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Abstract 11 

The ability of any nation to support economic growth and commerce relies on their capacity to 12 

preserve and to sustain the performance of pavement assets. The ever-widening funding gap to 13 

maintain pavements challenges the scaling of existing techniques to measure ride quality. The 14 

international roughness index is the primary indicator used to assess and forecast maintenance 15 

needs. Its fixed simulation procedure has the advantage of requiring relatively few traversals to 16 

produce a consistent characterization. However, the procedure also underrepresents roughness 17 

that riders experience from spatial wavelengths that fall outside of the model’s sensitivity range. 18 

This paper introduces a connected vehicle method that fuses inertial and geospatial position data 19 

from many vehicles to expose roughness experienced from all spatial wavelengths. This study 20 

produced both roughness indices simultaneously from the same inertial profiler. The statistical 21 

distribution of their ratios agreed with a classic t-distribution. The two indices collected from 22 

three different pavement sections at two different speeds exhibit a direct proportionality within a 23 

margin-of-error that diminished below 2% as the extrapolated traversal volume approached 100. 24 

Practitioners are currently evaluating the connected vehicle method to implement lower-cost and 25 

more scalable alternatives to the international roughness index. 26 

Keywords: Inertial profiler, intelligent transportation systems, probe vehicles, ride quality, 27 

smartphone 28 

1. Introduction 29 

Highway agencies measure ride quality to guide practices in roadway asset management. 30 

However, present methods that use specially instrumented vehicles and post processing are 31 

difficult to scale for network wide evaluations. The international roughness index (IRI) is 32 

currently the prevalent indicator of ride quality. Nearly all U.S. jurisdictions deploy laser-based 33 

inertial profilers to produce the IRI, which is a single index summary of roadway roughness [1]. 34 

The IRI is not a direct measurement of roughness. Rather, a mathematical procedure produces 35 

the IRI by operating on samples of the elevation profile. The procedure simulates the movement 36 

of a fixed quarter-car model across the elevation profile. The simulation moves the quarter-car at 37 
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a precise speed of 80 km/h. Hence, the fixed model and the fixed simulation speed results in a 38 

very high consistency of the IRI values derived from each set of elevation profile data collected. 39 

However, the fixed parameters also lead to a misrepresentation of roughness that riders actually 40 

experience when traveling in real vehicles at different speeds. 41 

The main contribution of this research is a method of measuring ride quality from connected 42 

vehicle data. Such a solution would scale to provide network wide, cost-effective, and 43 

continuous performance evaluations. The connected vehicle method directly samples the inertial 44 

response from many vehicles to produce an average characterization of the ride quality actually 45 

experienced [2]. Rather than a direct measurement from the actual vehicle, the IRI procedure 46 

uses a reference quarter-car model called the Golden Car [3]. The justification is that nearly all 47 

regular passenger and commercial motor vehicles, regardless of their size and weight, provide 48 

similar suspension responses because of design constraints to attenuate vibrations within the 49 

common range of frequencies that cause human discomfort [4]. In particular, humans are most 50 

sensitive to vibrations between 4 and 8 Hertz [5]. For example, the resonant frequency of the 51 

human spine is approximately 5 Hertz [5]. The typical suspension system attempts to attenuate 52 

vibrations in this frequency range and consequently result in a transfer function that exhibits a 53 

sprung- and unsprung-mass resonant mode near 1 and 10 Hertz, respectively [3]. 54 

Previous work [6] demonstrated that the Road Impact Factor (RIF) index derived from the fusion 55 

of connected vehicle sensor data is directly proportional to the IRI. The main benefit of a direct 56 

proportionality relationship is that agencies can easily estimate the IRI from RIF-indices 57 

measured using connected vehicle data. The prior experiments [6] emulated a connected vehicle 58 

by using an industrial grade device aboard a regular vehicle. The device produced high quality 59 

accelerometer, speed, and global positioning system (GPS) data. The RIF/IRI proportionality 60 

factor for those experiments was repeatable within a margin-of-error (in a 95% confidence 61 

interval) that was less than 4% after only six traversals. Hence, the main objective of this study is 62 

to repeat those experiments with a much lower cost inertial, speed, and GPS data logger 63 

implemented as a smartphone application (app) called PAVVET [6]. Testing with a commodity 64 

data logger will demonstrate the robustness of the method when deployed for practice using 65 

actual connected vehicles. 66 

This paper reviews the distinguishing characteristics of the IRI and the RIF-transforms. To 67 

explore their relationships, the authors conducted experiments at different speeds and on 68 

different pavement sections to demonstrate their direct proportionality. The experiments used the 69 

PAVVET app aboard a certified and calibrated inertial profiler to collect both the IRI and RIF-70 

indices simultaneously. The organization of this paper is as follows: the next section will review 71 

the models of the IRI and connected vehicle methods to highlight their respective similarities and 72 

differences. The third section will evaluate their proportionality relationship by conducting 73 

statistical analysis to test the convergence of the RIF/IRI ratios as a function of traversal volume. 74 

The fourth section will describe the case studies and discuss the significance of the results. The 75 

final section will summarize and conclude the study. 76 

2. Ride Quality Characterizations 77 

The IRI requires relatively few traversals to produce an average value with high precision 78 
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because of its fixed Golden Car parameters and the precise traversal speed of 80 km h-1. 79 

Conversely, the connected vehicle method encapsulates variations in actual vehicle suspension 80 

performance and speed, therefore, requiring a greater number of traversals to provide an 81 

equivalent level of precision. 82 

2.1. The International Roughness Index 83 

The definition of the IRI is the accumulated absolute rate difference between the sprung- and 84 

unsprung-mass motions of a Golden Car simulated to move at a fixed reference speed [7]. The 85 

notation for the IRI in this development is L

vI  and its definition is 86 
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where )(tzs
  and )(tzu

  are the first derivatives of the Golden Car sprung- and unsprung-mass 87 

vertical motions, respectively. The segment length L is typically 152-meters (approximately 500-88 

feet). The procedure fixes the speed v  to the standard reference speed of 80 km h-1. Therefore, 89 

the IRI ignores any variations in the actual vehicle speed and suspension responses. Although the 90 

fixed parameters enhances the precision of indices produced within relatively few traversals, the 91 

model cannot reflect roughness produced from spatial wavelengths that fall outside of a 92 

relatively narrow range. Consequently, the IRI does not reflect the true roughness that riders 93 

experience when traveling a segment at different speeds and in different vehicles. 94 

2.2. The Road Impact Factor Transform 95 

The RIF transform integrates the product of the vertical acceleration signal gz(t) and the 96 

longitudinal speed v(t) such that 97 
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where the RIF-index L

vR  is the average g-force magnitude experienced per unit of distance L 98 

traveled. For an average speed vtv )( , within some speed band, the RIF-index simplifies to 99 
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where 
L

gzE  is the longitudinal energy density of the vertical acceleration signal. The inertial 100 

signal energy is in units of joules per meter (J/m) when the sensor output is in units of volts. The 101 

associated discrete time transform is 102 
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where the discrete time samples are t = n × δt with sample instant n and average sampling period 103 

δt. The inverse of the sampling period is the sample rate of the inertial sensor. The total number 104 

of samples is N, therefore, for an average sample interval of δL, the segment length is N × δL. 105 

Hence, the instantaneous speed is vn = δLn/δtn and the discrete time RIF transform simplifies to 106 
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For a constant speed vc, the RIF-index is related to the root-mean-squared (RMS) value of the 107 

vertical acceleration signal grms such that 108 
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It is evident that the RIF-index is zero when the traversal speed is zero and increases non-linearly 109 

with speed. Important work by others [8-9] attempted to relate the accelerometer signal to the IRI 110 

and they witnessed a speed dependency. However, those efforts did not provide a mathematical 111 

characterization to explain the dependency observed. 112 

The RIF-transform (Equation 3) associates the RIF-index with any specified speed band whereas 113 

the IRI-transform specifies a precise speed of 80 km h-1. Consequently, the RIF/IRI ratio is a 114 

function of the traversal speed. Therefore, agencies must standardize on the traversal speed 115 

selected for a given roadway facility when measuring the RIF-index to estimate the 116 

corresponding IRI. 117 

2.3. The Ensemble Average RIF 118 

The ensemble average of the RIF-indices (EAR) from Nv traversals across a path of length L is 119 

denoted L

v
R  and it is analogous to the average IRI. The EAR-index is 120 





vN

L

v

v

L

v
R

N
R

1

][
1





 

(7) 

where ][L

vR  is the RIF-index from the ρth traversal of the segment traveled at an average speed 121 

of v , and v  is the batch mean speed of all traversals. In addition to compressing the inertial 122 

and position data longitudinally along the traversal direction, the EAR fuses multiple data 123 

streams within the same geospatial window of all traversals. Hence, the EAR-index represents a 124 

vertical compression of the stack of RIF-indices produced for a segment for some short time-125 

period, for example, a few hours or a few days. 126 

The EAR-index represents the average roughness that the typical vehicle occupant experiences 127 

when traveling the segment within a specified interval of speed or a speed band. For example, 128 

selecting data streams from vehicle traversals that are within 5 km/h of the IRI reference speed 129 

will produce an EAR-index that approximately summarizes roughness from the range of spatial 130 

wavelengths that the IRI is sensitive. However, producing the EAR-indices for the prevailing 131 

average speed of a given roadway facility type, such as the speed limit, would be more practical 132 

and meaningful. That is, the EAR-index will characterize ride quality from spatial wavelengths 133 
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that induce roughness at the prevailing speeds rather than at the IRI reference speed. Therefore, 134 

monitoring the EAR-index from the same speed band consistently will reflect changes in ride 135 

quality that the average user experiences as the road deteriorates over time. 136 

3. Statistical Analysis 137 

Agencies may elect to measure and associate a calibrated RIF/IRI ratio for designated vehicles 138 

by producing the EAR-indices from several traversals of a roadway facility for which a recent 139 

IRI value is available. Alternatively, producing the EAR-index from a selected speed band by 140 

sampling the traversal data from many vehicles will obviate the need for calibration to account 141 

for the suspension behavior of a specific vehicle. Previous studies of the precision bounds in 142 

EAR-indices demonstrate that the margin-of-error, within a 95% confidence interval (MOE95), 143 

diminishes rapidly after only several hours of data collection from the typical vehicle mix [10]. 144 

The MOE95 will diminish to equivalent levels of precision within fewer traversals when using the 145 

same vehicle or vehicle type. GIS platforms that implement this connected vehicle method would 146 

select similar classes of vehicles from the data stream, traveling under similar conditions of 147 

weather, regional climate, and roadway facility type to produce EAR-indices. A data filtering 148 

approach to select such subsets from the data stream will decrease the processing load and 149 

achieve higher precision characterizations within fewer traversals. This section will develop the 150 

statistical tests to demonstrate convergence of the RIF/IRI ratios to the expected values of a 151 

classical parameterized distribution. 152 

3.1. Data Distribution 153 

A histogram of the RIF-indices provides a non-parametric description of the spread from many 154 

vehicle traversals. Subsequently, the least squares approximation of a classic distribution that 155 

best fits the histogram provides a parametric estimate of their expected values to forecast the 156 

achievable precision. The critical chi-squared value tests a fitted distribution for candidacy [11]. 157 

3.2. Chi-squared Testing 158 

The critical chi-squared value “χ2 Data” is an evaluation of the statistic 159 
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where Ok are the histogram values observed in bin k and Ek are the corresponding expected 160 

values from the hypothesized distribution. The chi-squared distribution value at 5% significance 161 

( = 5%) is the largest value expected with a probability of at most 5%. The chi-squared degrees 162 

of freedom (df) are one unit less than the number of histogram bins n, minus the two independent 163 

distribution parameters estimated, namely the amplitude and the mean. Estimation of the 164 

standard deviation is dependent on an estimation of the mean; hence, it does not count towards 165 

the df. Statisticians generally reject a null hypothesis that the data follow a tested distribution if 166 

the critical χ2 value is larger than the chi-square distribution value at 5% significance, or 167 

equivalently, if the significance level calculated for the critical χ2 value is less than 5%. 168 
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3.3. Margin-of-Error 169 

The Student t-distribution is appropriate for sample sizes smaller than 30, and it approaches the 170 

Gaussian distribution for larger sample sizes [11]. The interval 
LR  1  is the margin-of-error 171 

within a (1-)% confidence interval [12] such that 172 
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where dft ,2/1   is the t-score at (1-) probability for a normalized cumulative t-distribution of df 173 

degrees of freedom. The standard deviation of the RIF-index is denoted 
L

R . The ratio of 
LR  1  to 174 

the EAR-index L

v
R  is a proportional measure of the data spread as a percentage. For this study, 175 

MOE0.95 (%) indicates that 95% of the data points are likely to be within that percentage of the 176 

EAR-index. 177 

4. Results and Discussions 178 

This section describes the case studies conducted, the method of data processing, and the results 179 

obtained from the field experiments. The final section tests the distribution of the RIF/IRI ratios 180 

against the classical parameterized t-distribution to demonstrate convergence with their expected 181 

values. 182 

4.1. The Case Study Setting 183 

The three pavement sections analyzed are along the frontage road sections of Texas State 184 

Highway 130, which is about 20 miles northeast of Austin, Texas. Each test site is a 210-meter 185 

section of asphalt pavement. The inertial profiler traversed each segment at approximately 186 

72 km h-1 (45 MPH) and 97 km h-1 (60 MPH) to observe any differences in the roughness indices 187 

produced. 188 

4.2. The IRI Data Collection and Processing 189 

The authors used a calibrated and certified Ames Engineering Model 8300 inertial profiler. The 190 

host vehicle is a Ford E150 XLT Wagon. Resource constraints limited the number of traversals 191 

to 8 or 9 per test site. The authors subsequently used the ProVAL software to process the 192 

elevation profile samples to produce the mean IRI from the left wheel path (LWP) and right 193 

wheel path (RWP) height sensors [13]. 194 

4.3. The RIF Data Collection and Processing 195 

The PAVVET data logger produced samples of the tri-axial acceleration, orientation, speed, 196 

time, and geospatial position coordinates from the smartphone’s integrated sensors. The mounted 197 

orientation for the smartphone was vertical so that the operator could verify its operation and 198 

initiate data logging by tapping the screen. Post processing produced the resultant vertical 199 

acceleration and the corresponding RIF-index [14]. A 21-tap finite impulse response (FIR) low-200 
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pass filter with cutoff frequency of 20 Hz [15] adequately removed the noise and isolated the 201 

quarter-car sprung- and unsprung-mass modes needed to produce the RIF-indices. The RIF-202 

transform also removes any offset in the resultant vertical acceleration to ignore static g-forces 203 

from the earth’s gravity. 204 

The maximum update rate achieved for the inertial sensors of the smartphone was approximately 205 

93 Hz. Previous studies recommended that agencies standardize the inertial sample rate and the 206 

sensor mount apparatus to improve the precision of measurements with fewer traversal samples 207 

[15]. The data processing algorithm interpolated the distance between inertial samples by using 208 

the instantaneous speed and sample time increments. The update rate achievable from the 209 

integrated GPS receiver of the smartphone was 1 Hz. Hence, the GPS output provided a course 210 

geospatial position estimate of the path origin. 211 

4.4. Experimental Results 212 

Table 1 summarizes the data from the traversals of the three test sites at two speeds. The second 213 

column lists the number of traversals for each of the three test sites, and at each of the two 214 

average speeds. The third and fourth columns list the associated EAR-indices and margins-of-215 

error, respectively. The fifth and sixth columns list the corresponding IRI and its associated 216 

margins-of-error, respectively. The last column lists the EAR/IRI ratios. As expected, the EAR-217 

indices and the IRI for each traversal speed agree in their relative change across test sites (Figure 218 

1a). The EAR/IRI ratios are consistent across test sites (Figure 1b). 219 

Table 1. Summary of traversal parameters. 220 

Site 

 

Nv 

 

210
72R  

(g/m) 

MOE95(EAR) 

(%) 

210
72I  

(m/km) 

MOE95(IRI) 

(%) 

RIF/IRI 

 

1 7 0.225 9.5% 1.474 2.4% 0.15 

2 8 0.177 13.6% 0.846 2.3% 0.21 

3 8 0.168 7.4% 0.969 2.0% 0.17 

       

Site Nv 210
97R  MOE95(EAR) 210

97I  
MOE95(IRI) RIF/IRI 

1 8 0.275 9.5% 1.540 7.2% 0.18 

2 9 0.202 14.2% 0.930 18.4% 0.22 

3 9 0.208 7.2% 0.939 3.1% 0.31 

Mean   10.2%  5.9%  

 221 

Differences in the EAR/IRI ratios arise from differences in the spatial wavelength composition 222 

of the pavements where the RIF and the IRI exhibit different sensitivities. The plots in Figure 1a 223 

show the EAR-index in units of g-force/meter (g/m) on the left axis, and the IRI in units of m/km 224 

on the right axis because of their different scales. As Equation (3) posited, the higher speed 225 

traversals produced larger EAR-indices. As anticipated, the IRI is relatively unchanged with 226 

traversal speeds because the inertial profiler maintains a fixed sample interval, and the IRI 227 

procedure uses a precise traversal speed rather than the actual vehicle speed. 228 

As described previously, the IRI does not reflect variations in the actual vehicle speed and 229 
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suspension response whereas the RIF-indices do. Hence, with only 7 to 9 traversals available per 230 

test site, the MOE95 for the RIF-indices were generally greater than the corresponding values for 231 

the IRI. The average MOE95 for the RIF-indices and the IRI was approximately 10% and 6%, 232 

respectively. This similarity in results indicates the potential for the RIF-indices to approach the 233 

precision of the IRI procedure within relatively few additional traversals. 234 

 235 

Figure 1. a) Relative change in the a) roughness indices and b) their ratios across test sites. 236 

 237 

4.5. Convergence of RIF/IRI Proportionality 238 

As shown in Figure 2, the histograms of the RIF/IRI ratios at two different speeds demonstrate 239 

agreement with the well-established t-distribution that is appropriate for data sets smaller than 30 240 

samples. 241 

 242 

Figure 2. Distribution of RIF/IRI ratios at each traversal speed. 243 

The law of large numbers in probability theory dictates that the average value from many trials 244 

will converge to the expected value [12]. Therefore, the RIF/IRI proportionality must converge 245 

to a mean value with increasing levels of precision as the traversal volumes from connected 246 
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vehicles increase beyond 30. This guaranteed convergence in connected vehicle environments 247 

obviates the need to calibrate the RIF/IRI ratio for individual vehicles. 248 

The critical chi-squared values calculated from Equation 8 are at 23.0% and 97.4% significance 249 

for the 72 km h-1 and 92 km h-1 traversals, respectively. These significance levels are much 250 

greater than 5%. Therefore, the chi-squared tests cannot reject a hypothesis that the distribution 251 

of the RIF/IRI ratios follows the t-distribution. Even with 22 to 23 samples, the MOE95 is 8.1% 252 

and 7.2% for the 72 km h-1 and 92 km h-1 traversals, respectively. This strong agreement with the 253 

classic distribution indicates that additional vehicle traversals will further increase the precision 254 

of estimating the IRI from connected vehicle data. 255 

The trend of increasing precision becomes clear by plotting the MOE95 calculated after including 256 

data from each additional traversal (Figure 3). Extrapolating the trends based on the model 257 

indicated on the plots suggests that the MOE95 will diminish beyond 2% as the traversal volume 258 

approaches 100. The model for these case studies has a decay exponent of nearly -1.0, which is 259 

almost twice the theoretical floor of -0.5 (the inverse square root operation) established in 260 

Equation (9), thereby, demonstrating a much faster convergence. The coefficients of 261 

determination (R2) for the models are nearly unity, indicating a near perfect goodness-of-fit with 262 

the data. 263 

 264 

Figure 3. Margin-of-error trend for the RIF/IRI ratios. 265 

The Annual Average Daily Traffic (AADT) volume medians are 23,000 and 82,000 passenger 266 

cars per lane for rural and urban interstate facilities, respectively [16]. Therefore, as connected 267 

vehicle environments mature, the MOE95 will become negligible well within one hour of data 268 

collection. 269 



Pavement Performance Evaluations Using Connected Vehicles 

Raj Bridgelall, Ph.D. Page 10/11 

 

5. Summary and Conclusions 270 

The connected vehicle method validated in this research breaks through long-standing 271 

constraints to reduce the cost, expand the reach, and increase the frequency of ride quality 272 

characterizations. The technique leverages the large volume of sensor data expected from 273 

connected vehicles to produce a consistent characterization of roughness that represents the 274 

average ride quality for any roadway facility. The case studies of this research demonstrated that 275 

the margin-of-error would diminish below 2% as the traversal volume approaches 100. 276 

International standards for vibration safety result in a high consistency of suspension system 277 

performance to suppress roughness that produces human discomfort in a specific frequency 278 

range. Such safety standards preclude large variations in vehicle suspension responses, 279 

regardless of the vehicle size and weight; the IRI relies on this fact. Consequently, guidelines for 280 

the consistent performance of suspension systems place practically achievable bounds on the 281 

number of traversals that will produce an accurate and high-precision characterization of the true 282 

ride quality that any roadway facility provides. 283 

The case studies conducted for this research used a certified and calibrated inertial profiler to 284 

demonstrate the direct proportionality relationship between the RIF-indices of the connected 285 

vehicle method, and the IRI. This relationship will extend investments in IRI datasets through 286 

simple scaling. Therefore, agencies have the flexibility of continuing use of the IRI while 287 

expanding applications that utilize the RIF-transform. Unlike the procedure to produce the IRI, 288 

the computational simplicity of the RIF-transform enables low-power mobile devices such as 289 

smartphones to compute them directly for real-time observation and reporting. Their 290 

computational simplicity minimizes the cost of adoption worldwide. 291 

The connected vehicle approach addresses the IRI utility gaps by extending roughness 292 

characterizations for all roadway facility types, and at all speeds. Moreover, the average 293 

roughness indices from large traversal volumes produce a more statistically significant measure 294 

of the ride quality that users actually experience. The connected vehicle approach samples the 295 

inertial response of actual vehicles that use every roadway facility to provide a more complete 296 

characterization of the roadway network and its present ability to serve the traveling public. 297 

Furthermore, the accuracy and precision of applications that forecast pavement deterioration and 298 

localize anomalies will improve continuously with the ever-increasing volume of connected 299 

vehicle data. 300 

Future research will examine applications of the RIF-transform to establish rules for maintenance 301 

decision support for different roadway facility types and under different environmental and usage 302 

considerations. 303 
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