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ABSTRACT 

The United States rely on the performance of more than four million miles of roadways to 

sustain its economic growth and to support the dynamic mobility needs of its growing 

population. The funding gap to build and maintain roadways is ever widening. Hence, the 

continuous deterioration of roads from weathering and usage poses significant challenges. 

Transportation agencies measure ride quality as the primary indicator of roadway performance. 

The international roughness index is the prevalent measure of ride quality that agencies use to 

assess and forecast maintenance needs. Most jurisdictions utilize a laser-based inertial profiler to 

produce the index. However, technical, practical, and budget constraints preclude their use for 

some facilities, particularly local and unpaved roads that make up more than 90% of the road 

network in the US. This study expands on previous work that developed a method to transform 

sensor data from many connected vehicles to characterize ride quality continuously, for all 

facility types, and at any speed. The case studies used a certified and calibrated inertial profiler to 

produce the international roughness index. A smartphone aboard the inertial profiler produced 

simultaneously the roughness index of the connected vehicle method. The results validate the 

direct proportionality relationship between the inertial profiler and connected vehicle methods 

within a margin-of-error that diminished below 5% and 2% after 30 and 80 traversal samples, 

respectively. 
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INTRODUCTION 

Ride quality refers to the degree that a vehicle protects its occupants from factors that decrease 

ride comfort. The road impact factors (RIF) are uneven surfaces and anomalies such as potholes, 

cracks, and utility covers. The driver impact factors (DIF) are behaviors such as abrupt braking, 

rapid acceleration, weaving, and speeding around curves. Hence, the RIF and the DIF can induce 

motions and noises that cause rider discomfort. The vehicle impact factors (VIF) affect how 

riders perceive the disturbances from RIF and DIF. The VIF are a strong function of the vehicle 

suspension and handling characteristics but they can also include other factors such as features of 

furniture design, interior aesthetics, and entertainment. Altogether, these factors result in the 

overall ride quality experienced. 

Highway agencies narrow the definition of ride quality to the RIF and use a model of the 

vehicle suspension system, called the Golden Car, to standardize the VIF as a fixed suspension 

response that dampens vibrations from road roughness (1). The Golden Car approximates the 

suspension response of vehicles typical of the 1980s, which is around the time-period that 

practitioners agreed on the approach. Nearly all regular passenger and commercial motor 

vehicles, regardless of their size and weight, provide similar suspension responses because 

manufacturers design them to attenuate vibrations within a common range of frequencies that 

cause human discomfort or increase the difficulty of operating vehicles safely (2). In particular, 

humans are most sensitive to vibrations between 4 and 8 Hertz (3). For example, the resonant 

frequency of the human spine is approximately 5 Hertz. The typical suspension system attempts 

to attenuate vibrations in this frequency range and consequently result in a transfer function that 

exhibits a sprung- and unsprung-mass resonant mode near 1 and 10 Hertz, respectively (4). 

The international roughness index (IRI) is currently the prevalent measure of ride quality. 

Nearly all jurisdictions deploy laser-based inertial profilers to produce the IRI (5). The procedure 

to produce the IRI from elevation profile samples is a mathematical simulation that moves the 

Golden Car at 80 km/h across the profile. Conversely, the connected vehicle method directly 

samples the inertial response from many vehicles to produce an average characterization of the 

ride quality experienced (6). In previous work, Bridgelall (2014) proved that the index of 

roughness derived from connected vehicle sensor data is directly proportional to the IRI (1). The 

inertial sensor used was an industrial grade device that produced high quality accelerometer and 

global positioning system (GPS) data. Consequently, the proportionality was repeatable within a 

margin-of-error, in a 95% confidence interval, that was less than 4% after only six traversals. 

The objective of this study is to repeat those experiments with a much lower cost inertial 

and GPS data logger implemented as a smartphone application (app) called PAVVET (7). For 

these experiments, the authors used a certified and calibrated inertial profiler to collect the IRI 

data. Resource constraints limited the number of traversals available to approximately nine. 

Hence, the authors utilized a regular sedan to collect PAVVET data from more than 20 traversals 

across the same route to test the statistical significance and to compare the ride quality 

characterizations with those using the inertial profiler. 

The organization of this paper is as follows: the next section will review the background and 

models of the IRI and connected vehicle methods of ride quality characterizations to highlight 

their respective differences. The third section will review the statistical models to transform the 

connected vehicle data into a single index summary of roughness, and to test its convergence 

with traversal volume. The fourth section will describe the case studies and discuss the results. 

The final section will summarize and conclude the study. 
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RIDE QUALITY CHARACTERIZATIONS 

As of 2015, nearly all jurisdictions have begun to use inertial profilers to produce the IRI from 

samples of the elevation profile (5). Although these devices have become the de facto method of 

producing the IRI, technical limitations challenge their use to characterize ride quality for local 

and unpaved roads (8). Such facilities account for more than 90% of the roadways in the U.S. 

(9). In particular, roadway anomalies and the stop-and-go conditions of urban facilities could 

invalidate miles worth of data collected (10). Furthermore, numerous studies demonstrated that 

the IRI masks road roughness that causes human discomfort (11)(12)(13). Several studies found 

that the IRI is insensitive to spatial wavelengths that are characteristic of underlying pavement 

distress symptoms (14)(15)(16)(17). 

 In previous work, Bridgelall (2014) developed a transform to characterize ride quality 

from the sensor data of connected vehicles (1). The result was a road impact factor (RIF) 

transform that compresses voluminous data from the inertial and geospatial position sensors 

aboard regular vehicles to produce a single index summary of roughness that is directly 

proportional to the IRI, at any fixed speed. Unlike the IRI, the RIF-index reflects the actual 

roughness that users experience when traveling the segment. The RIF-index inherently integrates 

the average response energy from the combined RIF and VIF of a real vehicle. To remove the 

wavelength bias that arises from suspension-based mechanical filtering at fixed speeds, the 

Bridgelall (2014) developed a time-wavelength-intensity-transform (TWIT). This wide-band 

transform integrates RIF-indices from multiple speed bands to produce a speed-independent and 

wavelength-unbiased roughness index. Therefore, the TWIT reflects the average roughness 

experienced for the range of speeds that travelers ride the segment. Averaging the RIF-indices 

for a given speed band produces a summary of ride quality with ever increasing precision as the 

number of traversals from connected vehicles increase. The technique is applicable for all facility 

types, including local and unpaved roads. The IRI requires relatively few traversals to produce an 

average value with high precision because of its fixed Golden Car parameters and simulation at a 

fixed speed. Conversely, variations in actual vehicle suspension performance and speed increase 

the number of traversals needed to provide an equivalent level of precision for RIF-indices. 

 

The International Roughness Index 

The definition of the IRI is the accumulated absolute rate difference between the sprung- and 

unsprung-mass motions of a Golden Car simulated to move at a fixed reference speed (18). The 

notation for the IRI in this development is L

vI  and its definition is 
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  are the first derivatives of the Golden Car sprung- and unsprung-mass 

vertical motions, respectively. The segment length L is typically 500 or 1000 feet. The procedure 

fixes the speed v  to the standard reference speed of 80 km/h. Therefore, the IRI ignores any 

variations in the actual vehicle speed and suspension responses. In fact, some inertial profilers 

estimate the body bounces of the host vehicle to account for reference plain movements that 

distort elevation profile measurements. The fixed suspension response of the Golden Car and the 

fixed reference speed prevents the IRI from reflecting roughness produced from spatial 

wavelengths that fall outside of a relatively narrow range. Consequently, the IRI cannot reflect 
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the true roughness that riders experience when traveling a segment at different speeds and in 

different vehicles. 

 

The Road Impact Factor Transform 

The RIF transform integrates the product of the vertical acceleration signal gz(t) and the 

longitudinal velocity v(t) such that 
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where the RIF-index L

vR  is the average g-force magnitude experienced per unit of distance L 

traveled. This expression simply multiplies the vertical acceleration signal from the inertial 

sensor with the instantaneous velocity, and then accumulates the square of that product across 

the segment length analyzed. Dividing the accumulated square-of-products by the segment 

length and then taking the square root yields the RIF-index. For an average speed vtv )( , 

within some speed band across a segment, the RIF-index simplifies to 
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where 
L

gzE  is the longitudinal energy density of the vertical acceleration signal. The inertial 

signal energy is in units of joules per meter when the sensor output is in units of volts. The 

associated discrete time transform is 
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where the discrete time samples are t = n × δt with sample instant n and average sampling period 

δt. The inverse of the sampling period is the sample rate of the inertial sensor. The total number 

of samples is N, therefore, for an average sample interval of δL, the segment length is N × δL. 

Hence, the instantaneous velocity is vn = δLn/δtn and the discrete time RIF transform simplifies to 

.
1 1

0

2

][





N

n

nnz

L

v vg
N

R  (5) 

For a constant velocity vc, the RIF-index is related to the root-mean-squared (RMS) value of the 

vertical acceleration signal grms such that 
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It is evident that the RIF-index is zero when the traversal velocity is zero and increases non-

linearly with velocity. Previous work that attempted to relate the accelerometer signal to the IRI 

witnessed a speed dependency but did not establish a mathematical characterization to explain 

the behavior observed (19)(20). The inertial signal output grms is essentially a convolution of the 

equivalent quarter-car response with the power spectral density of the elevation profile (1). 
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Therefore, a uniform, broadband power spectral density must produce a constant RMS value. 

Practically, however, the power spectral density of typical roadways diminishes with shorter 

spatial wavelengths that translate to higher frequencies in the time domain. Therefore, a 

combined effect of the nonlinear increases in velocity and the decrease in power spectral density 

of the elevation profile at higher speeds produces a combined stabilization of the RIF-index. 

Based on previous work (21), Figure 1a plots the simulated Golden Car vertical responses 

to bump traversals at 7 m s-1 and twice that speed. The simulated bump is 5-cm high by 1-m 

wide. The sprung-mass response (body bounce) at the lower and higher speeds differ 

substantially (Figure 1a). Hence, this simulation exemplifies the fundamental reason for 

variations in the RIF- and IRI-transform outputs as a function of traversal speed (Figure 1b). The 

RIF-transform (Equation 3) associates the RIF-index with any selected speed band whereas the 

IRI-transform requires a precise speed of 80 km h-1. Consequently, the RIF/IRI ratio is a function 

of the traversal speed. Therefore, agencies must standardize on the traversal speed selected for a 

given facility when measuring the RIF-index to estimate the corresponding IRI. 

Unlike the IRI, the RIF-index is a transformation of the inertial and velocity data from the 

response of an actual vehicle traversing the elevation profile at a given average speed and 

interval of variability. Therefore, the RIF-indices encapsulate all effects from variations in the 

elevation profile, speed, suspension responses, and vibration modes that are not present in a 

simulated Golden Car. Averaging the RIF-indices from many vehicles will attenuate independent 

noise sources from VIF that are not common mode factors from road roughness. 

 

The Ensemble Average RIF 

The ensemble average of the RIF-indices (EAR) from Nv traversals across a path of length L is 

denoted L

v
R  and it is analogous to the average IRI. The EAR-index is 
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where ][L

vR  is the RIF-index from the ρth traversal of the segment at an average speed of v , 

and v  is the batch mean speed from all traversals. In addition to compressing the inertial and 

position data longitudinally along the traversal direction, the EAR fuses multiple data streams 

within the same geospatial window of all traversals. Hence, the EAR-index represents a vertical 

compression of the stack of RIF-indices produced for a segment for some short time-period, for 

example, a few hours or a few days. 

The EAR-index represents the average roughness that the typical vehicle occupant 

experiences when traveling the segment within a specified interval of speed or a speed band. For 

example, selecting data streams from vehicle traversals that are within 5 km/h of an average 

speed of 80 km/h will produce an EAR-index that summarizes roughness from the range of 

spatial wavelengths that the IRI characterizes. However, producing the EAR-indices for the 

prevailing average speed of a given facility type, such as the speed limit, would be more practical 

and meaningful. That is, the EAR-index will characterize ride quality from spatial wavelengths 

that induce roughness at the prevailing speeds rather than at the IRI reference speed. Monitoring 

the EAR-index from the same speed band consistently will reflect changes in ride quality that the 

average user experiences as the road deteriorates over time. The TWIT integrates the EAR-

indices from all speed bands to produce a speed-independent and broadband characterization of 

roughness over time (21). 
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STATISTICAL MODELS 

Agencies may elect to measure and associate a calibrated RIF/IRI ratio for designated vehicles 

by producing the EAR-indices from several traversals of a facility for which a recent IRI value is 

available. Alternatively, producing the EAR-index from a selected speed band by sampling the 

traversal data from many vehicles will obviate the need for calibration to account for the VIF of 

a specific vehicle. Previous studies of the precision bounds of the EAR-index demonstrate that 

the margin-of-error, within a 95% confidence interval (MOE95), diminishes rapidly after only 

several hours of data collection from the typical vehicle mix (22). The MOE95 will diminish to 

equivalent levels of precision with fewer traversals when using the same vehicle or vehicle type. 

GIS platforms that incorporate this connected vehicle method could select similar classes of 

vehicles from the data stream, traveling under similar conditions of weather, regional climate, 

and facility type to produce EAR-indices that achieve higher precision characterizations with 

fewer traversals. This section will develop the statistical tests to demonstrate convergence of the 

RIF/IRI ratios to the expected values of classical parameterized distributions. 

 

Data Distribution 

A histogram of the RIF-indices provides a non-parametric description of the indices produced 

from the traversals of many vehicles. Subsequently, a least squares approximation of classic 

distributions that best fit the histogram provides a parametric estimate of their expected values to 

forecast the achievable precision. The case studies of this work use the critical chi-squared 

values to test the fitted distributions for candidacy as Gaussian and Student-t distributions (23). 

The t-distribution is practically identical to the Gaussian distribution when the sample size 

approaches 30. 

 

Chi-squared Testing 

The critical chi-squared value “χ2 Data” is an evaluation of the statistic 
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where Ok are the histogram values observed in bin k and Ek are the corresponding expected 

values from the hypothesized distribution. The chi-squared distribution value at 5% significance 

( = 5%) is the largest value expected with a probability of at most 5%. The chi-squared degrees 

of freedom (df) are one unit less than the number of histogram bins n, minus the two independent 

distribution parameters estimated, namely the amplitude and the mean. Estimation of the 

standard deviation is dependent on an estimation of the mean; hence, it does not count towards 

the df. Statisticians generally reject a null hypothesis that the data follow a tested distribution if 

the critical χ2 value is larger than the chi-square distribution value at 5% significance, or 

equivalently, if the significance level calculated for the critical χ2 value is less than 5%. 

 

Margin-of-Error 

The interval 
LR  1  is the margin-of-error within a (1-)% confidence interval (24) such that 
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where dft ,2/1   is the t-score at (1-) probability for a normalized cumulative t-distribution of df 

degrees of freedom. The standard deviation of the RIF-index is denoted 
L

R . The ratio of 
LR  1  to 

the EAR-index L

v
R  is a proportional measure of the data spread as a percentage. For this study, 

MOE0.95 (%) indicates that 95% of the data points are likely to be within that percentage of the 

EAR-index. 

From the classical theory of error propagation (24), the standard deviation of the RIF-

index, 
L
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where 
2

v  is the variance of the batch mean speed within the selected speed band. The 

covariance of the batch mean speed and the vertical acceleration signal energy is denoted 
2

Ev . 

Evaluating the partial derivatives indicated in Equation (10) yields: 
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where 
L

gzE  and v  are the means of the vertical acceleration signal energy and the batch mean 

speed among traversals, respectively. Therefore, the proportional contribution of the velocity 

variance to the precision dilution in RIF-indices L

vR  is 
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RESULTS AND DISCUSSIONS 

This section describes the case studies conducted, the method of data processing, and the results 

obtained from the field experiments. The final section tests the distribution of the RIF/IRI ratios 

against the classical parameterized distributions to demonstrate convergence with their expected 

values. 

 

The Case Study Setting 

The three pavement sections analyzed are along the frontage road sections of TX-130 

(Figure 2a), which is about 20 miles northeast of Austin, Texas. Each test site is a 1000-ft (304.8 

meter) section of asphalt pavement. The inertial profiler traversed each segment at approximately 

72 km h-1 (45 MPH) and 97 km h-1 (60 MPH) to observe any differences in each set of roughness 

indices produced. 
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The IRI Data Collection and Processing 

This study used a calibrated and certified Ames Engineering Model 8300 inertial profiler 

(Figure 2b). The host vehicle is a Ford E150 XLT Wagon. The ProQual software processed the 

elevation profile samples to produce indices for the left wheel path (LWP) and right wheel path 

(RWP) height sensors (25). The silver colored line of duct tape across the pavement (Figure 2b) 

automatically triggers the start of IRI data collection for the inertial profiler. The IRI values 

utilized for this analysis are the mean values of the LWP and RWP indices.  

 

The RIF Data Collection and Processing 

The PAVVET data logger produced samples of the tri-axial acceleration, orientation, velocity, 

time, and geospatial position coordinates from the smartphone’s integrated sensors. Post 

processing produced the resultant vertical acceleration for any sensor orientation and the 

corresponding RIF-index for a specified length of the segment (21). The operator manually 

initiated data logging near the instant that the vehicle crossed the duct tape. Consequently, the 

latency of achieving GPS lock resulted in some sections not completely overlapping the IRI 

sections characterized. Nevertheless, analysis of the data revealed that sections of 210-meters 

(689-ft) near the centers of each test site provided the maximum overlap for all traversals. 

The sedan used to collect the data that produce RIF-indices was a 2000 Toyota Camry. 

Hence, the PAVVET app converted both the sedan and the inertial profiler van to connected 

vehicles. The mounted orientation for the smartphone was vertical so that the operator could 

verify its operation and initiate data logging by tapping the screen (Figure 2c). This mount 

apparatus produced some spurious vibration modes due to the levered design of its base. 

However, a 21-tap finite impulse response (FIR) low-pass filter with cutoff frequency of 20 Hz 

adequately removed the noise and isolated the quarter-car sprung- and unsprung-mass modes 

needed to produce the RIF-indices. The signal-processing algorithm of the RIF-transform also 

removes any offset in the resultant vertical acceleration to ignore static g-forces from earth’s 

gravity. The maximum update rate achieved for the inertial sensors of the smartphone was 

approximately 93 Hz. Previous studies recommended that agencies standardize the inertial 

sample rate and the sensor mount apparatus to improve the precision of measurements with 

fewer traversal samples (6). The update rate achievable from the integrated GPS receiver of the 

smartphone was 1 Hz. Therefore, the data processing algorithm interpolated the distance between 

inertial samples by using the instantaneous velocity and sample time increments. The inertial 

navigation output of the GPS receiver produced the velocity signal. 

 

Experimental Results 

The data from the three sets of traversals (Table 1) include parameters from the inertial profiler 

traversals at approximately 45 and 60 MPH, and the sedan traversals at approximately 45 MPH. 

As expected, the EAR/IRI ratios for each vehicle and traversal speed agree in their relative 

change, albeit slight, across test sites (Figure 3). As Equation (3) suggests, the higher speed 

traversals of the inertial profiler produce expectedly larger EAR-indices. Hence, the EAR/IRI 

ratios are consistently higher. The EAR-indices from the sedan are consistently lower than the 

corresponding indices from the inertial profiler because the VIF of the former generally provides 

greater isolation from road roughness than the latter. 

As described previously, the IRI does not reflect variations in the actual vehicle velocity 

and suspension response whereas the RIF-indices do. Hence, with only 7 to 9 traversals available 
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per test site the MOE95 for the RIF-indices were greater than the corresponding IRI values as 

expected. The average MOE95 for the RIF-indices and the IRI derived from the inertial profiler 

was approximately 10% and 3.5%, respectively. With more traversals available, the MOE95 for 

the RIF-indices derived from the sedan averaged approximately 4%, which is comparable to the 

MOE95 obtained for the IRI. From Equation (12), the average proportional impact of the velocity 

variance to the precision dilution of RIF-indices was approximately 3% and 1.5% for the inertial 

profiler traversals at 45 MPH and 60 MPH, respectively. Expectedly, the sedan traversals 

contributed a slightly higher average velocity variance of approximately 5% to dilute the 

precision of RIF-indices. 

 

Convergence of RIF/IRI Proportionality 

The law of large numbers in probability theory dictates that the average value from many trials 

will converge to the expected value (24).This section demonstrates that the probability 

distribution of the RIF/IRI ratios follows the well-established t-distribution that is appropriate for 

data sets smaller than 30 samples. Therefore, the RIF/IRI proportionality must converge to a 

mean value with increasing levels of precision as the traversal volumes from connected vehicles 

increase beyond 30. This guaranteed convergence in connected vehicle environments obviates 

the need to calibrate the RIF/IRI ratio for individual vehicles. The histograms of the RIF/IRI 

ratios for the test traversals conducted using the inertial profiler at two different speeds, and the 

sedan at the lower speed demonstrate this agreement with the classical distribution (Figure 4). 

The critical chi-squared values (Equation 8) are substantially smaller than the chi-squared 

distribution evaluated at 5% significance (Table 2). That is, the average significance is 

approximately 86%, which is much greater than 5%. Therefore, the tests cannot reject a 

hypothesis that the distribution of the ratios follows the t-distribution.  

The strong agreement with the classic distribution indicates that additional vehicle 

traversals will further increase the precision of estimating the IRI from connected vehicle data. 

This fact is evident from the sedan traversals that produced 69 samples. In particular, the average 

MOE95 for the RIF/IRI ratios obtained using the inertial profiler at each speed is approximately 

6% with 22 to 23 samples. In contrast, the MOE95 obtained using the sedan approaches 2% after 

69 samples aggregated across the three test sites. 

Plotting the MOE95 calculated after including data from each additional traversal 

exemplifies the diminishing error trend (Figure 5). The exponential trend of decline is similar for 

the data obtained using the inertial profiler (IP) wagon at two speeds and the sedan at 45 MPH. 

Extrapolating the trend based on the model indicated suggests that the precision will improve 

such that the MOE95 will diminish beyond 5% and 2% as the number of traversals exceeds 30 

and 80, respectively. The model for these case studies has a decay exponent of -0.9, which is 

greater than the theoretical floor of -0.5 established in Equation (9). The coefficient of 

determination (R2) for the model is nearly unity, indicating near perfect goodness-of-fit with the 

data. 

The Annual Average Daily Traffic (AADT) volume medians are 23,000 and 82,000 

passenger cars per lane for rural and urban interstate facilities, respectively (26). Therefore, as 

connected vehicle environments mature, or as more travelers use apps similar to PAVVET, the 

MOE95 will become negligible within one hour of data collection. 
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SUMMARY AND CONCLUSIONS 

The methods and models validated in this research breaks through long-standing constraints to 

reduce the cost, expand the reach, and increase the frequency of ride quality characterizations. 

The technique leverages the large volume of sensor data expected from connected vehicles to 

produce a consistent characterization of roughness that represents the average ride quality for 

any facility. The case studies of this research utilized a certified and calibrated inertial profiler 

and a regular passenger vehicle and found that the margin-of-error will diminish below 5% and 

2% after 30 and 80 traversals, respectively. International standards for vibration safety result in a 

high consistency of suspension system performance to suppress roughness that produces human 

discomfort in a specific frequency range. Such safety standards preclude large variations in 

vehicle suspension responses, regardless of the vehicle size and weight; the IRI relies on this 

fact. Consequently, guidelines for the consistent performance of suspension systems place 

practically achievable bounds on the number of traversals that will produce an accurate and high-

precision characterization of the true ride quality that any facility provides. 

The case studies conducted for this research demonstrated that the direct proportionality 

relationship with the IRI remains consistent across facilities that exhibit different levels of 

roughness. Therefore, the direct proportionality of the connected vehicle method at fixed speeds 

will extend investments in IRI datasets through simple scaling. Agencies have the flexibility of 

continuing use of the IRI while expanding applications that utilize the RIF- and TWIT-indices. 

Unlike the IRI, the computational simplicity of the RIF-transform in producing the EAR and 

TWIT indices enables low-power mobile devices such as smartphones to compute them directly 

for real-time observation and reporting. Their computational simplicity minimizes the cost of 

adoption worldwide. 

The connected vehicle approach addresses the IRI utility gaps by extending their 

application to all facility types, and at all speeds. The fixed quarter-car model and fixed speed 

simulation of the IRI accounts for its spatial wavelength bias. Conversely, the inertial sensors 

that all vehicles already integrate will directly reflect the actual roughness that riders experience. 

The TWIT precludes wavelength biases by integrating roughness induced at all speeds that 

vehicles use the facility. Moreover, characterizing ride quality by averaging the roughness 

indices from large traversal volumes produce a more statistically significant measure of the ride 

quality that users actually experience. That is, sampling the inertial response of vehicles that use 

every facility provides a more complete characterization of the roadway network and its present 

ability to serve the traveling public. Furthermore, the accuracy and precision of applications that 

forecast pavement deterioration and localize anomalies will improve continuously with higher 

data volume as more connected vehicles participate. 

The connected vehicle approach of this study has a broad reach. It will enable cost-reduced, 

continuous situational awareness and objective asset management for all roads across the globe. 

Nations that cannot afford modern profiling equipment to produce the IRI will have a 

substantially lower cost alternative by using smartphones to enable connected vehicles that are 

compatible with their communications infrastructure. Agencies that utilize the TWIT with GIS 

tools to visualize roughness will enhance their decision support capabilities and reduce personnel 

training needs to interpret roadway performance data. By integrating the models presented in this 

research into scalable software platforms that incorporate custom maintenance rules, agencies 

throughout the world will be able to realize substantial savings by making effective data-driven 

decisions to optimize their roadway asset preservation practices. Future research will examine 
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applications of the RIF-transform to establish rules for maintenance decision support for 

different facility types and under different environmental and usage considerations. 
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TABLE 1  Summary Traversal Parameters 

Inertial Profiler at 45 MPH 

Site Nv 
689

45R  MOE95(EAR) 
1000

45I  MOE95(IRI) RIF/IRI v  v  
L

gzE (μJ) 
L

vR  

1 7 0.225 9.5% 1.354 2.7% 0.17 43 0.8 136.4 3.1% 

2 8 0.177 13.6% 0.939 1.6% 0.19 43 0.8 85.0 1.3% 

3 8 0.168 7.4% 0.901 1.6% 0.19 43 0.8 75.8 4.9% 

Inertial Profiler at 60 MPH 

Site Nv 
689

60R  MOE95(EAR) 
1000

60I  MOE95(IRI) RIF/IRI v  v  
L

gzE (μJ) 
L

vR  

1 8 0.275 9.4% 1.348 9.9% 0.20 57 0.8 115.8 3.1% 

2 9 0.202 14.2% 0.955 2.5% 0.21 57 0.8 63.9 0.8% 

3 9 0.208 7.2% 0.906 2.5% 0.23 58 0.5 65.6 1.0% 

Sedan at 45 MPH 

Site Nv 
689

45R  MOE95(EAR) 

 

RIF/IRI v  v  
L

gzE (μJ) 
L

vR  

1 23 0.141 4.8% 0.10 45 0.9 50.1 3.2% 

2 23 0.098 3.8% 0.10 45 0.9 24.0 5.1% 

3 23 0.103 3.2% 0.11 45 0.9 26.3 7.1% 

 

 

TABLE 2  Summary of Chi-Squared Testing 
 Inertial Profiler Sedan 

 Student-t 45 MPH 60 MPH 45 MPH 

df 2 2 5 

χ2 (α = 5%) 6.0 6.0 6.0 

χ2 Data 0.4 0.5 0.6 

Significance α (%) 81.5 77.4 98.6 

Amplitude 0.6 0.8 0.5 

Mean 0.178 0.208 0.107 

Standard Dev. 0.024 0.044 0.010 

Samples 23 22 69 

RIF/IRI Mean 0.181 0.218 0.107 

RIF/IRI Standard Deviation 0.025 0.030 0.011 

MOE0.95 (%) 5.9 6.1 2.4 
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FIGURE 1  RIF- and IRI-transforms from a simulated bump traversal. 

 

 

FIGURE 2  The roadway sections analyzed. 
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FIGURE 3  EAR and IRI roughness indices for each test site. 

 

 
FIGURE 4  Distribution of RIF/IRI ratios at each traversal speed. 

  



Use of Connected Vehicles to Characterize Ride Quality 

 

Raj Bridgelall et al. Page 17/17 

 

 
FIGURE 5  Margin-of-error trend for the RIF/IRI ratios. 

 


