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Abstract 

 
The international roughness index is the prevalent indicator used to assess and 
forecast road maintenance needs. The fixed parameters of its simulation model 
provide the advantage of requiring relatively few traversals to produce a consistent 
index. However, the static parameters also cause the model to under-represent 
roughness that riders experience from profile wavelengths outside of the model’s 
response range. A connected vehicle method that uses a similar but different index to 
characterize roughness can do so by accounting for all vibration wavelengths that the 
actual vehicles experience. This study characterizes and compares the precision of 
each method. The field studies indicate that within 7 traversals, the connected vehicle 
approach could achieve the same level of precision as the procedure used to produce 
the international roughness index. For a given vehicle and segment lengths longer 
than 50 meters, the margin-of-error diminished below 1.5% after 50 traversals, and 
continued to improve further as the traversal volume grew. Practitioners developing 
new tools to evaluate pavement performance will benefit from this study by 
understanding the precision trade-off to recommend best practices in utilizing the 
connected vehicle method. 
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1 Introduction 

Transportation agencies rely on the regular reporting of pavement performance to prioritize 

maintenance needs. Existing methods of smoothness (or roughness) characterizations that 

use the international roughness index (IRI) are difficult or impractical to apply on unpaved 

roads and in most urban settings (Karamihas 2015). In particular, interrupted flow 

conditions generally diminish the accuracy of the present data collection methods. These 

deficiencies coupled with the relatively high cost to acquire, maintain, and operate inertial 

profilers has motivated the search for alternative methods. Subsequently, transportation 

agencies are evaluating connected vehicle approaches because of their potential to provide 

affordable, continuous, and network-wide coverage. Connected vehicle methods rely on the 

inertial and geospatial position data from common on-board accelerometers and GPS 

receivers. The authors previously developed and demonstrated the road impact factor (RIF) 

transform to process voluminous data from connected vehicle sources (Bridgelall 2014a). 

The transform is a mathematical model that integrates the inertial, speed, and geospatial 

position data streams across a given segment length to produce a roughness index called the 

RIF-index. Other work described the theories and experiments showing that within any 

selected speed band, RIF-indices are directly proportional to the IRI (Bridgelall 2014b). 

Practitioners have long recognized that the IRI mischaracterizes roughness that 

riders experience (Ahlin and Granlund 2002). Specifically, the fixed quarter-car (Golden 

Car) parameters and the precise reference speed of the IRI procedure result in a spatial 

wavelength bias (Papagiannakis 1997). Traversing spatial wavelengths at different speeds 

produce temporal wavelengths at frequencies that coincide with the resonant modes of 

vehicle suspension system to amplify ride roughness (Lak, Degrande and Lombaert 2011). 
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The RIF-transform precludes wavelength bias by reporting the roughness that riders 

actually experienced at the speed that they travelled, and in their real vehicles (Bridgelall 

2015). Unlike the IRI that uses a precise speed of 80 km h-1, the RIF-transform uses the 

actual speed travelled. Therefore, the notation for RIF-indices includes a subscript to 

indicate the average traversal speed in a speed band. Previous studies described the trade-

off in selecting the width of the speed band, and the number of traversals needed to achieve 

some desired level of precision (Bridgelall 2015). 

The average RIF-index from a specified speed band is analogous to the average IRI 

reported from multiple traversals of a facility. As anticipated, the fixed quarter-car model 

and the precise reference speed of 80 km h-1 results in a relatively high consistency of IRI 

reporting. Conversely, the connected vehicle method reflects variations in the actual speed, 

suspension system behaviour, and sensor characteristics. 

The main objectives of this study are to: 

(1) characterize the practically achievable precision of the connected vehicle 

method, 

(2) identify the dominant parameters that contribute to precision dilution, 

(3) evaluate the relative impacts from each parameter, and 

(4) quantify the number of traversals needed to report RIF-indices with the same 

level of precision as the IRI procedure. 

Previous work examined the impact from variations in accelerometer sample rate, 

vehicle speed, and suspension system performance for a typical mix of vehicles in the 

traffic stream. Those studies found that the dilution of precision becomes insignificant 

when the sample rate of the accelerometer exceeds 64 Hertz (Bridgelall 2015), and when 

the traversal volume exceeds 50 (Bridgelall 2014b). The method of this study isolates the 
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impact from variation in the analysed traversal path by fixing the accelerometer sample rate 

to a value much higher than 64 Hertz, using the same vehicle for multiple traversals, and 

traveling the same test segment with more careful speed regulation. Practitioners 

developing new tools to evaluate pavement performance will benefit from this study by 

understanding the trade-off to produce guidelines for best practices when deploying the 

connected vehicle methods. 

The organization of this paper is as follows: the next section will review the RIF-

transform and theoretically characterize the significance of factors that dilute the precision 

of measurements. The third section will describe the field experiments conducted to 

quantify the relative impact from variations in the analysed traversal path. The fourth 

section will discuss the trade-off in precision and traversal volume as a function of the 

minimum segment length analysed. The final section will summarize and conclude the 

study. 

2 The connected vehicle approach to measuring pavement roughness 

Given the highly specialized area of pavement performance evaluations, few other 

researchers have developed methods to transform sensor data from connected vehicles to 

characterize roughness. Previous work that attempted to relate the accelerometer signal to 

the IRI witnessed a speed dependency but did not establish a mathematical characterization 

to explain the behaviour observed (Dawkins et al. 2011, Du et al. 2014). Related research 

investigated participatory sensing approaches that would identify clusters of roughness 

reports from riders to suggest the locations of possible anomalies such as potholes (Byrne et 

al. 2013). Methods that directly analyse the accelerometer signal stream from individual 

vehicles used short-time spectral transforms to identify the signatures of anomalies (Ayenu-
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Prah and Attoh-Okine 2009). Some methods attempt to recover the road profile by double 

integration of the accelerometer signal (Islam et al. 2014, Nomura and Shiraishi 2015). 

Approaches that are more recent investigated signal classification via machine learning 

techniques to identify possible anomalies (Rajamohan, Gannu and Rajan 2015). 

The next sections review the connected vehicle method of characterizing pavement 

roughness in terms of the RIF-index. Previous work (Bridgelall et al. 2014) established that 

the fusion of sensor data from many connected vehicles is a primary factor in its superiority 

over other approaches that can afford very few traversals. The derivation of a model to 

characterize the individual error contributors will establish a framework to guide the design 

of field experiments and the data processing to quantify the proportional error 

contributions. 

2.1 Inertial signal transformation 

For individual vehicle traversals, the RIF-transform produces a measure of localized 

roughness such that 
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where the RIF-index L
vR  is the average g-force magnitude experienced per unit of distance 

L when travelling at an average speed of v  (Bridgelall 2014a). An on-board accelerometer 

produces the vertical acceleration gz[n] for signal sample n of N total samples. A speed 

sensor produces the instantaneous traversal speed vn. Previous research established that the 

average sample period δt should be at least 64 Hertz (Bridgelall 2014b). Increasing the 

sample rate beyond 64 Hertz does increase the level of measurement consistency for a 
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given traversal volume, but with diminishing returns beyond 100 Hertz. 

For situations when speed variation is not a dominant factor in precision dilution, 

the expression for the RIF-transform is simplified by replacing the instantaneous speed with 

the average speed such that 
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Let the linear energy density be defined as 
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that is, the signal energy per meter travelled. Hence, the units are in joules per meter when 

the output of the accelerometer signal is a voltage. Subsequently, for an average speed, the 

simplified RIF-transform is  

.L
gz

L
v EvR   (4) 

In the trivial case where the traversal speed is zero, the RIF-index must be zero. 

It is important to distinguish this expression from the root-mean-square (RMS) of 

the signal samples. That is, the RMS is the square root of the signal energy per unit of time 

rather than distance. Substituting TvL   into Equation (2) reveals the relationship with the 

RMS of the accelerometer signal. That is, 
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where T is the total traversal time of segment L, traveling at the average speed. This subtle 

distinction is important and critical to expressing the non-linear behaviour of the 
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accelerometer output at different speeds. 

2.2 Variance in measurements 

For a constant speed and a fixed quarter-car, the IRI will vary with differences in the 

elevation profile measurements among traversals. However, variations in the RIF-indices 

will include the effects of speed fluctuations. Other sources of errors include variations in 

the traversal path, inertial sample interval, and vehicle suspension responses. From the 

classical theory of error propagation (Papoulis 1991), the standard deviation of the RIF-

index, L
R  is: 
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(6) 

where 
2
v  is the variance of the batch mean speed among traversals. The covariance of the 

batch mean speed and the vertical acceleration signal energy is denoted 
2
Ev . Evaluating 

the partial derivatives indicated in Equation (6) yields: 
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where LEgz  and v  are the averages of the linear energy density of the vertical acceleration 

signal and the batch mean speed among traversals, respectively. 

2.3 Proportional contribution to the spread in RIF-indices 

From equation (7), the proportional error contribution from variations in speed L
v  is 
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Therefore, the proportional contribution from the remaining errors L
E  will be 
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We define the residual error L
E  as all contributions to the spread in RIF-indices that result 

from variations other than speed. Hence, given a precise speed, the residual errors will 

reflect variations in the traversal path, fluctuations in the sample interval, and variations in 

the vehicle suspension response. Using the same vehicle and sensor for all traversals will 

minimize variations in the suspension behaviour and the sample interval, respectively. 

Therefore, variations in the length and position of the traversal path would expectedly 

dominate the aggregate error observed. 

2.4 Geo-fence triggering 

Connected vehicles use geo-fences to establish the lateral positions from where agencies 

wish to characterize and report roughness (Bridgelall 2015). As shown in figure 1, a lateral 

geo-fence at position L0 identifies the start of the data section to be analysed.  

For a fixed GPS update rate, the actual starting position in the geospatially tagged 

data stream will vary about the precise geo-fence position as illustrated in figure 1. The 

final data point will be located at an interpolated segment length Ln such that 
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where vk and tk are the instantaneous speed and time updates for the kth inertial sample. 

Figure 1 illustrates this data acquisition approach for two different path lengths La and Lb 

such that Lb >> La. Each line represents the geospatial position and length of the segment to 

be analysed from traversal data stream n. The length of the error interval Lσ depends on the 

GPS update rate, the statistics of the GPS position estimate, and the traversal speed. The 

corresponding variations in traversal path positions and lengths translate to variations in the 

RIF-indices reported. 

[Figure 1 near here]. 

Figure 1 illustrates a hypothetical elevation profile that would produce obvious 

variations in RIF-indices for the shorter path La, but not for the longer path Lb. That is, the 

shorter paths shown include the anomalies to varying degrees. Therefore, the corresponding 

set of RIF-indices  ][]1[ aa nRR
L
v

L
v   will reflect the proportion of the rough spot that the 

analysed path covers. Conversely, the longer path always includes all of the anomalies. 

Therefore, for fixed path lengths, the RIF-indices for the longer path in this scenario will 

exhibit no variation. 

3 Case studies 

The Minnesota Road Research Facility (MnROAD) is an outdoor laboratory that the 

Minnesota Department of Transportation operates in the U.S. to test the performance of 

different pavement types (MnROAD 2015). On June 10, 2015, the authors used a certified 

and approved inertial profiler to collect simultaneously elevation profile and vertical 

acceleration data from a 70-meter section of Cell 40 to produce the IRI and RIF-indices, 

respectively. The pavement analysis via vehicle electronic telemetry (PAVVET) 

application (app) for a smartphone (Bridgelall 2014c) collected the inertial and speed data 
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at a mean sample rate of 93 Hertz, which was the maximum that the device could 

practically achieve. The device internally established a mean GPS update interval of 

approximately 1 second. The app collected data with the smartphone secured into a holster 

attached to the dashboard. The mean traversal speed of the inertial profiler was 80 km h-1. 

Table 1 summarizes the IRI and RIF-indices derived from the measurements. The 

inertial profiler was available to collect data for only N = 9 traversals. Operating errors on 

two of the traversals resulted in smartphone data losses, so those entries are not available in 

the table. 

[Table 1 near here]. 

To examine the data consistency, the analysis incorporated a larger PAVVET data 

set available from an experiment conducted on Cell 40 three months prior (Bridgelall et al. 

2016). The data set contained 53 traversal samples from a 2011 Chevrolet Traverse. The 

mean speed was 68 km h-1 (~42 mph) and the PAVVET app settings were identical. Table 2 

characterizes the roughness from the 70-meter traversals (last row), and the roughness 

across shorter length subsets (10-, 30-, 25-, and 50-meters) taken about the centre of the 70-

meter segment. 

[Table 2 near here]. 

The relative margin-of-error (MOE) for the distribution of NT random variables 

(Papoulis 1991), with significance  within a (1-)% confidence interval, MOE(1-α), is 
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The t-score for a normalized cumulative t-distribution with df degrees of freedom is

dft ,2/1  . The mean value of the variables is μ, and σ is the standard deviation. Hence, 
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MOE95 is a relative measure of the amount of spread about the mean value for samples that 

fall within the 95% confidence interval. For example, the row before the last row of Table 2 

indicates that for the 50-meter segment, there was a 1.34% MOE95 in measuring the RIF-

index. Furthermore, a 2.8% variation in speed (standard deviation/mean) accounted for 

31.7% of the error, but the residual factors dominated at 68.3% contribution. 

Table 3 summarizes the error in GPS position tags relative to the geo-fence. The 

mean error Lμ from the inertial profiler experiments were a factor (Δμ) of 1.36 times greater 

than the mean error from the prior experiments using the Chevrolet Traverse. Similarly, the 

six-sigma error spread Lσ was a factor (Δσ) of 2.35 times greater. 

[Table 3 near here]. 

The proportional contribution of residual factors L
E  to the spread in RIF-indices 

was more substantial for the inertial profiler experiments. The speed coefficient of variation 

(CV), vv  for the Chevrolet Traverse was a factor of 2.31 times greater than the speed 

CV for the inertial profiler. However, the error from residual factors, particularly GPS 

tagging errors, dominated in both cases. In fact, the use of a smartphone speed sensor may 

have even resulted in an over-estimation of the relative contribution from speed errors. 

Therefore, using an actual connected vehicle speed sensor will retain the conclusion that 

errors from residual factors dominate. 

In addition to validating the expectations from the theoretical development, these 

experiments reveal the degree of relative sensitivities to each of the dominant factors that 

users should expect in practice.  



Error sensitivity of the connected vehicle approach to pavement performance evaluations 

Raj Bridgelall et al. Page 12/18 

 

4 Results and discussion 

Figure 2 plots the histogram of RIF-indices calculated from the inertial profiler (table 1) 

and the 2011 Chevrolet Traverse for the 70-meter traversal path length (table 2). It is 

evident that the mean values of the distributions practically agree. That is, the mean RIF-

index from the inertial profiler and the Chevrolet Traverse were 0.179 and 0.181, 

respectively. Speed variations from the inertial profiler contributed only 1.7% to the spread 

in RIF-indices whereas the traversal path variations from GPS position tagging errors 

contributed 98.3% to the error spread (table 3). GPS tagging errors were less severe for the 

experiments involving the Chevrolet Traverse, but there was more speed variation. Hence, 

speed variations contributed substantially more (39%) to the spread in RIF-indices from the 

Chevrolet Traverse. Nevertheless, in both cases the residual errors L
E  dominated. This 

reciprocal relationship in residual error contributions from the spread in GPS position 

tagging Lσ relative to speed variations validates the expectation from equation (9). 

[Figure 2 near here]. 

Figure 2 also plots the least squares fits of a Student t-distribution to the histograms. 

The t-distribution is appropriate for hypothesis testing of fewer than 30 samples, and 

approaches the Gaussian distribution for larger sample sizes (Agresti and Finlay 2009). The 

significance value for a chi-squared test statistic (χ2) of the agreement with the fit is 
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The random variables Ok are the histogram values observed in bin k and Ek are the expected 

values of the hypothesized distribution. The significance values for RIF-indices from the 

inertial profiler and Chevrolet Traversal samples were 77.9% and 98.4%, respectively. 
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Therefore, the chi-squared tests cannot reject the hypothesis that the distribution of RIF-

indices follows the classic distribution because the significance values are much greater 

than 5%. This result provides confidence that the precision will continue to increase with 

the ever-increasing traversal volume of connected vehicles. 

Figure 3a provides further evidence that the MOE95 for both the IRI and the RIF-

index diminishes with increasing traversal volume. The MOE95 for RIF-indices diminished 

below 1.5% as the traversal volume approached 50. In fact, for the 70-meter segment, the 

RIF-transform achieved the same level of precision as the IRI procedure (4.4%) within 

seven traversals. Reducing the segment length by half increased the influence from GPS 

tagging errors as expected. Consequently, the RIF-index for the shorter segment required 

more than double the number of traversals (from 7 to 17) to achieve the same level of 

precision as the IRI procedure. Figure 3b plots the MOE95 for the RIF-indices (left axis) as 

a function of segment length. The exponential decrease to a point of diminishing returns 

indicates that the influence from GPS errors wane substantially for segment lengths that are 

greater than 50-meters. The proportional contribution from residual errors (right axis) 

diminishes exponentially from nearly 100% for 10-meter long segments to approximately 

61% for the 70-meter long segments. 

[Figure 3 near here]. 

Overall, this result indicates that the larger traversal volumes from connected 

vehicle environments will yield ever-increasing levels of precision for any segment length, 

but the consistency will improve more rapidly for segments longer than 50 meters. 

5 Summary and conclusions 

Affordable and scalable methods of measuring localized roughness enable improved 
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efficiencies and effectiveness in the practice of pavement asset management. However, the 

prevalent approach that relies on laser-based inertial profilers and the IRI is relatively 

expensive to deploy for continuous network level evaluations. Connected vehicle methods 

provide an attractive alternative, but the approach requires higher traversal volume to 

achieve the same level of precision as the IRI procedure. This study characterized the error 

contributors for the connected vehicle approach and conducted case studies to assess the 

conditions needed to achieve a desired level of consistency. 

The IRI achieves relatively high precision within few traversals because the 

procedure that produces the index uses a fixed quarter-car and a precise traversal speed. 

Conversely, connected vehicles rely on geo-fence triggering based on the geospatial 

position estimates from on-board GPS receivers. Therefore, variations in position tagging 

the inertial data stream lead to larger variations in the longitudinal traversal path analysed. 

Additionally, the roughness index derived from connected vehicle data reflects variations in 

the actual vehicle suspension behaviour, traversal speed, and sensor parameters. The field 

studies conducted found that the connected vehicle approach could achieve the same level 

of precision as the IRI procedure within 7 traversals. The results further indicate that for a 

given vehicle and segment lengths larger than 50-meters, the margin-of-error in estimating 

RIF-indices diminished below 1.5% as the traversal volume exceed 50. 

Future research will utilize the connected vehicle method to examine the 

wavelength composition of different pavement types and establish a relationship with the 

power spectral density reported using the IRI procedure. 
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Figure 2. Distribution of RIF-indices from each vehicle for the 70

 

Figure 3. Margin-of-error as a function of traversal volume and segment length.
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Table 1. Roughness characterizations from the inertial profiler. 

N IRI 70
80R

 
v  v  

 (m/km) (g/m) (m s-1) (m s-1) 

1 1.794 0.176 22.91 0.07 

2 1.925     

3 1.795 0.177 22.51 0.22 

4 1.828 0.186 22.84 0.30 

5 1.664 0.137 22.35 0.04 

6 1.640 0.195 22.01 0.38 

7 1.648 0.150 22.70 0.44 

8 1.725 0.235 21.50 0.44 

9 1.739   
 

 

Table 2. Roughness characterization from the Chevrolet Traverse. 

L LR68  
L
R

 
MOE95 v  v  

LEgz  
L
v  

L
E  

(m) (g/m) (g/m) (%) (m s-1) (m s-1) (Joules) (%) (%) 

10 0.251 0.079 8.63 18.75 0.559 194.6E-6 1.0 99.0 

30 0.225 0.021 2.56 18.74 0.541 145.5E-6 9.7 90.3 

35 0.218 0.015 1.89 18.74 0.537 135.5E-6 17.4 82.6 

50 0.198 0.010 1.34 18.73 0.532 111.9E-6 31.7 68.3 

70 0.181 0.008 1.29 18.71 0.518 93.0E-6 39.0 61.0 

 

Table 3. Position error in GPS reference tags from the 70-meter segment traversals. 

Probe Vehicle N Lμ Lσ Δμ Δσ v  v  
L
v  

L
E  

  (m) (m) (m) (m) (m s-1) (m s-1) (%) (%) 

Inertial Profiler 7 8.32 18.81 1.4 2.3 22.40 0.27 1.7 98.3 

Chevrolet Traverse 53 6.12 8.01 1.0 1.0 18.71 0.52 39.0 61.0 
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