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Abstract 

Continuous, network-wide monitoring of pavement performance will significantly reduce 

risks and provide an adequate volume of timely data to enable accurate maintenance forecasting.  

Unfortunately, transportation agencies can afford to monitor less than 4% of the nation’s roads.  

Even so, agencies monitor their ride quality at most once annually because current methods are 

expensive and laborious.  Distributed mobile sensing with connected vehicles and smartphones 

could provide a viable solution at much lower costs.  However, such approaches lack models that 

improve with continuous, high-volume data flows.  This research characterizes the precision 

bounds of the Road Impact Factor transform that aggregates voluminous data feeds from geo-

position and inertial sensors in vehicles to locate potential road distress symptoms.  Six case 

studies of known bump traversals reveal that vehicle suspension transient motion and sensor 

latencies are the dominant factors in position estimate errors and uncertainty levels.  However, 

for a typical vehicle mix, the precision improves substantially as the number of traversals 

approaches 50. 
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Introduction 

Practitioners have long recognized that rough roads increase the cost of operating vehicles 

(Zaniewski and Butler 1985)(Park et al. 2007) and lead to repairs that are more expensive 

(AASHTO 2009).  Studies have also linked road roughness to motion sickness (Griffin 1990) 

and higher crash rates (Swedish National Road and Transport Research Institute 2004).  

Unfortunately, transportation agencies can seldom afford to profile roads for defects more often 

than once a year.  Even so, those assessments are limited to portions of the National Highway 

System for which the Federal Highway Administration (FHWA) requires annual reporting of the 

International Roughness Index (IRI) (HPMS 2012).  Consequently, agencies miss important 

vulnerabilities such as frost heaves that appear and disappear between monitoring cycles.  For 

unmonitored roads, many agencies rely on the public to report the location and type of defect 

such as potholes.  Unfortunately, agencies often learn about these anomalies after they begin to 

cause chronic traffic jams or crashes because drivers suddenly reduce speed when attempting to 

maneuver around them (FHWA and Federal Transit Administration 2011). 

To provide continuous, network-wide, lower-cost assessments, the author developed and 

validated a data- and signal-processing method called the Road Impact Factor (RIF) transform.  

The average RIF for a road segment is directly proportional to the IRI (Bridgelall 2014).  

However, unlike the IRI, the RIF results from a windowed energy transform capable of 

providing higher resolution localization of anomalies, which this research defines as rough spots, 

some of which are unexpected distress symptoms.  Statistically, the precision of localizing the 

true position of anomalies increases as the volume of sensor readings increases.  The RIF 
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transform aggregates data from global positioning system (GPS) receivers and inertial sensors in 

regular vehicles and smartphones to report ride quality. 

This study characterizes bounds in the precision with which the RIF transform can estimate 

the position of road features that produce roughness peaks.  Error factors include variances from 

GPS location tagging, vehicle speed and suspension parameters, and sensor characteristics.  This 

is the first study to characterize the RIF precision bounds.  Related studies extract features from 

inertial sensors to identify potholes among other anomalies.  Such studies are complementary to 

this one because they do not characterize the precision of the anomaly location methods used.  

Their reported feature extraction methods include fixed thresholds of the accelerometer signal’s 

standard deviation (Eriksson et al. 2008), (Dawkins et al. 2011), (Chen, Zhang and Lu 2011), 

time-domain heuristics (Mohan, Padmanabhan and Ramjee 2008), wavelet transforms (Hesami 

and McManus 2009), and principle component analysis (Hautakangas and Nieminen 2011).  

With such signal processing methods, researchers demonstrated that it is possible to differentiate 

between potholes and other road features that produce localized signal roughness. 

This organization of this paper is as follows:  the next section reviews the RIF transform and 

its direct proportionality with the IRI.  The fourth section introduces the average RIF as a 

position estimator, and the fifth section defines its error component variances.  The sixth section 

describes the case study characterizing the error statistics, bounds in achievable precision, and 

the estimator’s sensitivity to each error component.  The final section summarizes and concludes 

the study. 

Ride-Index Model 

As derived in previous work by the author (Bridgelall 2014), the RIF transform, denoted L
vR , 

is the g-force per meter (g/m) experienced when traveling a road segment of length ΔL where 
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The average and instantaneous vehicle speeds are v and v(t), respectively.  The vertical 

acceleration signal from an on-board accelerometer is gz(t).  Previous work (Bridgelall 2014) 

derived a proportionality constant κRI that is a ratio of the RIF and IRI impulse responses as 

follows: 
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The g-force unit g normalizes the sensor constant γz.  The average sprung mass resonance 

frequencies for the typical vehicle and the IRI Golden Car parameters are μs and Gs, 

respectively.  The corresponding unsprung mass frequencies are μu and Gu respectively.  

Similarly, for the typical vehicle and the Golden Car the average sprung mass damping ratios are 

ζμs and ζGs respectively, and those of the unsprung mass are ζμu and ζGu respectively.  The 

parameter ρz is a function of the sensor attachment in the vehicle.  The proportionality constant is 

measurable by assessing the IRI and the average RIF from traversing a fixed-length segment at 

an arbitrary average speed.  The ratio of future RIF values obtained at the same average speed 

used to determine the IRI proportionality constant will estimate future IRI values if needed. 

Adjusting the parameter ΔL identifies anomalies in the RIF data set at the desired spatial 

resolution.  For example, Fig 1 plots the RIF from a smartphone data logger affixed to the 

dashboard of a sports utility vehicle (SUV), traversing a speed bump at 7 m∙s-1.  The labels gx, gy, 

and gz point to the lateral, longitudinal, and vertical accelerations respectively in units of g-
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forces.  The gz signal offset of approximately -1g comes from the earth’s constant downward 

gravitational force.  The graph artificially offsets the gx signal by +1g for display clarity.  A 

three-dimensional rotation transformation described in previous work (Bridgelall 2014) produces 

the resultant vertical resultant acceleration from the individual accelerometers axis for any sensor 

orientation. 

The RIF peak is an estimate of the true position of the anomaly that produced the peak g-

forces.  For the single traversal shown in Fig 1, the true position of the bump’s center is about 

five meters ahead of the RIF peak as indicated by the vertical marker ξ shown at 30 meters.  The 

roughness position estimator improves steadily by adding traversals to a windowed ensemble 

average of their RIFs.  The next sections derive models to characterize the estimator’s accuracy 

and precision. 

Peak position estimate 

The position of a peak p


in the ensemble average RIF is an estimate of the bump’s true 

position p were 

GPSsdipp L  


 (3) 

That is, the estimate p


contains biases from the RIF transform’s integration window ΔL and four 

additional offset factors.  The latter four biases are from the average error of peak RIF 

position i within the distance interpolation sub-interval, the average suspension system transient 

response distance d , the average longitudinal sensor position s , and the average GPS tag 

lag GPS from operating system latencies. 

The peak position estimator is the ensemble average RIF within spatial windows Δw starting 

at position x where 
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)(xR w is the ensemble average RIF across Nv traversals with indices ρ, within a specified speed 

band.  This research recommends practically narrow speed bands such as those within 5% to 

10% of the average speed for that segment. 

Interpolation sub-interval 

Within a traversal, the position of a RIF index is an integer multiple of the resolution window 

distance from a known geo-spatial position marker at the beginning of the traversal path.  To 

accommodate GPS position update variances across traversals, the ensemble-averaging 

algorithm divides each window into higher resolution sub-intervals and interpolates the RIF 

within each.  The length of each interpolation sub-interval is Av v  where the update interval 

for the accelerometer is A .  Hence, the error in estimating the position of the RIF peak within the 

interpolated sub-interval will be at most v .  If the distribution of the peak position is uniform 

within the sub-interval, then the average error is 
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where fA is the average sample rate of the accelerometer in hertz.  Therefore, the error 

variance 2
i is 
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where σv and σfA are the standard deviations of the vehicle speed and accelerometer sample rate 

respectively.  The covariance factors are zero because the accelerometer sample rate is 

independent of the vehicle’s speed. 

Transient response distance 

The sprung and unsprung mass of typical vehicle suspension systems produces their 

characteristic body- and axle-bounces respectively.  Hence, the transient response distance will 

be in a position ahead of the peak where the total vertical acceleration energy has accumulated to 

within 1% of its final value.  Based on previous work by the author (Bridgelall 2014), Fig 2 

shows the vertical acceleration of the impulse response from a quarter-car suspension with the 

parameters listed in Table 1.  The decay envelope and the accumulated accelerometer signal 

energy from body bounce asymptotically approach their final values after about 4 seconds.  The 

signal energy accumulates to approximately 99% of its final value at three time-constants of the 

longest lasting oscillations, which is the decaying body bounce.  One time constant τcμ is the 

average duration for the body bounce to decay by a factor of e-1 of its initial envelope amplitude.  

The decay envelope Ge(t) is derived by taking the second derivative of the sprung mass impulse 

response (Bridgelall 2014) to yield 

 ttG ssse    exp)(
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where ωμs and ζμs are the mean values of the sprung mass resonance frequency and damping 

ratios respectively.  Solving for t when Ge(t) = Ge(0)∙e-1 gives the average time constant τcμ as 
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Hence, the average transient response distance d is 
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vcd  3  (9) 

The average frequency responses of the accelerometer signal provides an estimate for the 

parameters ωμs and ζμs as described in previous work (Bridgelall 2014).  Fig 3 plots the body 

bounce and corresponding vertical acceleration from traveling over a simulated bump at 

2.5 m·s-1.  Table 2 summarizes the vehicle and sensor parameters for the simulation.  Fig 4 

compares the resulting frequency responses from a single- and a double-axle traversal.  The latter 

produces the energy harmonics indicated because of the semi-periodic nature of the response. 

The variance of the transient response distance σ2
εd is 
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where σζs, and σωs are the standard deviations of the sprung mass damping ratio and resonance 

frequency respectively.  The last term of equation (10) contains the covariance factors.  These 

are independent parameters when the suspension system operates normally, hence the covariance 

factor must be zero.  After evaluating the partial derivatives equation (10) becomes 
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As observed and expected the transient response variance increases as the average speed 

increases. 

Sensor position 

The sensor position is relative to the first axle that crosses the bump.  Hence, distances behind 

the first axle are negative with respect to the velocity vector.  When using smartphones, they will 

likely be located within arm’s length of the driver.  For example, with an average arm span of 1.5 
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meters and an average operator position of 2 meters behind the first axle, the sensor’s lateral 

position could range from -0.5 to -3.5 meters.  For a normal distribution, the average 

distance s will be negative two meters with a standard deviation σεs of 1.5/3.0 = 0.5 meters. 

GPS tagging error 

The GPS position tag GPS reported by the sensor operating system consists of two bias 

components where the average position is 

GPSpGPSGPS    (12) 

Typically the GPS geospatial position error εpGPS is normally distributed with zero mean, 

hence 0pGPS .  This error comes from variances in atmospheric effects, line-of-sight 

conditions, and GPS receiver quality (Gade 2010).  GPS system administrators expect that the 

95% confidence interval for horizontal position accuracy, under direct line-of-sight conditions, 

will be about 6.7 meters.  However, this uncertainty could increase to more than 10 meters when 

large trees and multi-path reflections from buildings and other tall structures distort faint satellite 

signals. 

The literature seldom addresses the second bias component GPS , which comes from sensor 

latencies in computing and reporting the geospatial coordinates.  The typical modern GPS 

receiver is an embedded module within another electronic device such as a smartphone or a 

vehicle circuit board.  The GPS module computes a geospatial coordinate at regular update 

intervals and stores the last update in an output register.  A host operating system retrieves the 

last coordinate from the register via a serial bus interface, formats it, and transfers it to the 

higher-level software application that requests it.  The typical sensor fusion application tags these 

coordinates with the system time-stamp, and appends them to the signal samples from other 



Precision bounds of pavement distress localization with connected vehicle sensors 

Raj Bridgelall, Ph.D. Page 10/28 

 

embedded sensors, for example, accelerometers and gyroscopes.  Depending on the computing 

platform, the delay in preparing, retrieving, and reporting the geospatial coordinates via the 

software application stack can be several seconds.  Consequently, the geospatial position tags for 

the accelerometer data stream of a moving vehicle will lag the position of the actual event.  The 

average GPS tag distance lag GPS is 

vlagGPS    (13) 

where lag is the average fetch-to-tag latency.  From Equation (12), the total geospatial position 

tagging variance 2
GPS is 

222
GPSpGPSGPS    (14) 

where 2
pGPS  is the geospatial position variance and the tag lag variance 2

GPS is 

   222
vlaglagGPS v     (15) 

The lag time standard deviation lag has two components.  The first is from variations between 

the time to fetch the coordinates from the GPS module and the time to tag the accelerometer 

samples with the system clock.  The second is from variations in coordinate “freshness” which is 

the time difference between computing the GPS coordinates of the instantaneous vehicle position 

and retrieving the coordinates from the output register.  For relatively few task threads or 

dedicated sensors with few interrupts, the fetch-to-tag time variance is likely negligible.  

However, the coordinate freshness will vary randomly because the application layer tasks and the 

GPS receiver updates are asynchronous.  For a normally distributed coordinate freshness, the 

standard deviation will be approximately one-sixth of the GPS update interval GPST where 

6GPSlag T   (16) 
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That is, the tag lag standard deviation is essentially the freshness standard deviation because it is 

the dominant factor. 

Precision bounds of position estimate 

Rearranging the parameters of Equation (3) produces the position error~ which is a random 

variable where 

GPSisdpp L  ˆˆˆˆ~ 


 (17) 

Hence, the variance of the peak position estimate is the sum of the variances of the four error 

components where 

 2222222222
GPSpGPSisdGPSisd     (18) 

That is, the resultant variance 2
v of the peak position is the sum of the variances of the transient 

response distance 2
d , the sensor position 2

s , the digital peak position 2
i , and the overall GPS 

geospatial variance 2
GPS .  Hence, Equation (18) characterizes the error magnitude of each 

component that constrains the maximum precision achievable when estimating the position of a 

bump’s peak from the ensemble average RIF. 

Case Study 

The pavement features selected to produce RIF peaks were a speed bump on a park road, an 

uneven asphalt-concrete pavement joint on an airport access road, and a rail grade crossing on a 

local road.  Fig 5 shows the street level views of each anomaly.  Each has relatively smooth 

adjacent segments to produce discernible RIF peaks.  The park bump experiment used a Ford 

Explorer 2001 sports utility vehicle (SUV) to collect three sets of data at different speeds.  The 

airport access road experiments used a 2007 Subaru Legacy sedan to collect eastbound (EB) and 
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westbound (WB) data sets.  The rail grade crossing experiments used the sedan to collect data.  

An iOS® application (app) logged the GPS and accelerometer data for all traversals.  Each 

vehicle completed 30 traversals across the rough spots of each road segment and maintained the 

average speed indicated in the header of Table 3.  The ensemble average RIF excluded one 

outlier for each data set. 

Anomaly position estimate 

The charts on the left side of Fig 6 shows the ensemble average RIF for the six case studies and a 

Gaussian fit of the RIF distribution between the a and z vertical markers shown.  The distance 

indicated on the horizontal axis of each graph is relative to the geospatial coordinates of a known 

position marker on the traversal path.  The position of the first peak in the distribution estimates 

the position of the first axle crossing.  When the second peak is detectable, such as for the 5 m∙s-1 

case, it estimates the position of the rear axle crossing.   

The last row of Table 3 summarizes the resultant error in estimating the position of the true 

peak for each case study.  The average resultant error for all cases was -2.6 meters.  For these 

cases, the individual error components are quantifiable because of the known positions of the 

sensors and the bumps.  Table 3 summarizes the expected biases for ΔL, s , i , d , and GPS and 

the associated parameters needed to calculate their values based on the models developed.  It is 

evident that the transient response and the GPS tag lag errors are in opposite directions.  

Therefore, they tend to cancel such that the resultant error is much smaller and well within the 

ranges anticipated for only 30 traversals. 

The experiments also validated that the vehicle dashboard was the most convenient spot to 

attach the smartphone data logger because that position provided the best satellite line-of-sight 

conditions for reliable GPS receiver updates.  Hence, the devices were at a lateral distance of 92 
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and 71 centimeters behind the axles of the SUV and the sedan respectively.  Substituting the 

average traversal speed v and the average sample rate of the accelerometer fA into Equation (5) 

produced the i values.  Similarly, substituting their mean and standard deviations into Equation 

(6) produced the standard deviations of the distance interpolation errors.  As expected, the 

interpolation errors were negligible when compared with other error components. 

From Equations (8) and (9), the mean sprung mass resonance frequency ωμs and the mean 

damping ratio ζμs determines the mean transient response distance d .  Fig 7 plots the ensemble 

average from traversing the speed bump at 2.5 m·s-1.  A least squares fit of the combined sensor 

and quarter-car frequency responses with the ensemble average of the Discrete Fourier 

Transforms (DFT) of the vertical acceleration signal samples {gz} from each traversal produced 

the estimated suspension parameters listed in Table 1.  Similarities with the simulation results 

shown in Fig 4 provide confidence that the models provide adequate characterization of the 

vehicle’s response, including the harmonics produced from the two-axle crossings.  The average 

transient response distance for all case studies was about 11.2 meters.  Accounting for the 

average speeds, the vibration energy from the last axle crossing lasted for an average of about 

two seconds.  This is consistent with the model simulation results shown in Fig 2 and Fig 3. 

The expected value of the geospatial position offset from the GPS receiver GPS is zero.  

Hence, the expected GPS position tagging bias depended primarily on the average GPS tag lag 

distance GPS .  This parameter would be difficult to obtain in general because of the variety of 

sensors, sample rates, and operating system performances anticipated.  However, for these case 

studies, the lag time statistics are derivable because the error of peak position estimate~  is a 

known quantity.  Taking the expected values of the random variables in Equation (17) and 

rearranging terms to derive the unknown value yields 
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 disGPS L   ~  (19) 

Given the average traversal speed v , Equation (13) produces the average tag lag lag that Table 3 

summarizes for each case study.  The average tag lag time and the equivalent average distance 

for the case studies was about -2.3 seconds and -14 meters, respectively. 

Relative error magnitudes 

Table 3 includes the mean and standard deviations of parameters needed to compute the position 

error magnitude for each case study.  As indicated, the standard deviation of peak position 

estimation within the interpolated sub-intervals σεi was negligible.  From Equation (6), the 

average uncertainty across all case studies was only 2 millimeters.  The variance of sensor 

position σ2
εs was zero for each case study because their fixed position in each vehicle.  Equation 

(11) provides the average uncertainty in transient response distance σεd where the average of the 

standard deviations across all case studies was about 0.7 meters. 

From Equation (16), the tag lag standard deviation was about 0.2 seconds because the average 

GPS update period was one approximately second.  From Equation (15) the average tag lag 

uncertainty GPS was about 1.3 meters.  The GPS position variance 2
pGPS is derived by solving 

Equation (18) in terms of the variances that are now known such that 

 222222
GPSisdpGPS     (20) 

The data collected and summarized in Table 3 for each case study includes the peak position 

standard deviation v for the RIF.  Hence, the GPS position uncertainty for each case study was 

as shown in the table, and the average across all data sets was about 3.4 meters.  This result is 

well within the range expected of practical applications that use standard GPS technology.  In 
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conclusion, the position uncertainty from the GPS receiver was the dominant factor in the 

achievable precision of estimating the actual position of the pavement anomaly. 

Precision bounds 

The (1-α) percent margin-of-error (MOE) of the peak position estimate is denoted   1 as 

follows: 

vN

q 21

1










   (21) 

The standard normal quantile is 21 q for a confidence interval of (1-α)%.  The number of vehicle 

traversals is Nv.  Hence the 95% confidence interval is 95.02  and 96.121 q . 

The charts on the right side of Fig 6 are histograms of peak RIF positions for each traversal 

set, and several distribution types that best fit the histograms in the least squares sense.  Table 4 

lists the distribution parameters and chi-squared values indicating their respective goodness-of-

fit.  For all the cases, the chi-squared significance levels are not sufficiently small to reject any of 

the hypothesized distributions indicated.  The table indicates the largest significance levels for 

each case in bold font.  Hence, the Logistic distribution appears to describe the spread of the RIF 

peak best for the speed bump case studies whereas the Gaussian and Student’s t-distributions 

appear to provide a better fit for the remaining cases.  However, the Logistics distribution 

provides chi-squared significance levels that are similar to those of the Gaussian and Student’s t-

distributions.  Among the distributions hypothesized, the Weibull provides the smallest 

significance levels.  Hence, the data appears to follow classic distributions where the distribution 

means are the best estimators for the actual position of the anomaly, and their standard deviations 

provide the confidence intervals. 
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The MOE diminishes with increasing traversal volume in the manner described by Equation 

(21).  Fig 8 compares the MOE for the 2.5 m·s-1 speed bump case study with a typical scenario 

(Gillespie 2004) consisting of vehicles with the parameters summarized in Table 5.  For a 

maximum deviation of the GPS position estimate of 30 meters, the standard deviation would be 

10 meters.  The typical scenario includes vehicle traversals that are within one standard deviation 

equal to 10% of the average vehicle speed.  Therefore, the precision bound for a larger vehicle 

volume is expectedly greater because of the broader parameter spread.  For example, about 10 

traversals provided a peak position estimate within 3 meters with 95% confidence for the case 

study vehicles whereas 45 traversals will be required to achieve similar results with a typical 

vehicle mix.  With the parameter variances provided, the precision improves rapidly as the 

volume grows beyond 10 vehicles while volumes beyond 50 vehicles provide diminishing 

returns. 

Error sensitivity 

Table 6 summarizes the sensitivities of bias errors to vehicle and sensor parameters.  The cells 

associated with the partial derivatives indicated in their columns and rows are the error rates 

associated with the mean values shown in column seven.  For example, the transient response 

distance error d is sensitive to velocity changes at the rate of 62.2 vd seconds.  The total 

velocity sensitive error rate is 5.13 seconds.  Hence, the sensitivity for this bias component is 

about 12.82 meters for a 100% change in the mean velocity of 2.5 m·s-1.  The product of the rates 

and the mean parameter values normalizes all results to units of distance for comparison.  These 

would be the biases produced by the individual error components if the vehicle and sensor 

parameters deviate 100% from their mean values.  Hence, variances in vehicle suspension 
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damping ratios and speed are the two dominant error components.  As noted, variances in GPS 

tagging also produce significant bias errors. 

Summary and Conclusions 

The emergence of connected vehicles and smartphones as distributed sensors offer lucrative 

opportunities to reduce significantly the cost of continuous, network-wide pavement 

performance monitoring.  As a multi-resolution filter, the RIF transform summarizes pavement 

ride-quality in direct proportion to the IRI.  The RIF transform also provides a suitable method of 

aggregating voluminous data from GPS and inertial sensors on board vehicles to locate potential 

pavement distress symptoms, some of which could lead to catastrophic events and damages.  

This study characterizes bounds in the precision of a RIF position estimator as a function of 

traversal volume and variances in sensor and vehicle parameters.  Six case studies demonstrated 

that vehicle suspension transient motion and the average GPS sensor latency are the dominant 

errors in the estimating the position of anomalies.  Similarly, the case studies found that variance 

in GPS position tagging was the largest factor limiting precision in peak position estimation.  

Nevertheless, estimation precision improves with vehicle traversal volume, making this approach 

attractive for deployment in a connected vehicle environment.  For a typical vehicle mix, the 

precision improves substantially as traversals approach 50. 

Future work will characterize the severity and dimensions of potential distress symptoms 

from RIF signatures.  RIF shapes shows promise in providing a suitable feature for anomaly 

classification to differentiate between rough spots produced from known features such as 

manhole covers, and unwanted distress symptoms, such as potholes and frost heaves. 
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Notation 

This paper uses the following symbols: 

f  = frequency in hertz; 

gz(t)  = vertical g-force output from the inertial sensor as a function of time t; 

ΔL  = length of road segment; 

Nv  = the traversal volume; 

L
vR   = RIF for segment of length ΔL at average speed v̄; 

)(xR w  = the ensemble average RIF across spatial window size Δw at distance x; 

q1-/2  = the standard normal quantile for a (1-)% confidence interval; 

v(t)  = instantaneous traversal speed as a function of time; 

v   = average traversal speed; 

Δε1-α = the (1-α)% margin-of-error; 

d   = average suspension system transient response distance; 

GPS  = average GPS position bias; 

pGPS  = average GPS geo-spatial position error; 

GPS  = average GPS tag lag from operating system latency; 

i   = average peak position error within the distance interpolation sub-interval; 

s   = average longitudinal sensor position behind the first axle; 

γz  = accelerometer (sensor) constant; 
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κRI  = proportionality constant of the RIF/IRI impulse response ratio; 

ῦ  = error between the estimate and the true position; 

υp  = actual position of a feature on the road that produces the RIF peak; 

ῠp  = position of a peak in the ensemble RIF; 

Gs  = Golden Car sprung mass angular resonance frequency; 

Gu  = Golden Car unsprung mass angular resonance frequency; 

μs  = average sprung mass angular resonance frequency; 

μu  = average unsprung mass angular resonance frequency; 

ρz  = ratio of average unsprung to sprung mass coefficient; 

σεs  = standard deviation of the sensor’s lateral position relative to the first axle; 

σ2
εd  = variance of the transient response distance; 

σ2
εi  = variance of the digital peak position; 

σ2
εs  = variance of the sensor position; 

σεs  = standard deviation of the sensor’s lateral position relative to the first axle; 

σ2
GPS = total position tagging variance; 

σ2
υ  = resultant peak position variance; 

σ2
pGPS = geospatial position variance; 

σ2
τGPS = GPS tag lag variance; 

σv  = standard deviation of the vehicle speed; 

σfA  = standard deviation of the accelerometer sample rate; 

σωs  = standard deviation of the sprung mass resonant frequency; 

σζs  = standard deviation of the sprung mass damping ratio; 

lag   = average operating system latency in fetching and applying GPS tags; 
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ζGs  = damping ratio of the Golden Car sprung mass frequency response; 

ζμs  = damping ratio of the average sprung mass frequency response; 

ζGu  = damping ratio of the Golden Car unsprung mass frequency response; 

ζμu  = damping ratio of the average unsprung mass frequency response. 
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Table 1: Quarter-car suspension parameters for the speed bump simulation 

Parameter Units Sprung Mass Unsprung Mass 
Resonant frequency (f) hertz 1.4 12.04 

Damping Ratio () - 0.13 0.22 

 

Table 2: Vehicle and bump parameters for the simulations 

Parameter Units Value 
Axle separation m 2.83 
Traversal speed m·s-1 2.24 
First bump height cm 5 
Second bump height cm 4 
Bump width cm 30 
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Table 3: Parameters derived from the data of the six case studies 

 Speed Bump 
NB 

Rd. Bump 
EB 

Rd. Bump 
WB 

Rail Tracks 
NB 

Parameter 2.5 m·s-1 5 m·s-1 7 m·s-1 7 m·s-1 7 m·s-1 7 m·s-1 
Speed, σv (m∙s-1) 0.208 0.561 0.458 0.420 0.255 0.415 
Gz sample rate, fA (Hz) 93.233 93.283 93.340 93.174 93.207 92.664 
Gz sample rate, σfA (Hz) 0.099 0.074 0.099 0.076 0.116 0.077 
Signal peak position, ε̅i (m) 0.014 0.027 0.039 0.036 0.036 0.036 
Signal peak position, σεi (m) 0.001 0.003 0.002 0.002 0.001 0.002 
Sensor offset, ͞εs (m) -0.920 -0.920 -0.920 -0.710 -0.710 -0.710 
Damping Estimate, ζμs 0.13 0.20 0.20 0.10 0.10 0.10 
Sprung Mass Res., fμs (Hz) 1.4 1.93 2.48 2.155 2.155 1.8 
Transient dist., ͞εd (m) 6.669 6.154 6.952 15.019 14.764 17.673 
Transient dist., σεd (m) 0.544 0.694 0.441 0.931 0.564 1.101 
OS lag, τ̅lag (s) -1.854 -1.650 -1.083 -3.102 -2.652 -3.722 
OS lag, στlag (s) 0.168 0.167 0.166 0.164 0.165 0.169 
GPS tag lag, ͞εGPS (m) -4.713 -8.211 -7.820 -21.025 -17.669 -24.799 
GPS tag lag, στGPS (m) 0.575 1.245 1.294 1.714 1.289 1.911 
RIF Peak Position, ῠ (m) 32.200 28.200 29.400 24.600 27.700 25.300 
RIF Peak Position, σν (m) 4.973 5.125 3.755 2.072 3.527 3.595 
GPS position error, σpGPS 4.904 4.923 3.497 0.701 3.234 2.839 
RIF Peak offset, ῦ (m) 2.050 -1.950 -0.750 -5.680 -2.580 -6.800 
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Table 4: Estimated distributions of the peak RIF position for each case study 

 Speed Bump 
NB 

Rd. Bump 
EB 

Rd. Bump 
WB 

Rail Tracks 
NB 

Parameter 2.5 m·s-1 5 m·s-1 7 m·s-1 7 m·s-1 7 m·s-1 7 m·s-1 
Gaussian       

df 17 17 15 6 13 17 
χ2 (α = 5%) 27.587 27.587 24.996 12.592 22.362 27.587 

χ2 Data 14.854 18.738 18.772 2.887 11.322 26.044 
Data Sig. α (%) 60.597 34.379 22.426 82.286 58.384 7.367 

Amplitude 62.100 43.646 28.400 33.528 31.310 29.630 
Mean 35.446 30.541 27.524 27.086 25.822 26.381 

Standard Dev. 9.369 8.665 3.619 2.960 4.468 3.515 
Student-t             

df 17 17 15 6 13 17 
χ2 (α = 5%) 27.587 27.587 24.996 12.592 22.362 27.587 

χ2 Data 14.795 18.425 18.575 2.908 11.082 26.094 
Data Sig. α (%) 61.026 36.254 23.365 82.024 60.398 7.276 

Amplitude 59.685 44.091 28.897 36.051 32.233 30.174 
Mean 34.860 30.448 27.488 27.144 25.805 26.356 

Standard Dev. 8.965 8.585 3.584 3.042 4.494 3.528 
Logistic             

df 17 17 15 6 13 17 
χ2 (α = 5%) 27.587 27.587 24.996 12.592 22.362 27.587 

χ2 Data 14.523 18.042 14.675 3.025 11.452 26.068 
Data Sig. α (%) 62.980 38.619 47.506 80.567 57.298 7.323 

Amplitude 56.884 45.022 29.663 35.912 33.256 31.035 
Mean 34.113 30.328 27.451 27.151 25.777 26.296 
Scale 5.489 5.528 2.319 1.978 2.950 2.304 

Weibull             
df 17 17 15 6 13 17 

χ2 (α = 5%) 27.587 27.587 24.996 12.592 22.362 27.587 
χ2 Data 17.940 20.801 16.130 4.279 14.224 30.731 

Data Sig. α (%) 39.264 23.534 37.343 63.895 35.825 2.153 
Amplitude 48.700 48.500 50.000 33.169 30.075 50.000 
Shape (k)  1.900 1.600 2.000 1.637 2.161 2.100 
Scale (α)  18.400 14.500 13.200 5.877 9.745 14.000 

 

Table 5: Vehicle parameters to compare precision bounds 

Parameter Units Typical Case I 
GPS estimate (standard deviation) m 10 4.904 
Sensor position (standard deviation) m 0.5 0 
Vehicle speed (average) m·s-1 2.50 2.542 
Speed (standard deviation) m·s-1 0.254 (10%) 0.208 (8.1%) 
Body bounce resonance (average) hertz 1.2 1.4 
Body bounce resonance (standard deviation) hertz 0.1 0 
Damping ratio (average) - 0.35 0.13 
Damping ratio (standard deviation) - 0.02 0 
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Table 6: Average position error sensitivity with typical values for each error rate and parameter 

Error 
Rate 

∂ε͞i ∂ε͞d ∂ε͞τGPS ∂ε͞s 
Total 
Rate 

Mean 
Value 

Sensitivity 
(Meters) 

∂v̄ 5.36×10-3 2.62 -2.50 0 5.13 s 2.5 m·s-1 12.82 
∂ωμs 0 0.76 0 0 0.76 m∙rad-1 7.54 rad 5.72 
∂ζμs 0 51.3 0 0 51.3 m 0.35 17.96 
∂fA 3.1×10-4 0 0 0 3.1×10-4 m∙Hz-1 64 Hz 0.02 

∂τ͞lag 0 0 2.54 0 2.54 m·s-1 -2.50 s -6.36 
∂ε͞s 0 0 0 1.00 1.00 -2.00 -2.00 

 

0 20 40 60
2

1

0

1

2

0

0.5

1

1.5

Path Distance (meters)

g-
fo

rc
e

R
IF



RIF

gz

gy

1+gx

 
Figure 1.  Accelerometer signals and RIF profile from a single traversal of speed bump at 7 m∙s-1 
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Figure 2.  Simulated vertical acceleration of the suspension impulse response and signal energy 

 



Precision bounds of pavement distress localization with connected vehicle sensors 

Raj Bridgelall, Ph.D. Page 26/28 

 

2 4 6 8 10

4

2

0

2

4

1

0.5

0

0.5

1

Distance (meters)

ce
nt

im
et

er
s

G
-F

or
ce

Wheel Base

Bump
Body BounceVertical acceleration

Figure 3.  Simulated bump profile, vehicle body bounce response, and accelerometer signal 
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Figure 4.  DFT of simulated accelerometer signal for single- and double-axle traversals 
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Figure 5.  Bumps traversed for this case study 
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Figure 6.  Ensemble average RIF for each case study and the associated distribution of their RIF peak position 
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Figure 7.  DFT of accelerometer output and an estimate of the equivalent quarter-car response 
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Figure 8.  Precision bounds for the speed bump case study vehicle and an expected vehicle mix 

 


