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ABSTRACT  

Rough roads increase vehicle operation and road maintenance costs. Consequently, transportation agencies spend a 

significant portion of their budgets on ride-quality characterization to forecast maintenance needs.  The ubiquity of 

smartphones and social media, and the emergence of a connected vehicle environment present lucrative opportunities for 

cost-reduction and continuous, network-wide, ride-quality characterization. However, there is a lack of models to 

transform inertial and position information from voluminous data flows into indices that transportation agencies 

currently use. This work expands on theories of the Road Impact Factor introduced in previous research. The index 

characterizes road roughness by aggregating connected vehicle data and reporting roughness in direct proportion to the 

International Roughness Index. Their theoretical relationships are developed, and a case study is presented to compare 

the relative data quality from an inertial profiler and a regular passenger vehicle. Results demonstrate that the approach is 

a viable alternative to existing models that require substantially more resources and provide less network coverage. One 

significant benefit of the participatory sensing approach is that transportation agencies can monitor all network facilities 

continuously to locate distress symptoms, such as frost heaves, that appear and disappear between ride assessment 

cycles. Another benefit of the approach is continuous monitoring of all high-risk intersections such as rail grade 

crossings to better understand the relationship between ride-quality and traffic safety. 

Keywords: Accelerometer, International Roughness Index, Road Impact Factor, pavement deterioration forecasting, 

connected vehicle initiative, time-wavelength-intensity-transform, quarter-car, impulse response, discrete Fourier 

transform, vehicle probe data. 

 

1. INTRODUCTION  

The Connected Vehicle initiative of the United States Department of Transportation (USDOT) is one of their largest and 

most transformational research programs in Intelligent Transportation Systems. Vehicle manufacturers have teamed with 

the research community to produce technology that will help in the campaign towards zero highway deaths, as well as a 

several-fold capacity enhancement of the existing physical network by enabling ubiquitous vehicle communications1. A 

majority of the connected-vehicle-related research focuses on ways to enhance safety and mobility.  However, relatively 

few studies examine performance measures to optimize asset management such as predictive pavement maintenance. 

This research links the International Roughness Index (IRI) to statistics of road roughness derived from the aggregate 

inertial responses of connected vehicles. 

Several studies found a correlation between the vertical acceleration of vehicles and the International Roughness Index 

(IRI).  Those characterizations are based on heuristics2 or use machine learning techniques3 such as neural networks to 

calibrate empirical models with responses from individual vehicles.  This study establishes a theoretical foundation to 

derive a proportionality relationship from basic principles that relate the average vertical acceleration of vehicles 

traveling a segment to the IRI. 

This paper is organized as follows:  Section 2 reviews the classic derivation of a quarter-car response and relates it to the 

IRI model using a standard set of suspension parameters defined as the Golden Car. A review of the Road Impact Factor 

(RIF) derived in previous works by the author is also presented to highlight its relationship with the quarter-car response.  

Section 3 introduces a methodology for deriving their proportionality constants based on the principles of linear time-

invariant systems (LTI) and their impulse responses. The wavelength sensitivities of each model is presented and a 

wavelength unbiased model based on the RIF is introduced. Section 4 describes the data collection equipment, test site, 

data format, and data processing used to validate the models. Section 5 presents the results of a case study to characterize 
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the relative RIF distribution and their chi-squared statistics for road segments of a known roughness levels. This section 

also demonstrates a multi-resolution distress symptom localization capability of the RIF and an example of IRI 

estimation from RIF measurements.  The final section summarizes and concludes the study. 

2. MODEL REVIEW 

The following sections review the quarter-car, IRI, and RIF models to highlight their mathematical relationships and 

dependencies on common parameters of a damped mass-spring system. 

2.1 Vehicle suspension response model 

From Newton’s law, the resultant vertical force Fz acting on the sprung mass ms of a damped mass-spring system is 

Fz = msz̈. The upward vertical acceleration is z̈(t). The components of the vertical force are the downward acceleration 

-msg due to gravity g, the upward resistance to vertical velocity ż(t) with viscous damping coefficient cs, and the upward 

spring force ks(h-z) with spring stiffness ks and compression distance h. Rolling across the longitudinal profile creates an 

upward forcing function fz(t) on the tire. The sum of these forces yields the motion equation for a damped mass-spring 

model 

  )()()()( tftzhktzcgmtzm zssss    (1) 

When the system is at rest at time t = 0 the vertical reference plane is at z(0) = 0. Hence the equilibrium condition is 

0 hkgm ss
 (2) 

Substituting equation (2) into equation (1) yields the second order, non-homogeneous linear differential equation of 

motion for the sprung mass response to the forcing function 
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Figure 1. Damped mass-spring model of a quarter-car. 
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This expression yields a normalized model where the mass-spring system dynamics is completely described by its 

natural frequency and damping ratio 

)()()(2)( 2 ttztztz sss     (6) 

where fz(t)/ms is replaced by an impulse excitation (t) to determine the impulse response. The standard quarter-car 

model consists of a series combination of mass-spring systems as shown in Figure 1.The sprung mass represents one-

quarter of the vehicle mass riding on a spring suspension system. Studies in vehicle dynamics refer to the tire and 

associated components below the suspended body as the unsprung mass and above it as the sprung mass. 

2.2 The IRI model 

The IRI is defined as the accumulated, absolute rate difference between the sprung and unsprung mass motion of a 

special quarter-car such that 
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The longitudinal distance traveled is L and the constant speed σ͞ is 80 km/h. The first derivatives of the sprung and 

unsprung mass vertical motions are żs(t) and żu(t) respectively. An international committee defined the special quarter-car 

parameters and referred to it as the Golden Car4. Table 1 summarizes those parameters, normalized to the sprung mass. 

Table 1. Golden Car model parameters. 

Parameter Value Unit 

ks/ms 63.3 s-2 

ku/ms 653 s-2 

cs/ms 6.0 s-1 

mu/ms 0.15 - 

The unsprung mass and its associated spring stiffness are mu and ku respectively. Some researchers point out that others 

often ignore the damping coefficient cu of the unsprung mass model but a reasonable estimate would be about 15% of the 

sprung mass damping coefficient5. Applying these values to Equations (4) and (5) yield the Golden Car resonant 

frequencies and damping ratios summarized in Table 2. 

Table 2. Damped mass-spring parameters for the Golden Car. 

Parameter Units Sprung Mass Unsprung Mass 

Resonant Frequency (f) Hz 1.27 10.50 

Damping Ratio () - 0.38 0.05 

Transportation agencies use a software program to produce the vertical forcing function numerically by first computing 

the vertical acceleration that results from traversing a longitudinal profile at 80 km/h.  The program then uses Equation 

(3) to determine the Golden Car suspension response needed to evaluate the IRI using Equation (7). 

2.3 The RIF model 

The second derivative of the sprung mass response, z̈(t) is directly proportional to the vertical acceleration sensed by an 

accelerometer in the vehicle.  The signal produced is gz = γz z̈(t) where z is a sensor constant. As defined in the author’s 

previous research6, the RIF per unit length L of road segment traversed at instantaneous speed (t) and average speed ͞σ 

is 
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The RIF is effectively the square root of the vertical acceleration energy per unit distance. Although a RIF unit is in 

m1/2s-1 it is practically interpreted as the average g-force experienced per meter of longitudinal travel. 
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3. METHODOLOGY 

The RIF and IRI are both linear time-invariant transformations (LTI) of the sprung and unsprung mass motions; 

therefore, they must be directly proportional. To derive a constant of direct proportionality, this section finds their 

impulse responses and computes the ratio of their respective indices. 

3.1 Convergence of the IRI impulse response 

Solving Equation (6) for the under-damped case where 0 <  < 1 yields 
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where zδ(t) is the impulse response and u(t) is the Heaviside step function. The Golden Car response to an impulse 

excitation is the convolution of the sprung and unsprung mass impulse responses 






   dtzztztztz ususG )()()()()(  (10) 

where * is the convolution operator and zδs(t) and zδu(t) are the impulse responses of the quarter-car sprung and unsprung 

mass respectively. The accumulated absolute rate differences between the Golden Car impulse response and that of the 

unsprung mass is denoted IRI ͞σ 
L where 
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The absolute value in Equation (11) hinders a closed form solution.  Therefore, by numerical integration using the 

Golden Car parameters listed in Table 2, the functions zδG(t) and IRI ͞σ 
L(t) are as shown in Figure 2. 

 

Figure 2. Impulse response of the Golden Car model and the resulting IRI. 
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The parameters ωGs and ωGu denotes the Golden Car sprung and unsprung mass resonant frequencies in radians per 

second. Their corresponding damping ratios are denoted ζGs and ζGu. 

3.2 The RIF of the impulse response 

The RIF converges to a proportion of the accelerometer signal energy Egz such that 
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where T = |gz
-1()| is the limit of integration when the vertical acceleration of the impulse response magnitude is 

negligibly small. The closed form expression for Egz in the limit as t approaches infinity is found by utilizing the 

distributive property of a LTI function to decompose the resultant vertical acceleration into a linear combination of the 

vertical accelerations from the individual damped mass-spring impulse responses such that 
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where gz(t) is the resultant vertical acceleration; gδs(t) and gδu(t) are the vertical accelerations of the quarter-car sprung 

and unsprung mass impulse responses respectively. The parameter ρg is an estimate of the ratio between the sprung and 

unsprung mass acceleration magnitude components. The acceleration signal energy is calculated as 
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The parameters ωsμ and ωuμ denotes the average quarter-car sprung and unsprung mass resonant frequencies in radians 

per second. Their corresponding average damping ratios are denoted ζsμ and ζuμ. For the average suspension parameter7, 

the limit of integration, T evaluates to about two seconds. Hence, the signal energy Egz is practically identical to the 

impulse response energy Eδμ. Substituting the total energy from Equation (15) into the RIF model of Equation (13) and 

dividing by the converged IRI impulse response of Equation (12) provides a proportionality constant κRI between the RIF 

and IRI as 
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(16) 

Hence, the average proportionality constant for quarter-car impulse responses is a function of the mean suspension 

parameters and average speed of vehicles traversing a road segment. 

3.3 Wavelength sensitivity 

Traversing a road segment at a constant speed converts its spatial wavelengths in cycles per meter to temporal 

wavelengths in cycles per second. A damped mass-spring system is a mechanical filter that suppresses responses to 

wavelengths that are outside of its frequency response range. The quarter-car produces its maximum response to 

wavelengths that range from ͞σ/fs to ͞σ /fu meters where fs and fu are the sprung and unsprung mass resonance frequencies 

in units of hertz or equivalently cycles per second respectively. Hence the IRI response will dampen when the spatial 

frequency is lower than 17.6 meterscycle-1 and higher than 2.1 meterscycle-1 as shown in Figure 3. 

 

Figure 3. Spectral magnitude of the Golden Car impulse response. 
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The Golden Car frequency response is the Fourier transform of the impulse response defined in Equation (10). The result 

is mathematically equivalent to computing the Fourier transforms of the sprung and unsprung mass impulse responses, 

denoted Ƒ{zδs(t)} = Zδs() and Ƒ{zδu(t)} = Zδu() respectively, and then computing their product Zδs()Zδu(). The 

individual transforms are second-order low-pass filters Zδ() of the form 
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Traveling the same profile at higher speeds will shift longer spatial wavelengths into the quarter-car frequency response 

band and shorter ones outside of it. Hence, the IRI can be insensitive to roughness from small cracks on a flat profile and 

yet be more sensitive to the spatial undulations of a hilly road with an otherwise smooth surface. 

To remove such wavelength bias from the RIF, the author introduced the time-wavelength-intensity-transform (TWIT)6 

in previous work. It is a linear combination of the average RIF from traversals of different speed bands where the 

coefficients are the percentages of vehicles traveling in each band. The TWIT for a road segment k during an arbitrary 

time-interval P of time-index j is denoted k[Pj] where 
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The speed-band or window size is  and the window index is w. The average RIF of vehicles traversing segment k, 

within a speed band w, and during time increment Pj is denoted as R̅w
Pj[k]. The corresponding traversal volume is 

denoted as Nw
Pj[k]. The total number of speed bands available for segment k is Bk. A key property of the TWIT is that 

it emphasizes roughness from longitudinal profile wavelengths that the vehicle population experiences at the most 

common speed ranges. 

4. DATA 

The average IRI and RIF computed from data simultaneously collected with a laser-based inertial profiler provides 

experimental validation of their direct proportionality.  

 

Figure 4. IRI and RIF traversal path and equipment at the MnROAD facilities. 
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A regular passenger vehicle is also used to compare RIF statistics for a road containing distinctly smooth and rough 

segments as well as a rail grade crossing. The data quality is assessed relative to their chi-squared fit with classic 

statistical distributions. The multi-resolution localization capability of the RIF is also demonstrated by identifying the 

location and roughness density of the rail-grade crossing at different spatial resolutions. 

4.1 Equipment and test site 

A ruggedized GPS-accelerometer data logger, the NaviCube™ from Appareo Systems, was secured to the floor mat of a 

North Dakota Department of Transportation (NDDOT) Survey Vehicle. The data logger, shown in the bottom inset of 

Figure 4 sampled the vertical acceleration at approximately 125 hertz and updated the GPS coordinates at approximately 

2 hertz. The NDDOT Survey Vehicle is a modified model E350 Ford van. It carries laser-based inertial profiling 

equipment that measures the profile elevation at approximately 3.8 centimeter intervals as the vehicle moves at a fixed 

speed. The equipment collected simultaneously the elevation profile and RIF data from six traversals of Cell 37, a 500 

feet segment of the Minnesota Department of Transportation’s MnROAD research facility shown in Figure 4. Only six 

MnROAD traversals were afforded as part of the standard Inertial Profiler calibration procedure. However, the 

measurement variance was relatively low because the Inertial Profiler maintained a near constant speed and 

approximately the same wheel path for each traversal. The ratio of its ground speed standard deviation and the mean 

speed was much less than 0.1%. The consistency of those measurements served as a baseline for comparison with the 

data quality obtained from a regular passenger vehicle equipped with a consumer grade data logger. 

To obtain the passenger vehicle vertical acceleration, an Apple iTouch with a data logger application (app) was placed 

flat on the dashboard of a 2007 Subaru Legacy sedan and driven 30 times along the selected road segment, Bolley Drive.  

Located on the North Dakota State University campus, this road segment contains a rail grade crossing that produces a 

noticeably rougher ride than the rest of the segment. 

 

Figure 5. On street and satellite views of Bolley Drive sections analyzed, the passenger vehicle, and the data logger. 
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The crossing consists of four rails. The latitude and longitude of the first track crossed when heading north is as indicated 

in Figure 5. The 70 meter segment south of the crossing looks and feels significantly smoother than the 70 meter 

segment north of the crossing, but not as smooth as the MnROAD test path. Similarly, the north segment looks and feels 

much smoother than the 70 meter segment containing the crossing. The iTouch’s GPS and accelerometer update rates 

were 1 and 64 hertz respectively.  These rates are about half that of the NaviCube used to sample data from the 

MnROAD traversals. 

4.2 Data format 

The Inertial Profiler produced elevation profile samples in the *.erd standard file format specified by the University of 

Michigan Transportation Research Institute (UMTRI). The Profile Viewing and Analysis (ProVAL) software from The 

Transtec Group then converted that data to an IRI value. As a standard format does not yet exist for RIF data, a comma 

separated value (CSV) file format shown Table 3 was used. The first row contains a header with labels for each column 

of data sampled from the sensors. 

Table 3. Standard data format used to compute the RIF. 

 

The data columns are the sample period or “Time” is in milliseconds; “Lat” and “Lon” for latitude and longitude 

respectively in decimal format; “Gspeed” for the vehicle ground speed in ms-1; “Gz”, “Gx”, and “Gy” for the g-forces 

sensed in the vertical, lateral, and longitudinal directions respectively and normalized to 9.81 ms-2; “Pitch,” “Roll,” and 

“Yaw” are the sensor orientation angles in degrees respectively. 

4.3 Sensor orientation calibration 

The resultant vertical acceleration in any sensor orientation is determined by multiplying the linear acceleration from 

each sensor axis by the magnitude of the vertical component of their rotated unit vector in the Cartesian plane. The 

amount of unit vector rotation Πxyz is 
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where ψ, θ, and ϕ are the pitch, roll, and yaw angles produced by the gyroscope integrated in the smartphone. The unit 

vector uxyz = [1 1 1]T represents the composite of the lateral, longitudinal, and vertical directions respectively.  The 

notation T represents the vector transpose matrix operator. Therefore, the resultant vertical acceleration Gz as a function 

of the sensor orientation is 

     222
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where Gxu, Gyu, and Gzu are the accelerations registered for the individual rotated sensor axis and the subscript z of the 

rotated vector is the vertical acceleration component.  Incidentally, the resultant accelerations in the lateral and 

longitudinal directions are similarly obtained by multiplying the sensor values from the individual rotated accelerometers 

by the lateral and longitudinal components x and y respectively of the rotated unit vector. 

4.4 Travel distance estimation 

The maximum spatial resolution for the RIF is constrained theoretically by the maximum ratio of the accelerometer 

sample rate to the ground speed. Typical GPS receivers update much slower than accelerometers. Hence, the data 

processing algorithm interpolated between GPS updates to determine the distance traveled between accelerometer 

samples. Estimating the linear distance between GPS coordinate pairs and dividing by the number of accelerometer 

Time Gz Lat Lon Gspeed Pitch Roll Yaw Gx Gy

114421 -1.0165 45.27234 -93.6994 16.92 -0.09375 2.375 -0.0625 -0.327 -0.0335

114429 -1.0185 45.27234 -93.6994 16.92 -0.625 1.6875 1.1875 -0.334 -0.041

114437 -1.027 45.27234 -93.6994 16.92 -0.90625 1.78125 -0.40625 -0.3315 -0.0405

114445 -1.0045 45.27234 -93.6994 16.92 0.90625 1.40625 0.28125 -0.3275 -0.0405

114453 -0.9845 45.27234 -93.6994 16.92 -0.25 1.375 -0.75 -0.324 -0.0425

114460 -0.9805 45.27234 -93.6994 16.92 0.1875 0.96875 0.0625 -0.3225 -0.05

114468 -1.005 45.27234 -93.6994 16.92 -0.125 1 0.3125 -0.335 -0.0555
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samples provides a reasonably good estimate of the positions for peak RIF features of interest. For slower GPS updates, 

the product of the ground speed output, if available, and the system time will provide a fair estimate of the distance 

traveled since the last GPS update. It is not practical, however, to rely directly on the GPS receiver output to estimate 

travel distance because of large errors that occur from multipath reflections and occasional loss of satellite line-of-sight 

conditions. If the odometer reading is not available or the GPS receiver does not provide a ground speed output, then a 

Kalman filter is recommended to improve the estimated travel distance8. The approximate distance between a pair of 

GPS coordinates on the earth’s surface where (S,S) and (E,E) denotes the start and end (latitude, longitude) pairs 

respectively is9 
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where Rearth is the mean earth radius of approximately 6371 kilometers. 

5. RESULTS 

The present IRI for any road segment is determined from the average RIF or TWIT presently computed, and a past 

RIF/IRI or TWIT/IRI ratio for that segment. The following sections compare the quality of data from the MnROAD and 

Bolley Drive traversals and use the RIF/IRI ratio obtained from the former to estimate the IRI. 

5.1 Roughness characterization 

The chi-squared statistic on the RIF data obtained for each road segment is tested on four distributions, namely the 

Gaussian, Student-t, Log Normal, and Logistic10. Scale and translation parameters are introduced into each normalized 

distribution to best fit the data. The Gaussian model Dg(ξ) that estimates the distribution of the RIF variable ξ is 
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where αg, μg, and σg are estimates of the amplitude, mean, and standard deviation parameters respectively. Similarly, the 

modified Student’s t-distribution Dt(ξ) is 
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where tdf(ξ) is the normalized Student’s t-distribution, which is a gamma function of ξ and df degrees of freedom. The 

parameters αt, μt, and σt are estimates of the amplitude, mean, and standard deviation parameters respectively. The Log 

Normal distribution Dn(ξ) is 
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The parameters αn, μn, and σn are estimates of the amplitude, mean, and standard deviation parameters respectively. The 

Logistic distribution DL(ξ) is 
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The parameters αL, μL, and σL are estimates of the amplitude, mean, and standard deviation parameters respectively. 

Figure 6 compares the RIF distributions of the MnROAD traversals and the rough section of Bolley Drive. It is evident 

that even with significantly fewer MnROAD traversals, the variance is much smaller. Removing two outlier traversals 

that contained large GPS tagging errors provided the best possible data quality for comparing their fit with each of the 

four distributions. The higher consistency of the MnROAD data is due to a much smaller variance in traversal speed, 

more careful adherence to the wheel-path among traversals, and a doubling of the update rates for both the GPS and 

accelerometer sensors. The ground speed standard deviation for the rough segment of Bolley Drive was approximately 
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127 times higher than that of the MnROAD traversals. Nevertheless, from the Central Limit Theorem11 the data 

consistency will improve with additional traversals.  It is evident from these plots that each of the four distributions fit 

the data histogram in a similar manner.  Figure 7 plots the RIF histogram and estimates of their distribution for relatively 

“smooth” and “rough” sections of Bolley Drive, and the rail grade crossing. The mean RIF for each segment is distinctly 

different as anticipated. 

 

 

Figure 6. MnROAD IRI and RIF traversals. 

 

 

Figure 7. Bolley Drive traversals with the smartphone sensor. 

Table 4 summarizes the parameter estimates for each of the four RIF distributions from the three Bolley Drive road 

segments and the MnROAD segment. The chi-squared value (χ2 Data) listed in the table is calculated as 
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where Ok are histogram values observed in bin k and Ek are the expected values from the hypothesized distribution. The 

chi-squared distribution value for 5% significance ( = 5%) is the largest value expected within 95% of the cumulative 

distribution. Hence, the significance percentage listed is the probability of observing a chi-squared value at least as large 
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as the value computed from equation (26).  The chi-squared degrees of freedom, df, listed are determined as one less than 

the number of histogram data elements n, minus the two independent distribution parameters estimated, namely the 

amplitude and the standard-deviation, the latter being dependent on the estimate of the mean. 

Table 4. Parameter estimates for the four RIF distributions on the four road segments. 

 

Statisticians generally reject a null hypothesis that the data follows a tested distribution if the significance level is less 

than 5%, or equivalently, if the computed chi-squared value (χ2 Data) is greater than the chi-square distribution value at 

5% significance. For these experiments, the computed chi-squared values are substantially smaller than the theoretical 

chi-squared value at 5% significance for all distributions tested. Consequently, a hypothesis that the RIF distribution 

follows any of the four distributions tested cannot be rejected.  This result produces a high degree of confidence that the 

data fits classic distributions and that the variance of their mean will diminish with higher levels of vehicle traversals. 

The margin-of-error (MOE) for a (1-)% confidence interval with significance  is 
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where N is the traversal volume and t1-/2,df is the t-value where the cumulative t-distribution of df degrees of freedom is 

(1-). The RIF standard deviation measured is denoted sRIF.  Table 4 lists the MOE0.95 for the four road segments. As 

previously observed, the RIF variances for all of the Bolley Drive traversals are significantly larger than that of the 

MnROAD traversals, even for a much higher traversal volume. This result provides a high degree of confidence in the 
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quality of the MnROAD data, and hence the average RIF/IRI ratio measured of 0.069. As indicated in Equation (27) the 

MOE for all road segments will diminish with higher traversal volume. 

5.2 Roughness localization 

The RIF model provides a multi-resolution roughness characterization capability simply by changing the window length 

L of consecutive segments analyzed. 

 

Figure 8. RIF of Bolley Drive at resolutions of 1, 10, and 35 meters. 

To demonstrate this capability, the RIF for Bolley Drive is produced for window lengths of 1, 10, and 35 meters 

respectively. The RIF for each traversal is registered onto a higher resolution spatial grid and then ensemble averaged 

across the fixed windows. Figure 8 illustrates that the largest RIF values are distributed about the true location of the rail 

grade crossing. In this scenario, the peak RIF is located within one meters of the first track position with a standard 

deviation of 3.6 meters. Position errors arise from uncertainties that include variations in vehicle suspension transient 

responses and errors in GPS tagging. Hence, the resulting RIF distribution reflects the position uncertainty about the 

feature causing the roughness, and the position of the RIF peak as an estimate of the feature’s true position. The RIF 

levels from ensemble averaging may be color-coded for map-based visualization to identify the positions of peak 

roughness intensity. Future research will characterize and quantify the error components in feature position estimates. 

5.3 Vehicle characteristics and IRI estimate 

Figure 9 plots the sampled and estimated quarter-car frequency responses for the Inertial Profiler and the passenger 

vehicle.  

  

Figure 9. Frequency response estimates of the Inertial Profiler van (left) and instrumented passenger vehicle (right). 

The passenger vehicle spectrum is an average of the 30 traversal spectra from the rough road segment.  

Table 5. Parameter estimates for instrumented vehicles used in the case study. 

  Inertial Profiler Van Passenger Vehicle 

Parameter Units Sprung Mass Unsprung Mass Sprung Mass Unsprung Mass 

Resonant frequency (f) Hz 1.5 15.18 2.19 12.56 

Damping ratio () - 0.30 0.09 0.27 0.12 

Response ratio (ρg) - 4.3 2.4 

Sensor calibration (z) - 0.79 0.89 

The plots overlay the Discrete Fourier Transform (DFT) of the sampled vertical acceleration signal {gz} vector and a 
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least squares fit of the quarter-car model. Table 5 summarizes the estimated model parameters. The frequency response 

of the Inertial Profiler van appears noisier than that of the passenger vehicle because the data came from a single 

traversal of a rough road segment that sufficiently excited the quarter car modes.  

 

Figure 10. Impulse response and corresponding vertical acceleration of the passenger vehicle. 

Unlike the data sampled from the passenger vehicle, additional inertial profiler traversals of the rough segment were not 

available for spectrum averaging. 

Table 6. Parameter estimates for the four RIF distributions on the four road segments. 

 

Figure 10 plots the quarter-car impulse response zδμ(t) and the corresponding vertical acceleration gz(t) = z̈δμ(t) for the 

passenger vehicle suspension parameters estimated. Relative to the Golden Car impulse response shown in Figure 2, the 

passenger vehicle quarter-car impulse response contains a relatively smaller portion of the unsprung mass response. For 

this case study, the inertial profiler was not available to provide an IRI characterization for Bolley Drive. Therefore, the 

conversion factor estimated from the MnROAD characterization is used instead to produce the IRI estimates for Bolley 

Drive as summarized in Table 6. These values appear to correlate reasonably well to the relative differences in roughness 

observed. 

6. SUMMARY AND CONCLUSIONS 

A connected vehicle environment presents enormous opportunities to process voluminous GPS and inertial data to 

produce accurate and precise characterization of roughness, continuously. There is a lack of models to link statistics of 

mobility data to roughness indices that are equivalent to those currently used. This research derived a direct 

proportionality relationship between the RIF and the IRI from basic principles of the quarter-car impulse response. The 

direct proportionality is validated by producing both indices from an inertial profiler that traversed a test path at the 

MnROAD research facility. The careful control of speed and adherence to the wheel-path resulted in a much smaller RIF 

variance than that produced from a passenger vehicle traveling known rougher segments, even though the former 

involved only 6 traversals versus 28 for the latter. This experiment provided a high degree of confidence that RIF 

statistics follow classic distributions, including the Gaussian where the variance must diminish with higher traversal 

volume. Even with only 28 traversals of three distinctly different roughness segments, the 95% confidence interval about 

the mean was less than 6% for the smooth segment and only about 3% for the rail grade crossing. The corresponding IRI 

estimates were consistent with the relative roughness observed on the MnROAD traversals. 

A connected vehicle environment is the ideal deployment scenario for the RIF model because precision improves with 

more data.  Two additional features of the RIF is presented, namely a speed independent model called the TWIT, and a 

multi-resolution distress localization feature. The speed independent model produces a wavelength unbiased 

characterization of roughness. It is a linear combination of the RIF from vehicles traveling within different narrow speed 

bands, hence the TWIT is also directly proportional to the IRI. Pavement distress conditions that produce a sudden 
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vertical acceleration are detected simply by tagging locations where the RIF or TWIT levels exceed a pre-determined 

threshold. Those levels may be associated with a color for map-based data visualization and decision-support. 
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