. The significance of selecting 10-meters 

is that it is the 95% confidence interval of GPS errors (Hughes 2016), and it is within one 

bus length. The reported RIF-index for the overall road segment is the average of the RIF-

indices calculated for the consecutive 10-meter segments. 

[Figure 1 near here]. 

Incidentally, in addition to reporting an overall segment roughness, the plots express 

how localized RIF-indices could identify roadway anomalies such as potholes and large 

cracks. Figure 1b shows the bus yaw that indicates turns in degrees, and the bus speed in 

m s-1. The high variability of the speed and the stop-and-go conditions are evident. 
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2.3 Tests for normality of distribution 

To achieve the first objective listed earlier, the authors apply a goodness-of-fit test to detect 

any significant departures of the RIF-indices from a normal distribution. Such a test hinges 

on the theory that the mean of a normally distributed variable from a population sample is 

an unbiased estimate of the true population average (Agresti and Finlay 2009). Most of the 

samples that form a normal distribution, also known as a Gaussian distribution, cluster 

towards the mean. Hence, a normal distribution of RIF-indices will express a central 

tendency towards the average roughness experienced. Deviations from the mean value will 

be due to variations in speed, tire path, and suspension behaviors. The central limit theorem 

posits that averages computed from independent and sufficiently large numbers of random 

measurements, taken from independent distributions, converge in distribution to the 

Gaussian (Papoulis 1991). A connected vehicle environment satisfies the condition for a 

large number of measurements because it is feasible to collect the inertial and speed data 

from thousands of similar connected vehicles traversing a road segment each day. 

Statisticians use the Student’s t-distribution instead of the normal distribution to 

estimate the mean of a population when the sample size is relatively small, such as less than 

30 (Agresti and Finlay 2009). Nevertheless, the t-distribution approaches the Gaussian 

when the measurement volume exceeds 30. Therefore, the case study presented in the next 

section applies the goodness-of-fit tests for both Gaussian and t-distributions. 

The Gaussian model Dg(ξ) estimates the normal distribution of a random variable ξ 

such that 
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where γ g, μg, and σg are estimates of the amplitude, mean, and standard deviation 

parameters, respectively. Similarly, the model for estimating the Student’s t-distribution 

Dt(ξ) is 
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where tdf(ξ) is the normalized Student’s t-distribution, which is a gamma function of ξ and 

degrees-of-freedom DF. The parameters γt, μt, and σt are estimates of the amplitude, mean, 

and standard deviation parameters, respectively. 

The chi-squared goodness-of-fit test (Papoulis 1991) determines whether there is a 

significant difference between the expected frequencies and the observed frequencies of 

measured values. The null hypothesis H0 is that the observed distribution of the RIF-indices 

derived from the inertial measurements is the same as the candidate distribution. Failure to 

reject the null hypothesis will result in accepting the alternative hypothesis H1: N that there 

was no significant departure of the observed distribution from the candidate distribution. 

Such an outcome will indicate a central tendency of roughness indices towards the mean 

value experienced. 

The chi-squared statistic (χ2) is 

 
.

1

2
2







n

k k

kk

E

EO
  (5) 

The random variables Ok are the histogram values observed in bin k and Ek are the expected 

values of the hypothesized distribution. The chi-squared test rejects the null hypothesis if 

the χ2-statistic exceeds the critical χ2 value derived from the theoretical chi-squared 

distribution, evaluated at the DF and at a significance percentage α. Statisticians typically 

set α=0.05, which represents a low probability of 5% that the test will reject the null 
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hypothesis when in fact it is true. The alternative approach is to calculate the chi-squared 

probability values (p-values) that correspond to the observed χ2-statistic and the DF. The 

tests will reject the null hypothesis when the p-values are less than the selected significance 

percentage. 

The margin-of-error (MOE) is a measure of the amount of clustering towards the 

mean. It expresses the amount of variability in the measurement, thereby indicating the 

reliability of the mean. The MOE percentage for the distribution of a random variable 

within a (1-)% confidence interval with significance  (Papoulis 1991) is 
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where dft ,2/1   is the t-score for a normalized cumulative t-distribution with DF degrees of 

freedom, μ is the mean, and σ is the standard deviation. The case study will calculate the 

MOE95, which is the margin-of-error within a 95% confidence interval. 

2.4 Tests for measurement distinguishability 

To achieve the second objective listed earlier, the authors apply t-tests to compare the 

statistics of RIF-indices from each unique pair of road segment. A t-test determines if two 

sets of measurements are significantly different from each other (Agresti and Finlay 2009). 

Hence, the null hypothesis H0:M for this test is that the two sets of measurements came 

from the same road segment. Setting the level of significance α = 5% establishes a 

relatively low probability of observing a type I error, which is rejecting the null hypothesis 

when in fact it is true. Hence, a probability value that is less than 0.05 will result in a 

rejection of the null hypothesis H0:M. 
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The standard t-test assumes that the two data sets have equal variances. The 

Cochran t-test (Cochran and Cox 1957) removes the assumption of equal variances by 

modifying the t-statistic to be 
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where t1 and t2 are the critical values of the t-distribution corresponding to the selected 

significance level α and the sample sizes N1 and N2, respectively. The parameters f1 and f2 

are the frequencies of the ith observation in their respective sample sets. The parameters s1 

and s2 are the standard deviations of the respective sample sets. 

The Folded F-test (Steel and Torrie 1980) checks for the homogeneity of variances 

among the sample sets. The null hypothesis H0:V is that the variances of two distributions 

are equal. The F-statistic is 
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The F-distribution evaluated at the significance level α and the two degrees-of-freedom 

DF1 and DF2 produces the p-value. Hence, all of the tests in the case studies will reject the 

null hypothesis H0:V if the p-values are less than 5%. 

3 Case studies 

This case study measured roughness from the traversals of 18 different buses across road 

segments of four different routes. A tested road segment along two of the routes overlaps. 

Figure 2 shows the relative positions of the road segments along the bus routes. The inset 

shows images of the two dominant bus types used. 
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[Figure 2 near here]. 

The bus routes are located in the small city of Fargo, North Dakota, and the lengths of the 

road segments are between two and five kilometers. The labels EM, SG, UG, and WM 

denote the road segments from Essentia Hospital to the Mall (5.1 km), Sanford Hospital to 

the Ground Transportation Center (2.1 km), University Drive to the Ground Transportation 

Center (2.3 km), and the Walmart-Mall loop (3.9 km), respectively. The overlap in the SG 

and UG segments is more than 90%. 

From subjective assessments during the data collection, the ordered ranking of 

relative roughness from high to low is EM, SG, UG, and WM. Table 1 summarizes the 

number of measurement-trips from each of the 18 buses. The project sponsors supported 

the cost and time to obtain at least 30 roughness measurements from each route, thus 

assuring a statistically significant sample. The data collection occurred on weekdays, 

weekends, and at different times of the day when there was no precipitation on the roads. 

[Table 1 near here]. 

The same buses traversed the EM and SG road segments because those are part of 

their overall bus route. Similarly, the same buses traversed the UG and WM road segments. 

Only bus number 3 and 10 traversed all of the road segments at some time during the data 

collection period. 

4 Results and discussion 

Figure 3 plots the distribution of the RIF-indices for each road segments. The relative 

ranking of the mean RIF-indices agree with the subjective ranking. However, the 

distribution variances overlap significantly for each route. Therefore, only a statistical test 

can determine if the measurements are in fact from different road segments. 
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[Figure 3 near here]. 

4.1 Reliability of measurements 

The authors use the iterative Levenberg-Marquardt nonlinear least squares method of curve 

fitting to identify the parameters of the best-fit distributions (Gill et al. 1981). Table 2 lists 

those amplitude, mean, and standard deviation (γ, μ, σ) parameters. For each set of 

measurements, the χ2-statistic does not exceed the χ2-critical value for either the normal or 

the t-distributions. The table includes the p-values corresponding to the χ2-statistic in 

percentages. These results indicate that the chi-squared tests cannot reject the null 

hypothesis in any of the cases. Therefore, the statistical tests find no significant departure of 

the observed distribution from the normal or the t-distributions. 

[Table 2 near here]. 

Table 2 lists the MOE within the 95% confidence interval (MOE95). The average 

MOE95 is below 6% for all the measurements. This indicates that additional measurements 

will likely yield even further reductions in the MOE95. Hence, tendency towards a central 

value per the Gaussian, coupled with relatively low margins of error, indicate a high 

reliability of the measurements. Therefore, the mean value of the RIF-indices is an 

unbiased estimate of the average roughness experienced. Furthermore, the precision of 

measurements will increase as the number of connected vehicle traversals increases. 

4.2 Distinguishability of measurements 

Table 3 indicates that without merging the data for the common routes, the F-tests reject the 

null hypothesis H0:V of equal variances for three of the tested segment pairs. This result 

prompted the use of Cochran t-tests because it does not assume equal sample sizes or equal 

variances. 
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[Table 3 near here]. 

As summarized in Table 3, the t-tests cannot reject the null hypothesis H0:M of 

indistinguishable statistics for two of the comparisons. This result correctly indicates that 

the measurements overlapped for at least one of the data set pairs. Repeating the tests after 

merging the data for the common SG and UG segments yielded the expected result. As 

summarized in Table 4, the t-tests rejected the null hypothesis for each of the comparisons, 

thereby affirming that measurements of RIF-indices are distinguishable among different 

road segments. 

[Table 4 near here]. 

The minimum difference in roughness among the three road segments was only about 11%. 

Even so, the level of distinguishability will increase further with an ever-increasing 

precision by combining measurements from a larger number of connected vehicles. 

5 Summary and conclusions 

Agencies typically do not evaluate the IRI for local and unpaved roads because of the 

technical and practical limitations of existing specialized equipment. CV methods are 

evolving to bridge the gap by enabling continuous roughness characterizations of the entire 

roadway network. However, speed variability and differences in suspension behavior 

require data segmentation to achieve some level of desired precision and accuracy with 

relatively few measurements. 

The contribution of this research was to evaluate a CV method that uses the RIF-

transform to determine the extent to which it could reliably estimate the average roughness 

that riders experience when traveling at non-uniform speeds, in different vehicles of the 

same type. The second contribution was to determine the extent to which the CV method 
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could distinguish among the roughness differences of roadway segments, when measured 

under the same conditions of speed and suspension variability. The statistical testing 

determined that under those conditions, the RIF-transform yields an ever-increasing 

accuracy and precision of roughness characterizations as the number of measurements 

increase. The RIF-transform distinguished the average roughness difference among the 

road segments of the case study where the minimum difference was 11%. The power to 

distinguish even smaller differences in roughness will increase as the MOE95 decreases 

further with larger measurement volume. 

In future research, the authors plan to examine properties of the CV method when 

characterizing the ride quality for unpaved roads under the same conditions of speed and 

suspension variability. Experiments will include different vehicle types, loading conditions, 

and roughness averaging distances. Those will be some of the factors used to estimate a 

model for the standard error as a function of traversal volume. 
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Figure 1. Sensor output of (a) inertial data (b) speed and orientation. 

 

 
Figure 2. Buses and road segments of the case study. 
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Figure 3. Comparative distribution of RIF-indices for four road segments of four routes. 
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Table 1. Trips by bus number for each route. 

 
Measurement-Trips by Bus Number 

 
Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Trips 

EM 0 0 2 0 2 5 2 0 7 4 1 4 0 3 0 0 0 0 30 

SG 0 0 5 3 3 1 1 2 6 3 1 1 2 3 0 0 0 0 31 

UG 2 2 3 0 0 0 0 0 0 2 0 0 3 0 10 2 3 4 31 

WM 2 2 3 0 0 0 0 0 0 1 0 0 3 0 10 2 2 5 30 

Trips 4 4 13 3 5 6 3 2 13 10 2 5 8 6 20 4 5 9 123 

 

Table 2. Chi-squared tests for normality without merging the common route data. 

 Road Segments 

Parameters EM SG UG WM 

RIF-Indices 30 31 31 30 

Mean 0.166 0.157 0.135 0.130 

STD 0.017 0.038 0.018 0.018 

MOE95 (%) 3.86 8.908 4.828 5.211 

Normal distribution 
    

χ2 DF 4 4 4 4 

γ g 0.554 0.894 0.82 0.799 

μg 0.164 0.147 0.134 0.127 

σg 0.019 0.039 0.016 0.019 

χ2 Critical 9.5 9.5 9.5 9.5 

χ2 Statistic 1.1 6.4 2.7 2.2 

p-values (%) 89.4 17.2 61.8 70.5 

Student’s t-distribution 
    

χ2 DF 4 4 4 4 

γ t 0.593 0.925 0.86 0.839 

μt 0.164 0.144 0.135 0.127 

σt 0.019 0.035 0.014 0.018 

χ2 Critical 9.5 9.5 9.5 9.5 

χ2 Statistic 2.2 6.8 0.4 1.2 

p-values (%) 70.0 14.7 98.0 87.1 
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Table 3. F- and t-tests without merging data for common route. 

Test Pair DF F-value Pr > F Reject H0:V? t-value Pr > |t| Reject H0:M? 

EM-SG 30 4.94 <.0001 Yes 1.18 0.2483 No 

EM-UG 30 1.07 0.8504 No 6.91 0.0001 Yes 

EM-WM 29 1.12 0.7639 No 7.88 <.0001 Yes 

SG-UG 30 4.61 <0.0001 Yes 2.92 0.0067 Yes 

SG-WM 30 4.43 0.0010 Yes 3.55 0.0013 Yes 

UG-WM 29 1.04 0.9155 No 1.09 0.2849 No 

 

Table 4. F- and t-tests after merging data for common route. 

Route Pair DF F-value Pr > F Reject H0:V? t-value Pr > |t| Reject H0:M 

EM-(SG+UG) 61 3.38 0.0006 Yes 3.91 0.0003 Yes 

EM-WM 30 1.12 0.7639 No 7.88 <.0001 Yes 

(SG+UG)-WM 61 3.02 0.0017 Yes 3.08 0.0036 Yes 

 

 


