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Abstract The international roughness index (IRI) is a characterization of road roughness or ride 

quality that transportation agencies most often report. The prevalent method of acquiring IRI data 

requires instrumented vehicles and technicians with specialized training to interpret the results. The 

extensive labor and high cost requirements associated with the existing approaches limit data 

collection to at most once per year for portions of the national highway system. Agencies 

characterize roughness only for some secondary roads but much less frequently, such as once every 

five years, resulting in outdated roughness information. This research developed a real-time 

roughness evaluation approach that links the output of durable in-pavement strain sensors to 

prevailing indices that summarize road roughness. Field experiments validated the high consistency 

of the approach by showing that it is within 3.3% of relative IRI estimates. After their installation 

and calibration during road construction, the ruggedized strain sensors will report road roughness 

continuously. Thus, the solution will provide agencies a real-time roughness monitoring solution 

over the remaining service life of road assets. 
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1. Introduction 

The United States has the largest road network in the world. The network consisted of more than 

2,646,000 miles of paved roads in 2012 and it plays a significant role in the economy, defense, and mobility. 

The performance evaluation of such a vast network and the capacity to maintain the roadways has become 

increasing challenging. Roughness is a global measure of roadway serviceability that has long been one of 

the major criteria for road condition assessment to guide resource allocation and maintenance planning. 

The ASTM E867 standard defines roughness as “the deviation of a surface from a true planar surface with 

characteristic dimensions that affect vehicle dynamics and ride quality” [1]. Pavement roughness adversely 

affects vehicle wear, ride quality, and transportation safety [2-5]. The higher dynamic axle loading from 

roughness accelerates pavement deterioration [6]. Rough roads can also increase fuel consumption by as 

much as 4-5 percent [7].  

Researchers and organizations proposed many different roughness statistics to describe the severity 

of pavement roughness, however, the international roughness index (IRI) is the most widely used [8]. The 

IRI computation relies on a mathematical model called a quarter-car. This model simulates the response of 

a serially coupled damped mass-spring system to estimate the vertical motions of equivalent wheel-

assembly masses. The IRI is the accumulated absolute rate difference between the simulated sprung- and 

unsprung mass motions per unit of distance travelled.  

Another important characterization of roughness is the power spectral density (PSD). It is a 

mathematical representation of the spatial wavelength composition of road profiles rather than a summary 

index of roughness [9]. Researchers found that most pavement profiles such as road and runway surfaces 

have very similar PSD shapes. This observation has led to the use of coefficients that fit exponential 

functions to the PSD shapes as alternative summaries of roughness. Less frequently used methods also exist. 

These include the profile index method which is the root-mean square of a band-pass filtered road profile 

[10], the ride number method which is a transformation of the elevation profile per the ASTM E-1489 
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standard [11], and the root mean square of vertical acceleration approach which is a statistical method based 

on the rate of the grade change of the longitudinal profile [12]. 

Roughness measuring methods fall into three major classes [13]. Class I uses the traditional 

longitudinal surveys by rod and level or by some other laborsaving apparatus that requires walking along 

the test path. The Class II techniques measure the road profile with various types of profilometers such as 

the Chloe-type rolling straightedge [13]. Class III is an indirect measuring method described as a response-

type road roughness meters (RTRRM) that most highway agencies used until the mid-1980s or as an inertial 

road profilers that began in the 1960s [14]. The RTRRM devices measure the response of the vehicle to the 

road profile using transducers to accumulate the vertical movement of the axle with respect to the vehicle’s 

body. This method directly reflected the users’ ride quality experience. However, variations in suspension 

characteristics and speed result in measurement inconsistencies. Such approaches also do not provide a 

sample of the pavement longitudinal profile for spectral analysis. 

The inertial road profiling methods use instrumented vehicles to collect road roughness data [15]. 

Inertial profilers collect pavement condition data at highway speeds and record sufficient data to evaluate 

the spectral content of the pavement profile. This benefit has led to a substantial increase of countries 

adopting the method. The principal components of a high-speed profiler include laser-based height sensors, 

accelerometers and an accurate distance measuring system. The height sensors record the distance from the 

base of the vehicle to the pavement surface. Accelerometers above the height sensors record the vertical 

acceleration of the sensor to correct for reference plane bounces. In theory, double integration of the vertical 

acceleration signal would recover the vertical displacement of the vehicle. Practically, however, noise and 

initial conditions tend to create additional issues that limit their use in urban and local roads where the 

profiling vehicle must travel at low speeds and accommodate stop-and-go conditions [16]. Nevertheless, in 

more ideal settings such as freeways, the inertial profiler equipment produces a longitudinal profile of the 

pavement from the two height measurements. In addition to the profilers, more cost-effective approaches 
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are evolving based on participatory sensing methods and the use of accelerometers and geospatial position 

sensors aboard connected vehicles [17, 18]. 

Although reports (NCHRP Report 334) indicate that most agencies now use inertial profilers [17], 

the literature has very little information about their cost to acquire, operate, and maintain. One study 

reported the contracted pavement profile data collection and analysis costs ranged from $2.23/mile to 

$10.00/mile, with an average of $6.12/mile [18]. However, the reported costs did not include overhead such 

contract administration, equipment maintenance, and equipment depreciation. In general, the relatively high 

expense and labor requirements of existing approaches prevent agencies from monitoring large portions of 

their roadway network more often than once annually. Thus, they often make maintenance and 

rehabilitation decisions based on outdated roughness data. In addition, infrequent roughness measurements 

preclude the identification of dangerous distress symptoms such as frost heaves that appear and disappear 

between annual monitoring cycles. These situations result in roadway safety gaps that increase liability.  

In addition to the roughness measurements, many agencies developed models to predict road 

performance using measured distress information for both flexible and rigid pavements. The distress 

information includes strain data, cracking condition, spalling, pop out, scaling, and a variety of other visible 

symptoms. The AASHTO and FHWA successfully modeled roughness indices such as the IRI or present 

serviceability rating (PSR) using key pavement distress information [19-23]. Among various models, 

empirical and mechanistic analysis have identified several pavement design features and site conditions 

including the pavement’s temperature, moisture, and axle load cycles that affect the roughness of flexible 

pavements [19, 24, 25]. NCHRP developed the prediction models for rigid pavements by assembling all 

the available distress databases [26, 27] and considering their initial IRI. Though many of those factors are 

a result of pavement strains, none of the previous studies related the IRI directly to the strain distribution 

inside pavements by mechanistic analysis alone, without using statistical models. Such mechanistic-

empirical models provide a prediction of the roughness progression but not a direct measure of the actual 

roughness. 
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Agencies require a direct measure of the actual pavement roughness as the pavement ages to guide 

effective maintenance and rehabilitation decisions. Therefore, this paper introduces an approach to evaluate 

and report the real-time pavement roughness by linking the output of in-pavement strain sensors to the IRI 

and other roughness indices. This method requires initial installation of the durable strain sensors inside the 

pavements. During road operation, the sensors report strain data that indicates the level of structural 

deterioration. The method developed in this study will subsequently produce the IRI by relating the vertical 

displacement of the pavement to the strain data. An ability to recover the elevation profile using this method 

also provides a generalized approach for linking it to other summary roughness indices. After installation 

and calibration, the sensors will provide real-time roughness monitoring continuously, throughout the 

remaining service life of the pavement assets. Therefore, the agencies evaluate the pavement roughness at 

any time. 

The organization of the remaining paper is as follows: Section 2 develops the theoretical method 

that quantifies the road unevenness by using the output of the in-pavement strain sensors. Section 3 conducts 

a sensitivity study of the sensor deployment intervals and the noise levels of their output. Section 4 validates 

the reliability of this method using data from the field tests. Finally, Section 5 provides the conclusion and 

outlines the potential future work. 

2. Theoretical Analysis 

Roughness occasionally exists as part of the roadway design or construction defects [28], and 

pavement wear increases the roughness levels over time since a deformation of the pavement structure 

would produce a change in the road profile. Consequently, a deformation-induced increase of strain within 

the pavement structure must correspond to an accumulation of profile unevenness. This section first derives 

the theoretical relationship between the roughness condition and the accumulated strain distribution within 

the pavement structure along a concrete-paved road, then describes a procedure for the IRI calculation. 

Finally, the section introduces the previously developed connected vehicle method of roughness evaluation 

that the experimental study will use for validation.  
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2.1 Theoretical Relationship between In-pavement Strains and Roughness for Concrete-paved Roads 

This paper uses concrete pavements for the theoretical analysis. The analysis for other types of 

roads will follow similar procedures. The deformation of concrete pavement slabs commonly uses an 

assumption of a thin plate panel for theoretical modelling to simplify the analysis from 3-dimensions (3-D) 

to 2-dimensions (2-D). According to the Kirchhoff–Love plate theory [29], the strain in the longitudinal (x) 

direction of a thin-plate concrete panel, x, located inside the pavement at some known vertical position h0, 

is expressed as: 

,
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where w is the vertical displacement of the concrete pavement panel which is also known as the road 

elevation profile. With the sampling interval requirement satisfied, double integration of Equation (1) 

reproduces the relation between the road elevation profile and the measured strains from the in-pavement 

sensors as: 
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The IRI then becomes available because the slope rate of the road profile, w , which is the second 

derivative of the elevation profile, w, with respect to time, is a direct input to the procedure that computes 

the IRI. For a temporal road profile of , the second derivative with respect to time is 
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where v = 80 km/h is the IRI standard speed [8].   

2.2 IRI Calculation Based on In-pavement Strains 

The Highway Safety Research Institute (HSRI) defines the IRI in terms of the responses from a 

standard quarter-car model having two degrees of freedom as shown in Figure 1. 
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Figure 1. The HSRI Quarter-car Model. 

The parameters yt
s and yt

u are absolute displacements of the sprung- and unsprung-mass, 

respectively. The HSRI quarter-car parameters are ku/ms = 653.0 s-2, ks/ms = 63.3 s-2, mu/ms = 0.15, cs/ms = 

6.0  s-1 and cu/ms = 0.0 s-1. Let the relative displacement of sprung mass be ys and that of the unsprung mass 

be yu such that 
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Solving Equation (5) with a numerical algorithm such as the Newmark method yields the relative 

displacements ys and yu, the relative velocities sy and ,uy  and the relative accelerations sy and uy as a 

function of the in-pavement strains and velocities of the vehicle. The IRI is then [8]: 
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in which, L is the segment length and T = L/v is the travel time. For a computational sample interval of Δt, 

the number of intervals is n = T/Δt and the discrete-time form of the computation becomes 
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2.3 Connected-Vehicle Method for Roughness Evaluation 

Although the IRI is very commonly applied, the current practice of computing the IRI from 

elevation profile measurements using laser profiler or similar apparatus requires specific instrumented 

vehicles to perform the measurements. The relatively high cost for calibrated instruments and specialized 

expertise needed to produce the IRI limit its potential for widespread use. Connected vehicles, thus, present 

an opportunity to measure the roughness of the pavements more cost-effectively and conveniently by 

analyzing data from vehicle-integrated inertial and geospatial position sensors. Such sensors are available 

in most smart phones. Bridgelall [30] introduced the road impact factor (RIF) transform to summarize road 

roughness in direct proportion to the IRI. The RIF-index is 

ttvtg
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where gz(t) is the resultant vertical acceleration from the inertial sensor mounted on vehicle, v(t) is the 

instantaneous vehicle speed at time t, v  is the average speed, and L is the traversal path distances for each 

consecutive segment analyzed.  

The RIF-transform summarizes roughness in units of g-force per meter. It isolates the average ride 

roughness induced primarily from road unevenness, without including the impacts from other factors such 
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as driver behavior and vehicle handling. Applications that need to include those other factors integrate 

roughness from the lateral and longitudinal accelerations using a similar model [31]. The Ensemble Average 

RIF (EAR) is the average of RIF-indices from a predetermined speed band. The EAR-index represents the 

average roughness from road unevenness that riders experienced when traveling the segment at the average 

speed indicated. The speed range of a typical speed band is ±5 mph about the average speed indicated. 

Previous studies demonstrated theoretically and experimentally that the EAR-index and the IRI are directly 

proportional [17]. Therefore, the EAR-index can extend models that currently use the IRI by calibrating 

them with a constant of proportionality. 

3. Sensitivity Study 

This section conducts the sensitivity study of the roughness evaluation process displayed in 

Section 2. The factors influencing the accuracy of the IRI estimation using the measurements from in-

pavement strain sensors mainly include the implementation sensor interval and the sensor signal’s quality 

characterized by the signal-to-noise ratio (SNR). From Equation (3), it can be seen that the in-pavement 

strain is directly proportional to the second derivative of the profile ( ). The interval of the road profile 

samples ( ) and the second derivative of the profile ( ) can represent the strain sensor position intervals 

and the output signal of the sensors, respectively.   

To simulate road profiles ( ) of different roughness levels for sensitivity analysis, the inverse fast 

Fourier transform (IFFT) of the PSD is a suitable approach to apply [32, 33]. For this analysis, the second-

order forward difference provides a higher-accuracy numerical approximation of the second derivative of 

the profile ( ) [34]. After solving Equation (5) using the Newmark method, Equation (8) then provides the 

associated IRI for the profile [34]. The variation in IRI is observable by changing the profile sampling 

interval size, which represents the strain sensor interval, for each evaluation of Equation (5). The method 

of noise sensitivity analysis involves adding white Gaussian noise to the in-pavement strains (x) thus, to 

the profile’s slope rate ( ), and observing the IRI variations. 
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3.1 Roughness Generation 

The ISO (1995) [35] represents the elevation profile (ξ) as a PSD such that 
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where, κ is the wavenumber with a unit of cycle/m, κ0 is the datum wavenumber in cycle/m, S(κ) is the 

road profile PSD in an unit of m3/cycle, and S(κ0) is the PSD at κ0 or initial PSD in m3/cycle. 

For typical profiles, Cebon [36] recommended n1=3, n2=2.25, and 0=1/(2π) cycles/m. Table 1 

summarizes the qualitative relationship between the roughness classification and the initial PSD. As 

expected, higher values of S(κ0) corresponds to poorer road condition in terms of roughness levels. 

Table 1. Relationship between roughness classification and initial PSD [36] 

Roughness 

Classification 
S(κ0) 

10-6 m3/cycle 

Very Good 2-8 

Good 8-32 

Average 32-128 

Poor 128-512 

Very Poor 512-2048 

Reference [37] indicates that the IRI does not respond to spatial wavelength components that fall 

outside of the 1.3 m to 30 m wavelength band. Therefore, the κ range from 0.02 cycle/m to 5 cycle/m is 

conservative for the IFFT computation. Figure 2a shows the road profile generated with S(κ0) = 3.2×10-5 

m3/cycle, and Figure 2b shows the corresponding PSD. 
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(a) Generated Road Profile 

 
(b) Comparison on the Power Spectral Density 

Figure 2. Roughness Generation at S(κ0) = 3.2×10-5 m3/cycle. 

3.2 Sensitivity on In-pavement Strain Sensor Interval 

The Nyquist-Shannon sampling theorem dictates a minimum profile sampling interval of 0.65 m 

because the IRI becomes insensitive to wavelengths shorter than 1.3 m. Figure 3 shows the change of IRI 

with the sensor interval for the roughness generated at S(κ0) = 3.2×10-5 m3/cycle. As shown in Figure 3, 

the IRI steadily decreases as sensor interval increases. The tradeoff between IRI accuracy and in-pavement 

strain sensor interval directly relates to the expense of sensor installation. The recommended standard 

sampling interval is 0.3 meters using the vehicle based profiling approaches [8]. However, installing strain 

sensors at the equivalent sampling intervals would require a significantly large number of strain sensors 

that would result in a high initial installation cost.  
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Figure 3. IRI at Different Strain Sensor Intervals 

To potentially reduce the number of sensors needed for a more cost-effective solution, Table 2 

compares various sensor interval compared with the IRI calculated from standard intervals of 0.3 m for 

different levels of roughness S(κ0) with measurement accuracies of 90% and 80%. The results indicate that 

larger IRI or rougher surfaces require fewer sensors. Since the road roughness matter more when the IRI 

increases, users can increase the sensor interval to decrease cost without losing measurement accuracy. A 

sensor interval of 0.7~0.8 m would provide an accuracy within 80% for roughness levels that correspond 

to the road conditions with average or below that matter most to the agencies. Hence, trading off 20% 

accuracy reduces the required number of in-pavement strain sensors by at least a factor of two. For specific 

applications, a sensor interval analysis is highly recommended before the sensor installation. 

Table 2. Sensor Intervals Required for an Accuracy of 80% and 90% 

S(κ0), 10-6 m3/cycle 2 4 8 16 32 64 128 256 512 1024 2048 

IRI at 0.3 m, m/km 1.12 1.57 2.23 3.19 4.55 6.33 8.92 12.76 17.95 25.04 36.14 

Sensor Interval 

with 90% Accuracy, m 
0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 

Sensor Interval 

with 80% Accuracy, m 
0.4 0.5 0.6 0.6 0.7 0.7 0.8 0.7 0.7 0.8 0.8 

3.3 Sensitivity on Sensor Signal Quality 

This section uses the ASTM Standard E 1926-98 [8] profile with known IRI to study the noise 

sensitivity of the in-pavement strain sensor on IRI estimation. Figure 4 shows the simulated standard 
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sinusoidal road profile. Table 3 lists the calculated IRI values and the relative errors for different levels of 

white Gaussian noise. The relatively small error of 5.0% between the IRI of the ASTM profile and the IRI 

computed from generating the slope rate estimated from the strain-based method in this paper validates the 

method. Adding noise levels ranging from 3 dB to 10 dB to the slope rate of the profile estimated from the 

strain-based approach result in relative errors that are less than 5% as listed. This result demonstrates that 

the developed strain-based roughness estimation method is relatively insensitive to noise.  

 

Figure 4. Road Profile (ASTM Standard E 1926-98 [8]) 

Table 3. Validation of the Method for IRI Calculation. 

Parameter ASTM  Strain-based Method from This Paper 

  No Noise 3 dB Noise 8 dB Noise 10 dB Noise 

IRI 0.0222 0.0211 0.0226 0.0216 0.0215 

Relative Error - 5.0% 1.8% 2.7% 3.2% 

4. Field Experimental Validations and Discussions 

The high-resolution localization feature of the connected-vehicle method of roughness 

characterization provided validation for the in-pavement strain sensor method. Minnesota Department of 

Transportation (MnDOT) owns and operates a road section of the Cold Weather Road Research Facility in 

Minnesota (MnROAD) that contains various in-pavement strain sensors. MnROAD consists of two unique 

roadways: a two-lane low-volume loop that is loaded with a 5-axle 80,000 lb (36,287 kg) semi, and a section 

of interstate I-94 ‘‘mainline’’ that contains two westbound lanes with live traffic. Figure 5a shows the two 

roadway sections. The site for the field testing was Cell-40, which is an existing pavement test section on 

the low-volume road as shown in Figure 5a. Figure 5b shows the seventy concrete pavement panels selected 
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for roughness evaluation; they are numbered Panel 0 through Panel 69. The length of each panel is 6 ft, so 

the total length of test section is 420 ft. Figure 5c is a photo of the concrete panel series in Cell-40 for visual 

evaluation. The rest of this section describes the field tests, analyzes the results, and finally validates the 

strain-based method using the connected vehicle approach. 

   
   (a) Testing Facilities at MnROAD  (b) Plane View of the Testing Panels          (c) Photo of Cell-40  

Figure 5. Road Sections at MnROAD for Roughness Evaluation 

4.1 Roughness Evaluation Using the In-pavement Strain Sensors 

This method measures the accumulated strains during the simulated traffic on the road section and 

calculates the present roughness level (IRI) using the method developed in Section 2. 

4.1.1 Experimental Setup 

The authors’ research group previously developed multiple glass fiber reinforced polymer packaged 

fiber Bragg grating (GFRP-FBG) sensors and installed them within three panels of Cell 40 at MnROAD 

[38]. Reference [38] provides details of the sensor principle, sensor design, and installation procedures. 

Panels 36, 40, and 53 embedded the GFRP-FBG sensors as shown in the layout in Figure 6. The three 

panels contained sensors that measure strains in one dimension (1-D), and panels 36 and 40 contained one 

additional sensor each that can measure strains in three dimensions (3-D). The sensors were located above 

a 0.5-inch (13 mm) elevation level relative to the bottom surface of the pavement panel, and along the truck 

wheel path. The orientations of the 1-D and 3-D sensors are as indicated in the Figure 6. This experiment 

used only the longitudinal component of the three orthogonal sensors of the 3-D version for strain 

measurements. In addition, a temperature tree installed on the side of each panel provided data to 

compensate for environmental effects on the strain measurements. 
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(a) Panel 36                                  (b) Panel 40                                (c) Panel 53 

Figure 6. Sensor Layout at the Pavement Panels (Unit: in.) 

4.1.2 Results and Analysis 

After temperature compensation, the analysis treats the strain distribution along the wheel path of 

each panel as step functions (Figure 7). The first transition point is equidistant to the sensor’s position from 

the panel edge. The orientation of the 1-D sensor within Panel 40, 1D-2, is in the traverse direction. The 

history of the strain values from the three sensors indicates that the analysis need not differentiate between 

values in the longitudinal and transverse directions [39] for static strain measurements. As Panel 53 has a 

single sensor, there will be no transition points. The sampling intervals between strain sensor positions are 

0.9 m for Panel 36, 0.7 m for Panel 40, and 1.8 m for Panel 53. Following the procedure in Section 2 for 

the strain-based method, the estimated IRI values are 2.00, 2.01, and 1.92 for Panel 36, Panel 40, and Panel 

53, respectively. According to the sensitivity study on sensor interval performed in Section 3 and shown in 

Table 2, the accuracy of estimated IRI for the Panel 36 and 40 are around 80% and that for Panel 53 will 

be less than 80%. This is within expectations because the single sensor of Panel 53 must produce a larger 

error than for the other two panels that contain two sensors each that shorten the interval between samples. 
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         (a) Panel 36                                   (b) Panel 40                                  (c) Panel 53 

Figure 7. Strain Distribution along the Wheel Path Track of Each Testing Panel 

4.2 Roughness Estimation Using the Connected-Vehicle Method 

Different from the strain-base method discussed above, the connected-vehicle method is a response 

type method that measures the vertical acceleration at a specific location of the vehicle travelling along the 

wheel path. The RIF-transform requires only a regular passenger vehicle and does not require the standard 

survey vehicle used for producing the IRI. Both roughness indices reflect the relative roughness levels of 

each road segment traversed [30]. 

4.2.1 Field Testing Using the Connected-Vehicle Approach 

This study used a regular passenger vehicle, a 2011 Chevrolet Traverse as shown in Figure 8, to 

collect the inertial and geospatial position data needed for the RIF-transform. Three smart phones secured 

flat in the vehicle’s rear trunk ran a data logger application (app) that logged the resultant vertical 

accelerations. Figure 9 shows a top view of the smartphone installation, including their orientations. Phone 

1 and Phone 2 were iPhone® 4S devices fixed in the longitudinal orientation whereas Phone 3 was an 

iPhone® 5 oriented in the lateral direction. The GPS receiver had an update rate of 1 Hz and the 

accelerometer was set to sample at 128 Hz based on recommendations from prior studies [40]. The iOS® 

app logged inertial and geospatial position data as the vehicle traversed the 70 panels selected for roughness 

evaluation.  
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Figure 8. Passenger Vehicle for Roughness Evaluation (2011 Chevrolet Traverse) 

 
                        (a) Smart Phone Layout                     (b) Orientation of Smart Phone 

Figure 9. Smart Phone Installation at the Rear Trunk for Fielding Testing 

4.2.2 Testing Results and Analysis 

A comma separated value (CSV) file format is the recommended organization for RIF-transform 

data as shown in Table 4. The first row contains a header with labels for each column of data sampled from 

the inertial and geospatial sensors on the smart phones. The integrated timer provides the “Time” data in 

milliseconds. The integrated GPS receiver provides the latitude (Lat) and longitude (Lon) data in decimal 

format, and the ground speed (Gspeed) in m/s. The integrated inertial sensor provides the accelerator values 

for the g-forces sensed in the vertical, lateral, and longitudinal directions as “Gz”, “Gx”, and “Gy”, 

respectively and normalized to 9.81 m/s2. The integrated gyroscope produces the “Pitch,” “Roll,” and 

“Yaw” for the sensor orientation angles in degrees, respectively. After inertial sensor orientation 

calibration, travel distance estimation, and roughness characterization as described in [41], the calculated 
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RIF-indices are as displayed in Figure 10 for all the 70 panels. The EAR-index for the three panels deployed 

with the in-pavement strain sensors are 0.149, 0.162, and 0.144 for Panel 36, Panel 40, and Panel 53, 

respectively. 

Table 4. Standard Data Format Used to Compute RIF 

Time Lat Lon Gspeed Pitch Roll Yaw Gx Gy Gz 

114421 45.27234 -93.6994 16.92 -0.09375 2.375 -0.0625 -0.327 -0.0335 -1.0165 

114429 45.27234 -93.6994 16.92 -0.625 1.6875 1.1875 -0.334 -0.041 -1.0185 

114437 45.27234 -93.6994 16.92 -0.90625 1.78125 -0.40625 -0.3315 -0.0405 -1.027 

114445 45.27234 -93.6994 16.92 0.90625 1.40625 0.28125 -0.3275 -0.0405 -1.0045 

114453 45.27234 -93.6994 16.92 -0.25 1.375 -0.75 -0.324 -0.0425 -0.9845 

114460 45.27234 -93.6994 16.92 0.1875 0.96875 0.0625 -0.3225 -0.05 -0.9805 

114468 45.27234 -93.6994 16.92 -0.125 1 0.3125 -0.335 -0.0555 -1.005 

 

 
Figure 10. Estimated EAR-index for Panel 0-69 using Connected Vehicle Method 

4.3 Validation of Roughness Estimation Using In-pavement Strain Sensors 

The high cost of traditional methods for obtaining the IRI presents a significant barrier to validating 

the developed strain-based method in this paper by using a laser-based profiler vehicle. However, the direct 

proportionality relationship between the IRI and the EAR-index provides a cost-effective means of 

validating the developed roughness estimation method using in-pavement strain sensors by comparing it 

with the respective roughness indices obtained from the connected vehicle approach for the three panels. 

Table 5 compares the estimated IRI using the strain-based method and the obtained EAR-indices from the 

connected-vehicle method for Panel 36, Panel 40, and Panel 53 and their ratios. The ratios of the IRI to the 
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EAR-indices for the three panels range from approximately 12 to 14. The estimated IRI is proportional to 

the EAR-indices at an average ratio of 13.04, and the standard deviation of the ratios is only 3.3% of the 

mean. This indicates a high degree of consistency in the IRI values derived from the developed strain-based 

method. It demonstrates that the IRI estimated from the in-pavement strain sensors is directly proportional 

to the EAR-indices from the connected-vehicle method [21] as expected, and this result validates the 

effectiveness of the IRI evaluation using the in-pavement strain sensors. 

Table 5. Comparison of IRI and EAR-index on Sensor-Deployed Panels 

 Panel 36 Panel 40 Panel 53 

IRI derived from strain-based method 2.00 2.01 1.92 

EAR-index from the connected-vehicle method 0.149 0.162 0.144 

IRI/EAR-index 13.40 12.43 13.31 

5. Conclusions and Future Work 

This paper provides transportation researchers and engineers with a cost-effective method of road 

roughness evaluation using strain sensors deployed inside the pavement. The authors conducted theoretical 

and numerical analysis to develop the relation between the measured strains from the in-pavement strain 

sensors and the IRI, followed by field experiments to validate the theoretical development. The conclusions 

of this paper are as follows: 

1) The strain series that develop gradually and accumulate with road use is directly proportional to the 

second derivative of the road elevation profile. The procedure that produces the IRI is a linear time-

invariant transformation of the second derivative of the road elevation profile. Therefore, the IRI is 

directly proportional to the strain data. 

2) Numerical simulation proves that a measurement accuracy of 80% or higher is achievable using the 

strain-based method at a specific sensor implementation interval of 0.7 m or shorter for the 

roughness levels that are of most concern to agencies; the strain-based method is relatively 

insensitive to the noise disturbances. 

3) The case studies using strain sensor data collected from three concrete panels in the field at 

MnROAD, MN, validated the new roughness evaluation method based on the in-pavement strain 
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sensors by comparing the consistency of its proportionality with a connected-vehicle method of 

roughness characterization that is directly proportional to the IRI. 

The results of this research provide an alternative method of roughness evaluation that does not 

require probe vehicles. This new method will provide roadway agencies with the ability to evaluate 

roughness in real time and continuously throughout the service life of the road to enable improved methods 

of predictive asset management, and the potential for significant lifetime cost savings. Future work will 

apply this method to asphalt pavements and develop an integral system for road condition monitoring and 

traffic data collection. 
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