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ABSTRACT 
 

This report describes methods that potentially can be incorporated into the performance monitoring and 

planning processes for freeway performance evaluation and decision making. Reliability analysis was 

conducted on the selected I-15 corridor by employing congestion frequency as the performance measure. 

Hot spots during peak hours were identified through sensitivity analysis. A data-driven algorithm 

combining spatiotemporal analysis and shockwave theory was developed to determine secondary 

incidents. Incident-induced delay was further quantified through spatiotemporal pattern recognition. The 

average delay induced by incidents aligns well with the incidents’ severity and impact. Several hot spots 

suffered from higher delays and were explored in further detail. A statistical mechanism was developed to 

determine adverse weather impact on travel. Using the weather records in 2013 and mapping with the 

PeMS traffic database, volume and delay were estimated under normal conditions and compared with 

adverse weather conditions. The analysis of different roadway conditions reveals that the general 

parabolic pattern of speed and volume disappear under severe adverse weather condition. The mechanism 

was able to identify the causes for reduced volume under a variety of scenarios through empirical data, 

either due to roadway capacity reduction or travel demand reduction. 
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EXECUTIVE SUMMARY 
 

This study aims to develop a set of performance metrics and computational methodologies that can be 

incorporated into the operational management and planning process for investment decision making. This 

report details the work performed in the research project. The objectives of this project are to (a) quantify 

the impact of nonrecurring congestions, including incidents and weather; and (b) provide linkage between 

performance measures and decision making by using interpretative indicators to inform decisions. 

 

Freeway performance measures often are considered in three dimensions:  temporal aspect, spatial details, 

and source of congestion. This study studies these dimensions from a holistic view and strives to describe 

the roadway conditions in support of investment decisions. The study examines the freeway network as a 

whole, and determines its overall condition. Questions posed included where are the unreliable locations 

along a freeway corridor and how is reliability/unreliability determined? To answer these questions, a 

measure called congestion frequency was developed. It is intuitive and consistent with the speed 

reliability measurement currently used by UDOT. Congestion frequency is defined as the percentage of 

time that speed drops below a certain threshold. By extracting traffic information from historical archived 

data in PeMS, this indicator can be calculated and sensitivity analysis conducted to choose the proper 

threshold. 

 

A methodological framework is developed to quantify the incident-induced delay and identify secondary 

incidents based on the empirical data collected. The framework acknowledges that each individual 

incident has a different impact on the roadway spatially and temporally due to varying traffic conditions, 

roadway geometries, and crash characteristics. Thus, a data-driven algorithm was developed to determine 

the impact region for each incident. By heuristically searching the historical database and performing 

pattern matching to find the historical traffic condition that matches the incident scenario, the incident-

induced delay was calculated and secondary incidents were identified. There were 109 primary incidents 

and 240 secondary incidents identified on the selected I-15 Northbound corridor in 2013. From the 

distribution of secondary incidents, it was found that the occurrence of secondary incidents was highly 

related to weather condition. The incident-induced delay was influenced by severity, location, and time-

of-day. 

 

A statistical mechanism was developed to determine adverse weather impact on travel. Utilizing the 

weather/roadway information provided by Traveler Advisory Telephone System (TATS) and PeMS, an 

algorithm was developed to map traffic data with the weather database. It was concluded that during 

adverse weather, especially when the road is snow-covered, lower flow is associated with high delay 

during the peak period, indicating a reduction in speed. Also, the non-peak period had a significant 

reduction in delay compared with the historical travel pattern, which implies a reduction in demand.    
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1. INTRODUCTION 
 

1.1 Background 
 

The burgeoning development of the Intelligent Transportation System (ITS) over the past decades has 

resulted in intelligent and efficient management of current roadway networks. One concern of freeway 

performance management was congestion, which is attributed to recurring and nonrecurring causes. 

According to the 2012 Urban Mobility Report, urban congestion costs about $12.1 billion and a total of a 

5.52 billion-hour delay in 2011 (Schrank, et al., 2012). Congestion has been growing over the past years, 

and transportation agencies actively seek ways to better monitor the traffic, identify bottlenecks, and 

respond efficiently and effectively to incidents. From an operations perspective, using a set of meaningful 

performance measures to obtain a comprehensive assessment of the roadway system is one of the most 

effective solutions for congestion management. It also is critical to decision making. The Moving Ahead 

for Progress in the 21st Century Act (MAP-21) establishes a performance-based transportation program to 

guide the transportation capital investment and development. Therefore, it enables the need to carry out a 

performance-based approach to evaluate the transportation system. Freeway networks play a critical role 

in providing accessibility to a many resources and serve as the backbone of a region’s economic vitality. 

It also is the primary focus of operations agencies. Meanwhile, social and economic needs, and the rapid 

advancement of technology continue to shape the freeway network. It is imperative to develop a data-

driven freeway performance assessment framework able to link the performance measures with 

investment decisions. 

 

Freeway performance measures often are considered in three dimensions:  temporal aspects, spatial 

details, and source of congestion. Attention to each varies, depending on the emphasis of specific 

agencies. For example, a senior leader would use a holistic view to evaluate performance and obtain 

overall freeway network conditions. Traffic engineers may need to provide instantaneous operation 

decisions based on the source of congestion and time of day. Transportation planners might consider 

developing plans for alleviating congestion bottlenecks that are most critical to the entire network. These 

three areas should be used to develop performance measures that will provide comprehensive and useful 

information to transportation agencies, and effectively describe roadway condition to support investment 

decisions. Recently, the transportation profession has acknowledged that performance measures should be 

viewed from both facility perspective, for monitoring and management purposes, and user perspective, for 

customer experiences. To address this, performance measures should focus on freeway congestion 

(facility perspective) and mobility (user perspective). 

 

Seven potential sources contribute to travel unreliability, as identified by the FHWA SHRP 2 program:  

traffic incidents, weather, work zones, demand fluctuations, special events, traffic control devices, and 

inadequate base capacity. Incidents are one of the most critical contributors for traffic congestion and 

account for approximately 50-60% delay on U.S. highways (Bertini and McGill, 2003). To mitigate the 

impacts of incidents, it is crucial for the incident management program to develop strategies that can 

effectively estimate incident impact range and respond appropriately. The Traffic Incident Management 

(TIM) is a planned and coordinated process to detect, respond to, and remove traffic incidents and restore 

capacity as safely and quickly as possible. Accurate estimation of Incident-Induced Delay (IID) would 

assist with a better understanding of incident-related congestion and provide insights for effective TIM. 

Transportation agencies use information regarding IID for transportation planning purposes at different 

levels. Recently, the successful incorporation of reliability analysis into the planning and programming 

processes has demonstrated the importance of incident effects modeling (Cambridge Systematics, 2013). 

The estimation and prediction of IID can further be applied to traffic simulation calibration and 

validation. Accurate estimation of such delays can help identify appropriate decisions regarding incident 

response so limited monetary and labor resources can be allocated efficiently. The IID also is essential for 
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development of active traffic management and integrated corridor management strategies. One critical 

step for the IID estimation is to determine impact range of incidents in both spatial and temporal domains, 

which also makes it feasible for identifying secondary incidents due to congestion caused by a previous 

incident. According to FHWA, secondary incidents account for 20% of all incidents, including not only 

crashes, but also engine stalls, overheating and running out of fuel scenarios where vehicles experience 

unexpected delay due to the primary incidents. Secondary incident is also used to evaluate effectiveness 

of TIM. According to Karlaftis et al. (1999), the likelihood of a secondary crash increases by 2.8% for 

every minute that the primary incident continues to be a hazard. 

 

Another major source of non-recurring congestion is adverse weather, which leads to changes in driver 

behavior that affect traffic flow. Adverse weather conditions have a major impact on roadway safety and 

operations, which directly impacts vehicle performance, pavement friction, and roadway infrastructure. 

Due to reduced visibility and road friction, speeds are lowered and headways are increased when wet, 

snowy, or icy roadway surface conditions are present. To mitigate the impact of adverse weather (e.g. 

rain, snow, ice, and fog), transportation agencies implement roadway weather management strategies. For 

example, advisory strategies can provide information on predicted conditions. Control strategies can help 

restrict or regulate traffic flow through altering traffic control devices in operation. Treatment strategies 

can minimize weather impacts through the application of sand, salt, and anti-icing chemicals to increase 

pavement traction. Studies that explore the interaction between adverse weather and travel demand can 

benefit the weather management program to help it understand people’s travel behavior and evaluate the 

effectiveness of these strategies. 

  

1.2 Objectives 
 

The primary objective of this research project is to quantify the impact of nonrecurring congestions. The 

nonrecurring sources in this study are focused on incidents and weather. IID is quantified through a data-

driven algorithm. Previous research provided a general approach for the IID estimation, however, 

important features associated with incidents tend to be ignored in the estimation process, e.g. location-

specific characteristics, congestion propagation and dissipation process in both spatial and temporal 

domains. Secondary incident identification is conducted by analyzing the congestion caused by a cluster 

of incidents via a binary contour method. The study also develops a mechanism to evaluate adverse 

weather impacts on the freeway network. 

 

A secondary objective of this research project is to provide a link between performance measures and 

decision making by using interpretative indicators to inform decisions. The performance measures should 

be easily understood and have practical applications. The measures should tie to typical congestion levels, 

reliability, and freeway throughput to describe congestion/mobility performance of freeways. The 

measures should also be easily understood and relatable to the general public. 

 

1.3 Scope 
 

The following three major components were performed for this research:  freeway performance metrics 

development, IID analysis and secondary incident identification, and weather impact evaluation. The 

specific tasks include:  

 Develop a performance measure that can be used to describe the day-to-day variation of traffic 

conditions and is easily understandable by both practitioners and the general public. 

 Develop a data-driven algorithm for secondary incident identification.  

 Design an empirical methodological framework to quantify the IID on freeways, providing 

reference for incident management.  
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 Use pattern recognition to estimate non-recurrent congestion and demand reduction caused by 

adverse weather. 

To conduct the above mentioned tasks requires the support of extensive historical and real time data from 

multiple sources and jurisdictions. The Performance Measurement System (PeMS) is a freeway 

performance measurement system used by the Utah Department of Transportation (UDOT) and other 

transportation agencies, which is based on a subscription to the Iteris PeMS database. It contains a rich 

pool of information about traffic data and provides an excellent platform to both transportation 

practitioners and researchers. The system integrates various traffic data sources including traffic detectors, 

incident logs, vehicle classification data, and roadway inventory, etc. These traffic data have been 

automatically collected and archived, and real-time information is updated from moe than 28,000 

detectors. Meanwhile, UDOT maintains separate databases for vehicle incident tracking, weather 

conditions, and pavement conditions in the Traffic Operations Center (TOC). These datasets offer 

valuable information for modeling the impact of incidents and weather, and develop performance metrics 

for decision making purposes. 

 

1.4 Outline of Report  
 

The rest of the report is structured as follows. Section 2 summarizes literature on reliability performance 

analysis, incident and weather related modeling. Methodologies developed in this project, including 

secondary incident identification, IID quantification, and adverse weather impact analysis are presented in 

Section 3. Section 4 describes data sources used for the analysis, and Section 5 presents the analysis 

results. Section 6 presents the conclusion of this study and recommendations for future research.  
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2. LITERATURE REVIEWS 
 

2.1 Overview 
 

In recent years, the concept of data-driven performance evaluation has been gaining more and more 

popularity for traffic management. This section presents a literature summary on the three major 

components in this project: performance metrics for reliability analysis, secondary incident identification 

and IID, and evaluation of adverse weather impact. 

 

2.2 Performance Metrics for Reliability Analysis 
 

To quantify the roadway network performance, several standards are applied by the traffic operators. 

Travel time reliability has been widely used in different contexts to evaluate the performance of 

transportation facilities. In SHRP 2 L03 (2013), travel time reliability is defined as the level of 

consistency in travel conditions over time; while SHRP 2 L02 considers a system as reliable if each 

traveler’s experienced actual time of arrival matches its desired time of arrival. Whichever definition is 

used, reliability is a critical measurement of congestion that users experience in a certain period of time. 

Various performance metrics are developed to describe travel time reliability, including Travel Time 

Index (TTI), Buffer Index (BI), Planning Time Index (PTI), Congestion Frequency, etc. 

 

Several previous studies have demonstrated the accuracy, sensitivity, and correlations of the above 

performance metrics (Edwards and Fontaine, 2012; Mahmassani, et al., 2012; Mehran and Nakamura, 

2009; Guo, et al., 2012; Tu et al., 2012). Table 2.1 shows a list of reliability measures examined in the 

previous work. 

 

Table 2.1  Travel time reliability measures from previous works 

Travel Time Reliability 

Measure 

Saberi and 

Bertini (2010) Pu (2011) 

Lyman 

and 

Bertini 

(2008) 

Van Lint 

and Van 

Zuylen 

(2005) 

Alvarez and 

Hadi (2012) 

90th or 95th Percentile 

Travel Time 
 √ √   

Coefficient of  Variation √ √    

Travel Time Index √ √ √  √ 

Buffer Index √ √ √  √ 

Planning Time Index √ √   √ 

Misery Index    √ √ 

Skew of travel time 

distribution 
 √   √ 

Width of travel time 

distribution 
   √  

Congestion Frequency √ √    

Others  Failure rate   
Failure-on-

time 
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Alvarez and Hadi (2012) and Saberi and Bertini (2010) investigated the sensitivity of various reliability 

metrics in response to the variation of parameters of travel time distributions. Pu (2011) examined a 

number of reliability metrics assuming a log-normal distribution of travel time. He pointed out that for 

heavily right-skewed travel time distribution, the BI is not appropriate unless it is computed on the basis 

of the median rather than the mean. Saberi and Bertini (2010) reviewed existing methods that measure 

travel time reliability, including TTI, BI, PI, and Congestion Frequency. By comparing different 

reliability metrics in given segments, they concluded that BI and coefficient of variation (standard 

deviation of travel time divided by mean travel time) have a high consistency among other measures. 

Also, PI and Congestion Frequency appear to follow similar pattern. 

 

Some researchers focused on developing new measures of travel time reliability to overcome 

disadvantages of existing measures (Emam and AI-Deek, 2006; Van Lint and Van Zuylen, 2005; Liu, et 

al., 2007), e.g., the reliability is insensitive to geographical locations, or the reliability is estimated as a 

constant while it varies by departure time. Emam and AI-Deek (2006) proposed a new travel time 

reliability performance metric. The travel time reliability 𝑅(𝑇) is in response to a well-defined reliability 

engineering function 𝜆(𝑇), namely failure rate function. The relationship between the reliability and 

failure rate function is expressed as 𝑅(𝑇) = 𝑒− ∫ 𝜆(𝑡)𝑑𝑡
𝑇

0 , where 𝜆(𝑡) = 𝑓(𝑡)/𝑅(𝑇) and 𝑓(𝑡) is the 

probability distribution function. Compared with existing methods, the new method has more emphasis 

on users’ perception of travel experience, and has strong potential in estimating travel time reliability as a 

function of departure time. Van Lint and Van Zuylen (2005) proposed two reliability metrics based on 

10th, 15th, and 90th precentile of the day-to-day travel time distribution for a given route based on Day-of-

Week Time-of-Day (DOW- TOD) considering that mean and variance tend to obscure important features 

of reliability distribution under certain circumstances. They used skewness and width of travel time 

distribution as indicators, and concluded that metrics can effectively identify unreliability of travel times 

for a given DOW-TOD period. 

 

2.3 Secondary Incident Identification and Incident-Induced Delay  
 

The challenge of IID quantification lies in the extraction of IID from total delay, which is the result of 

compounding effect of recurrent and non-recurrent congestion. Recurrent delay is defined as congestion 

caused by routine traffic operation in a typical setting. Non-recurrent congestion is the unexpected or 

unusual congestion caused by an event that is transient relative to other similar days (Hallenbeck et al., 

2003). Seven potential sources were identified for non-recurrent congestion by FHWA in SHRP 2:  

incidents, extreme weather, work zones, demand fluctuations, special events, traffic control devices, and 

inadequate base capacity. Kwon et al. (2006) found that congestion caused by incidents is 3 to 5 times 

that of the ones caused by special events and weather. Also considering that incident is more common 

than other unreliability sources, IID estimation should be performed in an effort to quantify the non-

recurrent congestion impact. 

 

Numerous studies have been conducted to quantify IID. The most widely-used methodologies are:  

including deterministic queueing theory (Li, et al., 2006; Wang, et al., 2008; Runze Yu et al., 2014), 

shockwave theory (Mongeot and Lesort, 2000; Chandana Wirasinghe, 1978), and statistic method 

(Skabardonis, et al., 2003). Deterministic Queuing Theory (DQT) is implemented in the Highway 

Capacity Manual (HCM) for estimating delay. In DQT, delay is calculated as the area enclosed by the 

arrival and departure curves, requiring key parameters, such as arrival rate, departure rate, incident 

duration, and capacity, to be determined before the calculation. The parameters are either assumed or via 

stochastic method, and estimation accuracy is compromised when applied to individual incident (Li, et 

al., 2006). Some of the parameters are difficult to determine for predicting incident delay in dynamic 

networks. Yu et al. (2014) proposed a modified DQT method and avoided the parameters estimation 

using short-term traffic flow forecasting. However, the method yields unsatisfying results when the 
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incident happens during unstable traffic conditions (e.g. oversaturated condition downstream). 

Shockwave-based algorithms are developed on the basis of traffic flow theory, treating incidents as flow 

perturbations. The algorithm suffers from mathematical complications, and is difficult to be implemented 

in the existing performance measurement infrastructure. In Mongeot et al. (2000), the algorithms is 

fulfilled with first-order macroscopic traffic flow model. The study assumed that the traffic flow is in 

equilibrium status constantly, which further ignored the speed and volume reduction due to the queuing 

phenomenon. Statistical models also were applied in the previous research to estimate congestion. 

Compared with the other two methods, it is easier to be implemented and has loose constraints on the 

quality of sensor data (Skabardonis, et al., 2003). However, the methods are not capable of estimating 

delay at microscopic level. 

 

One challenge needed to quantify IID is to rule out the impact induced by secondary incidents. Secondary 

incidents are considered stochastic events induced by traffic congestion originated from the primary 

incident. A loose assumption regarding secondary incident identification is that secondary incidents 

happen in certain spatial and temporal range of primary incidents. To simplify the identification 

procedure, the majority of previous studies have used fixed spatial and temporal boundaries, assuming 

that the selected boundaries are applicable to all types of incidents. Khattak, et al. (2009) provides a 

summary on the previous work, most of which used spatial and temporal boundaries up to two miles and 

120 minutes. Since incident impact varies with the geometric characteristics of the road, periodic 

characteristics of traffic, and incident type, the general assumption of fixed spatiotemporal boundary lacks 

universality. To accommodate the varying spatiotemporal boundaries, Chung (2013) and Yang, et al., 

(2013) presented data-driven dynamic methods to estimate primary incidents’ impact based on traffic 

features and incident data. 

 

Yang, et al. (2013) believed that one location is under the impact of previous incidents if the speed at this 

location is lower than the historical speed value. They constructed spatiotemporal binary speed plots of 

each incident by comparing speed value against the historical incident-free speed profile at the same 

location. They also developed an algorithm to identify whether the incidents that followed were within the 

spatiotemporal impact range of the previous incident. Under ideal conditions, the impact range 

demonstrates continuous stripe pattern stretching upstream spatially and downstream temporally. 

However, due to loop detector errors and bias in estimating incident-free speed, there were interrupting 

structures (bubbles) in the actual impact range (Chung, 2013). To eliminate effects of the interrupting 

structures, they proposed three criteria for impact range identification:  the spatiotemporal progression of 

the incident shockwave is uninterrupted, the boundary of the spatiotemporal progression of the incident 

shockwave is upstream, and the entire boundary of the affected region is contiguous. 

 

2.4 Evaluation of Adverse Weather Impact  
 

Another major source for non-recurring congestion is adverse weather, which leads to changes in driver 

behavior that affect traffic flow. Many studies focused on the adverse weather’s impact on crash 

occurrence and the overall traffic condition (Bergel-Hayat et al., 2013; Yu et al., 2013; El-basyouny et al., 

2014; Ahmed et al., 2014; Brijs et al., 2008).  Yu et al. (2013) studied real-time weather effect on crash 

frequency by adding seasonal weather-related random factor to Bayesian random effect model. El-

basyouny et al. (2014) investigated the impact of weather elements, especially sudden extreme snow or 

rain weather, on crash type using Bayesian multivariate Poisson lognormal model.  
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Numerous efforts have been performed by researchers to study weather effects on traffic condition, e.g. 

traffic flow, speed, and non-recurrent congestion (Datla and Sharma, 2008; Maze et al., 2006; Thakuriah 

and Tilahun, 2012; Keay and Simmonds, 2005; Chung, 2012). Keay and Simmonds (2005) investigated 

the relationship between weather variables and traffic flow at different time-of-day by performing 

regression analysis. Chung (2012) used the spatiotemporal analysis to quantify the congestion caused by 

precipitation events. 

 

2.5 Summary 
 

This section summarized key findings from the literature search. Three main topics of focus in this project 

include performance metrics for reliability analysis, secondary incident identification and IID, and 

evaluation of adverse weather’s impact. Previous studies have focused on addressing these issues with 

theoretical modeling and statistical methods. In the following sections, data-driven solutions are presented 

for these problems.  
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3. RESEARCH METHODS 
 

3.1 Overview 
 

To conduct data-driven performance evaluation on a freeway corridor, high resolution traffic data must be 

collected to assist with analysis. I-15 was chosen as the study corridor for this project. I-15 stretches 

401.07 miles long in the State of Utah and connects the vast majority of the state’s population and 

employment centers. For demonstration purposes, the corridor segment from MP 285 to MP 310 on I-15 

Northbound was chosen to illustrate the performance analysis process. This segment lies in the Salt Lake 

City metropolitan area where the majority of accidents are observed, with 60 valid stations. Figure 3.1 is a 

map of the selected segment of the I-15 corridor. In the subsequent analysis, interpolation was applied for 

a finer time resolution and for incidents located between stations.  

 

 
Figure 3.1  I-15 study corridor 

 

 

3.2 Performance Metrics for Reliability Analysis  
 

UDOT currently is using speed profile to describe travel reliability along the I-15 corridor. Speed measure 

(mean, 15th and 85th speed percentile) is intuitive and interpretative for both practitioners and the general 

public. Figure 3.2 displays this reliability measure along the I-15 corridor. However, it would be desirable 

to develop an easily comprehended unified measure to describe the same speed variation. Congestion 

Frequency is recommended as a measure of reliability by FHWA. It is typically expressed as the 

percentage of days or time that travel times exceed 𝑋 minutes or travel speeds fall below 𝑌 mph. It is 

relatively easy to compute given the availability of traffic data, and typically reported for weekdays 

during peak periods.  
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Figure 3.2  Speed profile at 15th, 50th, and 85th percentiles across study corridor 

 

 

The speed threshold below which the roadway condition is considered congested is critical in congestion 

frequency measurement. In Pu’s (2011) work, congestion is defined as the condition when speed is less 

than or equal to 50% of the free-flow speed, or equivalently, travel time is more than or equal to twice of 

the free-flow travel time. In Pu (2011), 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝐼𝑛𝑑𝑒𝑥 = 1.3 is used as a criterion to define 

congestion. In this study, traffic breakdown (congestion criterion) is identified via speed-flow relationship 

along the I-15 corridor. Figure 3.3 shows the speed-flow scatter plot using the empirical data collected on 

I-15. Traffic breakdown occurs around 50-55 mph. Thus, 55 mph is adopted in this study as the speed 

threshold in the Congestion Frequency measure. This is also consistent with Lyman and Bertini’s (2008) 

definition, where using the average speed at midnight as the free-flow speed (69 mph on I-15), the speed 

threshold is estimated at 53 mph (1.3 ∗ 𝐹𝐹𝑆). 

 

Figure 3.4 shows the sensitivity analysis of the Congestion Frequency measure under different speed 

thresholds. The result of the analysis is illustrated as heat maps where the spatial and temporal pattern of 

Congestion Frequency can be observed. It is noted that at MP 292-293, it is congested during the entire 

morning peak hour. As the congestion threshold increases (from 30 mph to 55 mph), more and more 

regions are identified as congested.  
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Figure 3.3  Speed-flow relationship using empirical data collected 

 

 

 

 
Figure 3.4  Congestion frequency heat map under different speed thresholds 
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3.3 IID 
 

IID quantification at individual incident level enables further analysis on delay-based behavior modeling 

and inspires follow-up research on exploring relationships between the incident itself and associated 

features (e.g., severity, lane blockage, or traffic conditions). The proposed algorithm in this study starts by 

ruling out the influence of secondary incidents, as subsequent events occurring in spatiotemporal domain 

can result in an overestimation of the primary incident impact. This is achieved by mapping cascading 

incidents onto the spatiotemporal extents of the potential primary incidents. The total delay induced by 

each individual incident is then dynamically calculated using a spatiotemporal clustering approach. 

Recurrent congestion can be eventually determined through heuristically searching in the historical 

database for pattern matching. The methodology is data-driven in nature and algorithm is easily 

transferable to any traffic operation system that has access to the sensor data at corridor level.  

The algorithm for IID estimation follows a three-component scheme:  secondary incident 

identification, spatiotemporal extent determination (total delay), and recurrent congestion 

identification. The detailed explanation for each component is presented in this section.  

 

3.3.1 Secondary Incident Identification 
 

Due to the cascading effect of secondary incidents, delays can be elongated substantially. To separate the 

delay induced by primary and secondary incidents, a method that considers spatiotemporal effects of 

primary incidents is required. As mentioned in Chung (2013), the secondary incident identification should 

be fulfilled by defining the primary incident impact area. Delay induced by an incident, defined as the 

excess Vehicle Hours Traveled (VHT) with a reference speed of 60 mph as an example, can be visualized 

in a spatiotemporal contour map, as shown in Figure 1. In this figure, spatiotemporal impact extent is 

established on the basis of three criteria:  IID detection, shockwave front location, and contiguity of 

impact region. Any cascading incidents occurring within the spatiotemporal extent are identified as 

secondary incidents. Specific explanation of the criteria follows. 

  

IID Detection 

 

Let 𝐷𝑆𝑒𝑐_𝑡𝑜𝑡(𝑖, 𝑗) be the representative of total delay at location 𝑖 with Time-of-Day Day-of-Week (TOD 

DOW) 𝑗 induced by an incident, 𝐷𝑆𝑒𝑐_𝑟𝑒𝑐(𝑖, 𝑗) be the representative of corresponding recurring delay, and 

𝑑𝑆𝑒𝑐(𝑖, 𝑗, 𝑘) be the historical delay under incident-free scenario at the same location 𝑖 with TOD DOW 𝑗, 

but at different week 𝑘. The incident-free scenario is defined as no incident occurring within five hours 

prior to the time stamp and within 10 miles upstream of the location. The recurring delay 𝐷𝑆𝑒𝑐_𝑟𝑒𝑐(𝑖, 𝑗) is 

estimated with 𝑑𝑆𝑒𝑐(𝑖, 𝑗, 𝑘1), 𝑑𝑆𝑒𝑐(𝑖, 𝑗, 𝑘2), … , 𝑑𝑆𝑒𝑐(𝑖, 𝑗, 𝑘𝑛), where 𝑘1, 𝑘2, … , 𝑘𝑛 are the weeks under 

incident-free scenario. The spatiotemporal extent based on the difference between total and recurrent 

delays, in which any new incident occurred, offers a sense of existence of secondary incidents. In case a 

secondary incident appears, its impact extent would be connected with one of the primary incidents, 

expanding on the original spatiotemporal range. As a result, a secondary incident would never appear at 

the boundary of a spatiotemporal impact region. Using fixed percentiles of historical delay to represent 

recurring congestion (e.g., 80 percentile), a binary contour map for detecting existence of IID can be 

generated by subtracting 𝐷𝑆𝑒𝑐_𝑟𝑒𝑐(𝑖, 𝑗) from 𝐷𝑆𝑒𝑐_𝑡𝑜𝑡(𝑖, 𝑗): 

 

 𝐼𝑆𝑒𝑐(𝑖, 𝑗) = {
1, 𝑖𝑓 𝐷𝑆𝑒𝑐_𝑡𝑜𝑡(𝑖, 𝑗) − 𝐷𝑆𝑒𝑐_𝑟𝑒𝑐(𝑖, 𝑗) > 0

0, 𝑖𝑓 𝐷𝑆𝑒𝑐_𝑡𝑜𝑡(𝑖, 𝑗) − 𝐷𝑆𝑒𝑐_𝑟𝑒𝑐(𝑖, 𝑗) ≤ 0
 ((1) 

 

where 𝐼𝑆𝑒𝑐is the indicator of IID existence. 𝐼𝑆𝑒𝑐(𝑖, 𝑗) = 1, suggesting that IID exists at spatiotemporal 

location (𝑖, 𝑗), otherwise  𝐼𝑆𝑒𝑐(𝑖, 𝑗) = 0. 
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Shockwave Front 

 

Considering random factors that may influence delay after an incident occurs (e.g., adverse weather, work 

zone), 𝐼𝑆𝑒𝑐(𝑖, 𝑗) = 1 does not necessarily mean that the delay is purely incident-induced. To rule out such 

possibilities, shockwave front location method is used to filter out other non-recurrent delays. As soon as 

an incident occurs, a shockwave is triggered. The shockwave is originated from the incident and spread 

spatially backward and temporally forward. Therfore, an incident impact region should coincide with the 

spatiotemporal area behind the front of shockwave.  The spatiotemporal contour map can be broken down 

into two parts: 

 
𝑆𝑆𝑒𝑐(𝑖, 𝑗) = {

0, 𝑖𝑓 (𝑖, 𝑗) 𝑖𝑠 𝑎ℎ𝑒𝑎𝑑 𝑜𝑓 𝑠ℎ𝑜𝑐𝑘𝑤𝑎𝑣𝑒 𝑓𝑟𝑜𝑛𝑡

1, 𝑖𝑓 (𝑖, 𝑗) 𝑖𝑠 𝑜𝑛 𝑜𝑟 𝑏𝑒ℎ𝑖𝑛𝑑 𝑠ℎ𝑜𝑐𝑘𝑤𝑎𝑣𝑒 𝑓𝑟𝑜𝑛𝑡
 

((2) 

 

where SSec is the indicator for determining whether the location (i, j) is behind the shockwave front. 

The shockwave effect is a complicated process and varies based on traffic volume, density, and severity 

of incidents. The shockwave front location is defined with a dynamic threshold as developed in Yang and 

Recker (2005):  the sensor station whose traffic density is greater than twice the density at the upstream 

station and the sensor station whose average speed is greater than twice the speed at the downstream 

station. Therefore, if a delay is detected ahead of the shockwave front in the spatiotemporal context, it is 

not considered to be induced by the incident.  

Contiguity of Impact Region 

 

The propagation of congestion is unidirectional in spatial and temporal domains. Thus, the IID at 

spatiotemporal location (𝑖, 𝑗) (if any) must be inherited from a prior location that is spatially forward or 

temporally backward. The contiguity of impact region suggests that if IID exists at (𝑖, 𝑗), it must also exist 

in either (𝑖 − 1, 𝑗) or (𝑖, 𝑗 − 1), or both. Mathematically, this can be expressed as: 

𝐶𝑆𝑒𝑐(𝑖, 𝑗) = 

{
1                                                                              𝑖𝑓 𝑖 = 0 𝑎𝑛𝑑 𝑗 = 0

min{1, 𝐼𝑆𝑒𝑐(𝑖 − 1, 𝑗) ∗ 𝑆𝑆𝑒𝑐(𝑖 − 1, 𝑗) ∗ 𝐶𝑆𝑒𝑐(𝑖 − 1, 𝑗) + 𝐼𝑆𝑒𝑐(𝑖, 𝑗 − 1) ∗ 𝑆𝑆𝑒𝑐(𝑖, 𝑗 − 1) ∗ 𝐶𝑆𝑒𝑐(𝑖, 𝑗 − 1)} , 𝑒𝑙𝑠𝑒
 

(3) 

where 𝐶𝑆𝑒𝑐 is the indicator for contiguity. 𝐶𝑆𝑒𝑐(𝑖, 𝑗) = 1 suggests the criterion of contiguity is met, 

otherwise  𝐶𝑆𝑒𝑐(𝑖, 𝑗) = 0. 

 

Based on the aforementioned criteria, every spatiotemporal cell within the impact range of an incident 

must satisfy: 

 𝐼𝑆𝑒𝑐(𝑖, 𝑗) ∗ 𝑆𝑆𝑒𝑐(𝑖, 𝑗) ∗ 𝐶𝑆𝑒𝑐(𝑖, 𝑗) = 1 (4) 

 

Therefore, any incident that falls within the impact range of a prior incident would be considered 

secondary [1-zone in Figure 3.5 (d)]. Figure 3.5 (a)-(c) demonstrates the results of applying the IID 

detection, shockwave front, and contiguity of impact region criteria to the spatiotemporal profile of delay 

after incident. Cells marked as 1 represent the spatiotemporal units that meet the criterion in each plot. 

Figure 3.5 (d) is the conjunction plot based on the three criteria. Note that the spatiotemporal impact 

extent due to a cascading incident would be much greater than those of independent incidents. If a delay 

is calculated based on such overlapping effects, it would significantly overestimate IID, especially for 

locations with high secondary incident frequency. With the primary incidents and secondary incidents 

identified, attention is directed to total delay and recurrent delay quantification, which are spatiotemporal-

sensitive. 
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  (a)                                                                (b) 

 
  (c)                           (d) 

Figure 3.5  Illustration of secondary incident identification process: spatiotemporal profile of 

 (a) function I.; (b) function S; (c) function C; and (d) function I*S*C 

 

 

3.3.2 Total Delay of Independent Incident 
 

The total delay of an incident refers to the accumulated delay augmented in its spatiotemporal impact 

extent. Compared to secondary incident identification, total delay quantification is more sensitive to the 

spatiotemporal range. The same spatiotemporal clustering analysis applies here with the exception of 

fixed percentile threshold for defining “normal condition.” Instead, a statistical model, which can be 

trained with empirical data, is used to provide a more reasonable threshold.   

 

To implement the threshold estimation, 1,000 TOD DOW and locations were randomly chosen, and 

histograms of the delay occurring during those periods were constructed. Two typical patterns of delay 

frequency emerged, as shown in Figure 3.6. Non-parametric estimation determined that the incident-free 

delay followed Weibull distribution, whose probability density function is expressed as: 

 

 𝑓(𝑥; 𝜆, 𝑘) = {
𝑘

𝜆
(

𝑥

𝜆
)

𝑘−1

𝑒
−(

𝑥
𝜆

)
𝑘

, 𝑥 ≥ 0

0, 𝑥 < 0

 (5) 
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where 𝑘 is the shape parameter. When 𝑘 = 1 or 𝑘 = 2, the distribution becomes Exponential Distribution 

or Rayleigh Distribution.  The Cumulative Distribution Functions (CDF) are: 

 

 

𝑘 = 1, 𝐹(𝑥; 𝜆) = 1 − 𝑒−𝜆𝑥 (𝑥 ≥ 0) (Exponential Distribution) 

𝑘 = 2, 𝐹(𝑥) = 1 − 𝑒
−

𝑥2

2𝜎2 (𝑥 ≥ 0) (Rayleigh Distribution) 

 

(6) 

The parameters can be estimated as: 

 

𝜆̂ =
𝑛

Σk=1
𝑛 𝑑(𝑖, 𝑗, 𝑘)

 

𝜎̂ = √
1

2𝑛
Σ𝑖=1

𝑛 𝑥𝑖
2 

(7) 

 

Let 𝑑(𝑖, 𝑗, 𝑘) refer to the historical delay under incident-free scenario at location 𝑖, TOD DOW 𝑗, and 

week 𝑘. With distribution parameters known, the Pth percentile of delay can be estimated as: 

 

 

 
𝐷̂𝑒𝑥𝑝(𝑖, 𝑗) =

ln (
1

1 − 𝑃)

𝑛
Σ𝑘=1

𝑛 𝑑(𝑖, 𝑗, 𝑘) 
(8) 

 
𝐷̂𝑅𝑎𝑦(𝑖, 𝑗) = √ln (

1
1 − 𝑃)

𝑛
Σ𝑘=1

𝑛 𝑑(𝑖, 𝑗, 𝑘)𝑘
2  

(9) 

 

where 𝐷̂𝐸𝑥𝑝 and 𝐷̂𝑅𝑎𝑦 are the estimated threshold when delay follows Exponential and Rayleigh 

Distribution, respectively. The distribution of historical delay varies by TOD DOW, so instead of 

exploring the distributions for any TOD DOW, the minimum of 𝐷̂𝑒𝑥𝑝and 𝐷̂𝑅𝑎𝑦 was used as the threshold. 

 

 
  (a)                                                       (b) 

Figure 3.6  Typical patterns of delay distributions: (a) Exponential Distribution (b) Rayleigh Distribution 

 

Let 𝐷𝐼𝑛𝑠(𝑖, 𝑗) be the representative of instantaneous delay at location 𝑖 and TOD DOW 𝑗 after an incident 

and 𝐷𝑇𝑜𝑡 denote the total delay of an incident. The spatiotemporal extent of an incident’s impact is 

defined as: 

 

 𝐼(𝑖, 𝑗) = {
1, 𝑖𝑓 𝐷𝐼𝑛𝑠(𝑖, 𝑗) − min{𝐷̂𝑒𝑥𝑝(𝑖, 𝑗), 𝐷̂𝑅𝑎𝑦(𝑖, 𝑗)} > 0

0, 𝑖𝑓 𝐷𝐼𝑛𝑠(𝑖, 𝑗) − min{𝐷̂𝑒𝑥𝑝(𝑖, 𝑗), 𝐷̂𝑅𝑎𝑦(𝑖, 𝑗)} ≤ 0
 (10) 

 𝐷𝑇𝑜𝑡 = Σ𝑖Σ𝑗𝐼(𝑖, 𝑗) ∗ 𝐷𝐼𝑛𝑠(𝑖, 𝑗) (11) 
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where 𝐼 is the congestion indicator,𝐼(𝑖, 𝑗) = 1 indicates that it is congested at location (𝑖, 𝑗), otherwise 

𝐼(𝑖, 𝑗) = 0. 

 

The congestion threshold estimation is performed in both Secondary Incident Identification and Total 

Delay Determination. Compared to the fixed percentile method in secondary incident identification, 

applying the statistical distribution model can avoid bias due to limited sample size and outliers. Yet the 

selection of thresholds can be risky. A lower threshold may incorporate any possible delay into the total 

delay, but also significantly expand the spatiotemporal impact range and then compromise the accuracy of 

the method. Though rarely observed, for extreme incident cases where the spatiotemporal extent is 

unreasonably long (e.g., more than 5 hours), a fixed spatiotemporal extent should apply.  

 

3.3.3 Recurrent Delay Determination by Pattern Matching 
 

Generally, recurrent delay is defined as congestion caused by routine traffic operations in a typical 

setting. Yet traffic conditions vary on a daily basis, even for recurrent congestion. When predicting the 

recurrent delay for an incident scenario, the “background congestion” from historical record requires 

special attention. The “typical recurrent congestion” determined from statistical models in previous 

studies often is not applicable to every incident scenario. This is remedied through a pattern matching 

process, where recurrent delay is considered a function of location, TOD DOW, traffic condition, and 

other miscellaneous factors can be expressed as:  

 

 𝑑𝑅𝑒𝑐∗ = 𝐹(𝑖, 𝑗, 𝑇, … )  (12) 

 

where 𝑑𝑅𝑒𝑐∗ is the accumulated delay within the incident’s impact extent if there was no incident, 𝑖 is the 

location, 𝑗 is the TOD DOW, and 𝑇 is background traffic condition.  

 

Other variables have marginal effects and were not considered part of the equation. When considering 

incident scenario, it is impossible to infer what the recurrent congestion would be if the incident did not 

occur, but recurrent delay can still be deduced through matching traffic conditions from historical data. 

For any historical traffic scenario 𝑇ℎ𝑖𝑠, if there exists |𝑇 − 𝑇ℎ𝑖𝑠| < 𝜖, where 𝜖 is a threshold for the 

difference of traffic condition. It is reasonable to assume that: 

 

 |𝑑𝑅𝑒𝑐∗ − 𝑑ℎ𝑖𝑠| < 𝜖′ (13) 

 

where 𝑑ℎ𝑖𝑠 is the recurrent delay of the matching historical scenario, and 𝜖′ is threshold for the difference 

of recurrent delay. 

 

The sensitivity analysis of thresholds 𝜖 and 𝜖′ will be investigated in future work. Previous research 

compared three pattern matching techniques (DOW, cluster, KNN) with different weighting methods 

(Habtemichael and Cetin, 2015). Yet without knowing the relationship between delay, location, time, and 

traffic condition, any weighting attempt is susceptible to questioning as it lacks validation. In this study, 

pattern matching was performed based on TOD-DOW. Quantifying the recurrent congestion becomes 

equivalent to identifying the best-matched historical traffic scenario at the same location and TOD-DOW. 

The performance measure for pattern matching is VHT, which can best describe speed and volume and is 

easily obtained from traffic sensors. It is critical that the historical matching scenarios be incident-free, 

therefore filtration should be applied to the database (no incident within a five-hour span at the same 

location and TOD-DOW). Statistical performance indicator Root-Mean-Square-Error (RMSE) is used for 

choosing the matching scenario:  
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𝑅𝑀𝑆𝐸 = √Σ𝑡=1
2 (𝑉𝑡̂ − 𝑉𝑡)

2

𝑛
 (14) 

 

where  𝑉𝑡̂ is VHT for historical incident-free scenario, 𝑉𝑡 is VHT for traffic scenario prior to the incident, 

and 𝑛 is the number of observations.  

 

The pattern matching process is conducted on traffic conditions within a 30-minute time frame prior to 

the incident. The number of observations is determined by interval selection and aggregation level of 

sensor data. The pattern matching essentially is a heuristic search on historical database until the matching 

traffic scenario with the least RMSE is found. The recurrent delay in the incident’s impact extent can be 

estimated as the accumulated delay from the matching scenario at the same location 𝑖 and TOD DOW 𝑗 

but a different week 𝐾, expressed as: 

 

 𝐷𝑅𝐸𝐶 = Σ𝑗=1
𝐽 Σ

𝑖=𝑠𝑚,𝑗

𝑠𝑝 𝑑ℎ𝑖𝑠(𝑖, 𝑗, 𝐾) (15) 

 

Pattern matching based on single VHT for the same TOD DOW at the same location may be subject to 

inaccuracy when providing a holistic view of traffic conditions. To compensate, the K-Nearest Neighbor 

(KNN) method was applied in the pattern matching process to determine the closest incident-free 

scenarios that can be used to describe recurrent congestion. KNN is a classification method that offers a 

nonparametric procedure for assigning a class label to the input pattern based on the K-closest neighbors 

of the vector (Keller et al., 1985). In this study, similarity (RMSE) of the K-closest neighbors (historical 

scenarios) was used as the means of classification. The delay at matching scenario is calculated as:  

                                     

 
𝑑ℎ𝑖𝑠(𝑖, 𝑗)𝐾𝑁𝑁 =

1

𝐾
Σ𝑘=1

𝐾 𝑑ℎ𝑖𝑠(𝑖, 𝑗, 𝑊𝑘) 
(16) 

 

where 𝑑ℎ𝑖𝑠(𝑖, 𝑗)𝐾𝑁𝑁 is the mean of KNN recurrent delay, and 𝑊𝑘 is the week when the KNN traffic 

scenario occurred. The robustness of VHT as measurement and value of K in KNN method are discussed 

in the next section. 

 

The entire algorithm, deconstructed into three major components as described above, is depicted in Figure 

3.7. Note that the congestion threshold estimation used in both Secondary Incident Identification and 

Total Delay Determination might bear two types of errors for incident spatiotemporal extent 

determination. First, when the actual recurrent delay is higher than the threshold, the incident 

spatiotemporal extent and the total delay would both be over-estimated. However, over-estimated 

spatiotemporal extent also would cause recurrent delay over estimation. The overall effect is canceled 

when estimating IID. Second, when the actual recurrent delay is less than the threshold, the 

spatiotemporal extent is under-estimated. But in the region near the boundary of spatiotemporal extent, 

the impact of the incident is almost dismissed. Therefore, the delay in such a region is negligible.  

 

For implementation purposes, incident records, including location, date, time, and traffic sensor data, 

which contain speed, volume, and density, must be obtained. The following section presents finer details 

of the algorithm implementation on the I-15 corridor in Salt Lake City, Utah.  
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Figure 3.7  Illustration of proposed IID quantification framework 

 

 

3.4 Evaluation of Adverse Weather Impact 
 

In this project, weather impact on traffic condition along the freeway corridor is examined. Although 

traffic condition degradation under adverse weather was observed in many studies, none has 

quantitatively explored the relationship between adverse weather and degraded traffic conditions, which 

may be caused by many reasons (e.g. slippery road surface, vehicle performance degrade, and impaired 

visibility). Of particular interest to this study is the interaction between weather and delay. During adverse 

weather, people tend to rearrange or cancel trips to avoid suffering longer travel time or higher risk of 

incidents. Since it is nearly impossible to measure actual demand along a corridor, a mechanism was 

developed to model the impact of adverse weather on throughput and delay. 

 

To measure adverse weather impact on throughput and delay, historical traffic data (volume and delay) 

were retrieved from PeMS at the same DOW-TOD at the same location for each weather record. Data 

filtering process ensures that historical records under the impact of incidents are ruled out. Let 

DWea(𝑚, 𝑡, 𝑠, 𝑤) be the delay when the adverse weather is reported, where m is the location, t is the TOD, 

d is the DOW, and w is the week. Historical delay at the same location and time stamp is represented 

using 𝑑𝑊𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑢), where 𝑢 = 1,2, … , 54, 𝑢 ≠ 𝑤, and 𝐼𝐼𝑛𝑐(𝑚, 𝑡, 𝑠, 𝑢) = 𝐼𝐼𝑛𝑐(𝑚, 𝑡, 𝑑, 𝑤) = 0. The 

same data retrieval performed on throughput (volume), and 𝐹𝑊𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑤) and 𝑓𝑊𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑢) 

represent the flows under adverse weather and historical normal days, separately. For the historical delay 

records, if flow difference (under normal day vs. adverse weather day) falls below a certain threshold, 

then delay under the normal day is counted as a sample representative for further analysis. This can be 

expressed as:  

 
D̂Weaf(𝑚, 𝑡, 𝑠, 𝑤) =

1

n
Σi=1

n 𝑑𝑊𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑢𝑖),

𝑖𝑓 (𝑎𝑏𝑠(𝐹𝑤𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑤) − 𝑓𝑊𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑢𝑖)) ≤ Flow Threshold (16) 
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The threshold is chosen as 10% of the values during the adverse weather. Similarly, for historical flow 

records, if delay difference (between normal day vs. adverse weather day) falls below a certain threshold, 

flow under the normal day is counted as a sample representative for further analysis: 

  

 
𝐹̂𝑊𝑒𝑎𝑓(𝑚, 𝑡, 𝑠, 𝑤) =

1

𝑛
𝛴𝑖=1

𝑛 𝑓𝑊𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑢𝑖),

𝑖𝑓 (𝑎𝑏𝑠(𝐷𝑤𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑤) − 𝑑𝑊𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑢𝑖)) ≤ Delay Threshold (17) 

Subsequently ΔDwea(𝑚, 𝑡, 𝑠, 𝑤) and ΔFwea(𝑚, 𝑡, 𝑠, 𝑤) can be calculated to quantitatively measure the 

impact of adverse weather on delay and traffic throughput, where:  

 

 ∆Fwea(𝑚, 𝑡, 𝑠, 𝑤) = 𝐹̂𝑊𝑒𝑎𝑓(𝑚, 𝑡, 𝑠, 𝑤) − 𝐹𝑤𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑤) (18) 

 ∆Dwea(𝑚, 𝑡, 𝑠, 𝑤) = 𝐷̂𝑊𝑒𝑎𝑓(𝑚, 𝑡, 𝑠, 𝑤) − 𝐷𝑤𝑒𝑎(𝑚, 𝑡, 𝑠, 𝑤) (19) 

 

3.5 Summary 
 

In this section, methodologies for reliability analysis, IID and secondary incident identification, and 

weather impact evaluation were presented. Congestion frequency was considered as a comparable 

measure to the speed percentile for describing freeway reliability, yet it was easy to interpret. The IID and 

secondary incident identification adopted spatiotemporal analysis at individual incident level and 

heuristically searched from the historical traffic database to match the recurrent delay. A simplified 

estimator was developed to model weather impact in terms of traffic volume and delay. In the following 

sections, the methodologies developed will be applied to the data collected through PeMS, incident and 

weather databases to demonstrate the performance evaluation result. 
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4. DATA COLLECTION 
 

All traffic data used in this project are from PeMS (Freeway Performance Measurement System), hosted 

and managed by Iteris in the Cloud. Data was designed to collect, filter, process, aggregate, and examine 

traffic data provided by UDOT. The system contains a rich pool of information about real-time and 

historical traffic dat,a and provides an excellent platform to both transportation practitioners and 

researchers. The system integrates various traffic data sources including loop detectors, incident logs, 

vehicle classification data, and roadway inventory, etc. These traffic data have been automatically 

collected and archived from more than 28,000 detectors every 30 seconds, which totals 46 billion data 

samples per year. Meanwhile, UDOT maintains separate databases for vehicle incident tracking in TOC. 

These datasets offer details regarding incident ID, time, location, duration, severity, priority, impact, and 

brief description. For IID and secondary incident identification, the incident database was obtained for the 

year 2013, with 9,302 incident records. Of those, 1,377 of them were used for modeling purpose, since 

they occurred along I-15 Northbound between MP 285 to 309. Weather data used in this project were 

obtained from the Traveler Advisory Telephone System (TATS) database. These data were collected by 

trained citizen reporters, who can be UDOT employees, law enforcement, truck drivers, plow drivers, 

experienced commuters, or other volunteers, to report on the current road conditions along specific 

segments across Utah. The dataset from November 2013 to March 2014 was obtained, including road 

condition, sky condition, date and time, reporter, and route segment ID. More than 190,000 records exist 

on freeways and arterials throughout the state, and more than 3,000 records on the selected corridor in the 

Salt Lake Metropolitan Area. Weather data is categorized by road condition as dry, wet, slushy, patchy 

snow, icy spots, and snow covered, and by sky condition as rain, mixed rain and snow, blowing snow, 

and snow.



 

 

5. DATA ANALYSIS 
 

5.1 Overview 
 

In this Section, methodologies presented in Section 3 were applied to data collected in the State of Utah. 

Analysis shows the performance evaluation at corridor level and location level. Results demonstrate 

strong policy implications that potentially will lead to incorporation of the measures/algorithms into the 

roadway traffic management and assist with project prioritization. 

  

5.2 Performance Metrics for Reliability Analysis  
 

Congestion frequency is computed using traffic condition data from 2013 with 55 mph as the threshold 

for this I-15 study corridor. Figure 5.1 shows congestion frequency and speed profile along I-15 for 

morning and afternoon peak hours. Two measures demonstrate a consistent pattern. Congestion frequency 

is in the range of 0 to 1 and can be translated into the probability that travelers will experience certain 

traffic conditions. A congestion frequency of 1 suggests that if the user drives to the location during that 

time period, he/she will be sure to experience a speed less than 55 mph. Figure 5-1 shows that during 

morning peak hour there is a high probability of speed less than 55 mph at MP 290 and MP 301 on 

Northbound I-15, and at MP 301 and MP 309 on Southbound I-15. During the evening peak hour, there is 

a high probability of speed less than 55 mph at MP 296 and MP 309 on Northbound I-15, and at MP 286, 

MP 301, and MP 304 on Southbound I-15. 
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Figure 5.1  Congestion frequency and speed profile at 15th, 50th, and 85th percentiles across I-15 study 

 corridor 

 

5.3 Secondary Incident Identification 
 

Applying the data-driven algorithm described in Section 3.3.1 to the 2013 incident database, we identified 

240 secondary incidents as a result of 109 (7% of the total incidents) primary incidents along the I-15 

northbound study corridor during year 2013. 

  

Figure 5.2 shows a histogram of the number of secondary incidents caused by each primary incident. 

Figure 5.3 shows distribution of secondary incidents by month, and demonstrates a pronounced seasonal 

pattern, with December having the most secondary incidents. This implies that precipitation and slippery 

road conditions increase the probability of secondary incident occurrence. 

 

 

  
Figure 5.2  Histogram of secondary incident induced 
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Figure 5.3  Secondary incident distribution by month 

 

 
5.4 IID 
 

To validate the robustness of VHT as a measurement index for traffic scenarios in pattern matching, 

effectiveness of different measures was compared, including VHT, speed, and volume, in predicting 

recurrent delay. To accomplish pattern matching for each incident, a dataset of traffic pattern spans was 

built, which are incident-free at the same TOD DOW as the incident scenarios for each incident. One span 

was randomly chosen from the database as the span whose traffic pattern was to be predicted. The 

remaining spans were used as candidates for matching. A dataset with 800 incidents was used for the 

validation, i.e., prediction. VHT, speed, and volume were used as determination variables separately for 

different K-values (K < 10). The RMSEs of delays were calculated to measure robustness of different 

indicators. Table 5.1 shows the sum of RMSEs with different K values for KNN. It shows that KNN is 

more reliable than single value, since the sum of RMSEs decreases as K increases. At lower K-value, 

speed outperforms the other two measures. With higher K-value, VHT is slightly better than speed, and 

both outperform volume. Overall, using relatively high K-value KNN and VHT as determination variable 

can best predict recurrent delay. Therefore, VHT was used as determination variable and KNN method 

with 𝐾 = 9 when processing pattern matching. 

 

Table 5.1  Sum of RMSE of delay with volume, speed, VHT as determination variable when  K=1,2,…,9 

K 1 2 3 4 5 6 7 8 9 

Volume 413.1 242.8 228.4 217.6 196.0 161.5 146.5 132.0 123.4 

Speed 245.6 238.3 202.4 161.0 145.3 131.0 119.4 109.5 98.8 

VHT 378.9 287.0 222.5 165.8 136.2 119.3 112.8 102.3 97.4 

 

Using the 2013 incident database (1,377 incidents in total) for the study corridor, a total of 109 primary 

incidents were identified with 270 secondary incidents. 778 incidents were independent incidents, and 

220 incidents (16%) were censored by the spatiotemporal boundary. These 220 incidents’ spatiotemporal 

extents were beyond the 5-hour 10-mile maximum boundary set forth by the algorithm. 
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On average, the primary and secondary incidents were 3.2 miles and 70 minutes apart. Note that 

multiple consecutive secondary incidents all are considered to be traced from the original 

primary incident, thereby resulting in an elongated time span. Figure 5.4 illustrates a secondary 

incident (23:40, MP 304, marked as 1) that occurred three miles upstream from the primary 

incident (23:19, MP 307, marked as P). Notice that another incident (23:32, MP 305, marked as 

2) also appears in the vicinity. However, according to the spatiotemporal analysis, causality is not 

inferred. Figure 5.5 shows the heat map and profiles of primary and secondary incidents along 

the study corridor. The profiles exhibit similar trends with few exceptions, and the distribution of 

secondary incident is upstream-skewed due to the hysteresis nature. Lag between the two ranges 

from one to four miles, which is consistent with the average distance reported. A reverse pattern 

appears in the segment between MP 298 and 300, where denser secondary incidents are induced 

by fewer primary incidents. This is to be expected as a freeway junction exists between I-15 and 

I-215 that triggers more intensive weaving with an AADT of 77,000 vehicle/day. This can be 

contrasted with another junction between I-15 and I-80 with an AADT of 54,000 vehicle/day, 

which had an aligned incident occurrence pattern. 

 

 
Figure 5.4  Example of secondary incident identification 

 (P: primary incident, 1: secondary incident, 

 2: independent incident, grey: spatiotemporal extent) 
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   (a)                                                                          (b) 

 

 
(c) 

Figure 5.5  Heat map (a) (b) and profile of primary and secondary incidents (c) along the I-15 corridor 

 

Table 5.2 shows the IID statistics of major incident types. Due to the large amount of incidents that did 

not cause much extra VHT, e.g. incidents during midnight or non-peak hours, the distributions of IIDs are 

positive skewed. This induces high standard deviations. Incidents involving vehicles on fire tend to cause 

higher IID because the clearance of such incidents usually requires longer time and tends to cause 

rubbernecking.  
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Table 5.2  IID statistics by incident type 

Feature Mean 

(vehicle*hour) 

Standard Deviation 

(vehicle*hour) 

Vehicle on Fire 18.33 32.09 

Debris 0.01 0.15 

Stalled Vehicle 10.58 5.40 

Police Incident 0.23 0.70 

Lane Closure 11.2 31.85 

Other Crash 10.72 37.07 

 

The average IID is 43 vehicle-hours. IID distribution is right-skewed, indicating a small portion of 

incidents with extremely high IID. For freeway management purposes, IID should be jointly studied to 

trace the reason behind their occurrence and for effective incident mitigation strategies. To this end, hot 

spot analysis is used to observe incident frequency along the corridor. Note that incident occurrence is 

usually not an isolated event. For example, Ord and Getis (1995) proposed a spatial statistic based on the 

weighted spatial autocorrelation between incidents. A similar concept was applied to the hot spot 

analysis: not only was the number of incidents at the spot considered, but also the number of incidents 

associated to the spot. At each location, the occurrence of an incident is weighted by its independence. 

For example, an independent incident has the lowest weight since occurrences of independent incidents 

are random. A secondary incident has higher weight since it carries on the influence from primary 

incidents. A primary incident has the highest weight since it tends to induce more congestion and damage. 

Thus, each incident is weighted by the number of incidents it is associated with (including itself). For 

comparison purposes, the top five locations from each method were identified as hot spots. Figure 5.6 (a) 

and (b) show the hot spots identified by incident frequency with or without considering the weighting.  

They yield quite similar results with hot spots identified at two freeway junctions and between MP 295 

and 297. However, when illustrating the spatial profile of IID as shown in Figure 6 (c), hot spots are 

clustered between MP 285 and MP 287, which is distant from the freeway junctions.  

 

Several factors might contribute to this phenomenon. First, the existence of bottleneck might exacerbate 

the impact of incident, which may be one of the contributing factors for extremely high IID. MP 285 is at 

the on-ramp of I-15 from a major arterial (Timpanogos Highway) where severe congestion is observed 

frequently. Evidence from a closer scrutiny of the spot validates that assumption. Most of the incidents 

happened during peak periods, which greatly impeded the queue clearance. Another reason might be the 

way IID is calculated as it solely considers the delay induced by independent incidents for accurately 

identifying their spatiotemporal extent. This might downplay the delay effect of cascading incidents. 

Therefore, two hotspots analysis methods in this study complement each other and can be jointly used for 

decision making on incident mitigation. Note that the segment between MP 295 and 297 is identified as a 

hot spot in both methods. This may be due to the convoluted effects of multiple causes. This segment has 

an AADT as high as 100,000 vehicles/day and is located upstream of the spaghetti junction where 

triggered secondary incidents introduce great disturbances in traffic. Also the segment between MP 295 

and 297 has the shortest distance between curvatures along the corridor. TTwo curvatures are less than 

three miles apart, which may cause instability in the traffic flow. This aligns with Zhang and Khattak’s 

(2010) finding that short segments are prone to secondary incidents.  

 

Based on the analysis, it is further concluded that locations with higher IID are prone to be bottlenecks 

with severe recurrent congestion. When incidents occur at freeway junctions under heavy traffic volume, 

a significant increase in IID with induced secondary incidents upstream may occur. Freeway management 

strategies might be especially ripe for assessment based on this result. For example, when an incident 

occurs at a bottleneck, speed harmonization, such as variable speed limit, can be implemented upstream to 

accelerate bottleneck clearance and create a uniform speed upstream.   
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           (a)                                                 (b)                                            (c) 

Figure 5.6 Hot spots identification analysis with (a) incident frequency method without spatial-

 correlation; (b) incident frequency method with spatial-correlation; and (c) average IID 

 method 

 

5.5 Adverse Weather’s Impact 
 

To analyze the impact of adverse weather on demand and capacity reduction, weather data is first 

categorized by road and sky conditions. Figure 5.7 shows the histogram of weather record by road 

condition. Wet is the most frequently occurring road condition under adverse weather (60%), and slushy 

road condition accounts for approximately 15% of all the records. Figure 5.8 shows the histogram of sky 

condition from all the weather records. Snow is the most frequently occurring sky condition, since 

weather data was collected from November to December.  
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Figure 5.7  Histogram of weather observations by road condition 

 

 

Figure 5.8  Histogram of weather observations by sky condition 

 

Each weather record was linked to the PeMS traffic database by extracting speed, volume, and delay data 

in an effort to observe traffic pattern. Figure 5.9 shows the plots of speed-flow data under different road 

conditions. It is noted that speed-flow pattern can demonstrate the severity of different weather and its 

impacts on the traffic. For example, when the roadway is wet, speed flow pattern still follows the general 

parabolic curve where distinctions between congested and uncongested regimes are observable. However, 

as the roadway condition gets worse, the normal pattern would become blurred and data are more 

randomly congregated. The scattered plot breaks down into two clusters, particularly when the road is 

covered by snow. 
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Figure 5.9  Traffic flow vs. speed plots under different road conditions 

 

To quantitatively analyze the impact of adverse weather, the mechanism presented in Section 3.4 is 

applied to the dataset collected. Since ΔDWea(𝑚, 𝑡, 𝑠, 𝑤) and ΔFWea(𝑚, 𝑡, 𝑠, 𝑤) represent the delay and 

flow difference between the adverse weather and normal weather, they can be used to classify the impact 

into different categories (expressed as ΔD and ΔF in the following section).  

 

If ΔF > 0 and ΔD > 0, both volume and delay under normal conditions are higher than under adverse 

weather conditions, suggesting a demand reduction during adverse weather. If ΔF > 0 and ΔD < 0, 

volume under normal conditions is higher than under adverse weather, yet delay under normal conditions 

is lower than under adverse weather. It is caused by freeway capacity reduction during adverse weather. 
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When ΔF < 0 and ΔD > 0, volume under normal conditions is lower than under adverse weather, and 

delay under normal conditions is higher than adverse weather. This situation would be quite 

counterintuitive and rarely should be observed in reality. When ΔF < 0 and ΔD < 0 , both volume and 

delay under normal conditions are lower than under adverse weather, which means that the adverse 

weather does not have obvious impact on the freeway performance. In the following discussion, the four 

scenarios are referred as C1, C2, C3, and C4, separately. Table 5.3 shows the signs of Δ𝐹 and Δ𝐷 for each 

combination. 

 

Table 5.3  Signs of ΔF and ΔD for combinations of C1, C2, C3, C4 

 C1 C2 C3 C4 

ΔF + + - - 

ΔD + - + - 

 

Figure 5.10 shows the scattered ΔF and ΔD distribution under adverse weather during peak hours and 

non-peak hours. During peak hours, distribution is more scattered than during non-peak hours. This 

demonstrates that the traffic during peak hours is more sensitive to disturbance than during non-peak 

hours, and any potential non-recurrent congestion source for is likely to induce higher fluctuations on 

both traffic volume and delay. 

  

 
Figure 5.10  Scatter plots of 𝚫𝑭 vs. 𝚫𝑫 during peak and non-peak hours 

 

Figure 5.11 shows pie charts of the four ΔF and ΔD combinations during peak hours and non-peak hours. 

For both scenarios, C1+C2 accounts for more than 90% of the cases, indicating volume under adverse 

weather is lower compared with the normal days. C1 is the most frequently appeared situation, which 

shows that demand reduction is a major cause for lower volume under adverse weather.  

 



 

31 

 

 
Figure 5.11  Comparison of Pie Charts during Peak and Non-Peak Hours 

 

Figure 5.12 shows pie charts for different road conditions during peak hours. As the road condition gets 

worse, the fractions of C1 increase, from 52% (wet road) to 71% (patchy snow). This is consistent with 

the fact that people trend to rearrange or cancel their trips when the weather worsens. 

 

 

  
Figure 5.12  Combination Frequency during Peak Hours under Different Road Conditions 
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5.6 Summary 
 

In this section, in-depth analysis of the three major tasks was performed using data collected along the I-

15 study corridor. The reliability analysis using congestion frequency allowed hot spots to be easily 

identified for different time periods. The congestion frequency index can be translated into the probability 

that a user will experience certain speed when he/she travels through a specific location. The unified 

measure is easy to interpret and implement for operational management. IID and secondary incident 

identification results also were presented in this section. During 2013, 7% of incidents that happened on 

the selected I-15 corridor were secondary incidents, which is lower than the 20% estimates given by 

FHWA. The occurrence of secondary incidents is highly related to adverse weather, where December has 

the highest number of the secondary incidents. The IID algorithm was applied to the 2013 incident 

dataset, and in general, it was found that high severity incidents would cause more delay with several 

exceptions due to the geometries of the roadway characteristics. The mechanism for quantifying the 

adverse weather impact was presented. Delay and volume estimators were applied to the 2013 winter 

adverse weather records. Two major causes exist for the low volume during adverse weather. One is the 

freeway capacity reduction caused by lowered speed, the other is the demand reduction. The general 

parabolic curve of speed and volume does not hold when weather gets worse.    
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6. CONCLUSIONS 
 

6.1 Summary 
 

The focus of freeway performance measurements and monitoring is to describe congestion and mobility 

of the roadway networks. Congestion levels are not the same every day. Under the impact of nonrecurring 

congestion sources, e.g. incident, work zone, and adverse weather, the associated congestion and its 

extent should be diagnosed with special attention. This study provides data-driven solutions for 

evaluating freeway performance under various scopes to assist with project prioritization and decision 

making. Freeway performance measures are often considered in three dimensions:  temporal aspects, 

spatial details, and source of congestion. This study addresses all three dimensions simultaneously. A 

performance measure was developed, which is easy to understand and has practical implications. The 

measure, congestion frequency, ties to typical congestion levels and reliability to describe 

congestion/mobility performance of freeways, yet can be easily comprehended and related to by the 

general public, based on their everyday experience. Once unreliable locations were identified through the 

corridor performance analysis, close scrutiny was paid to reasons for the unreliability. Incidents and 

adverse weather are considered as the main sources for nonrecurring congestion. Data-driven algorithms 

were developed to calculate IID and identify secondary incidents. The algorithms utilize spatiotemporal 

analysis to determine the impact range of each incident on the microscopic level, along with pattern 

matching and background subtraction methods to determine the recurrent congestion impact. To quantify 

the impact of adverse weather, a mechanism was developed by evaluating volume and delay changes 

under both normal days and days with adverse weather. It was quantitatively proven that under snow-

covered conditions, travel demand is decreased significantly.   

 

6.2 Findings 
 

The findings for the three major components carried through this project are summarized as follows.  

 

6.2.1 Congestion Frequency Index  
 

Congestion Frequency was presented as the measurement of performance reliability. Hot spots were 

identified on the I-15 corridor in morning and evening peak hours from May to August 2013. Its pattern is 

consistent with speed percentiles, which is the current reliability measure used at TOC. 

 

6.2.2 Secondary Incident Occurrence 
 

Secondary incidents refer to those that resulted from congestion caused by previous incidents, including 

not only crashes, but also engine stalls, overheating, and running out of fuel scenarios. With the data-

driven algorithm developed in this project, 240 secondary incidents were identified, which were caused 

by 109 primary incidents on the selected I-15 corridor during 2013. The occurrence of secondary 

incidents follows a distinct seasonal pattern, where months with high precipitation (from November to 

March) have higher frequency of secondary incidents, while there were no secondary incidents identified 

for June, which was the driest month reported in Utah for the Years 1895-2013, according to the National 

Climate Data Center. Reduced road friction and impaired visibility might be the main contributors for 

secondary incidents. 
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6.2.3 Hotspots on I-15 Corridor 
 

The IID is not only determined by the severity of incident, but also dependent on the location and time of 

day. Locations with high incident frequency generally suffer from higher IID than the locations with low 

incident frequency. Exceptions happened at MP 284, MP 296, and MP 309 on Northbound I-15, where 

fewer incidents are observed with relatively high IID. These hotspots usually are located before off-ramps 

or after on-ramps connecting I-15 and arterials. 

 

6.2.4 Mechanism of Adverse Weather Impacting Traffic 
 

The results of adverse weather impact analyses indicates that under the influence of adverse weather 

travel demand decreases, which is the case for more than 50% of scenarios. A conclusion was made that 

in 2013 the adverse weather forecasting system succeeded in alerting the public and preventing severe 

traffic breakdowns. As roadway condition worsen, traffic demand shows a more significant reduction 

pattern. 

 

6.3 Recommendations 
 

The data-driven performance-based approach presented in this study is effective in quantitatively 

evaluating the freeway mobility/reliability, incident and adverse weather impact. The objectives of this 

project align well with the goal set forth by MAP-21, which is to establish performance-based 

transportation programs to guide the transportation capital investment and development. The algorithm 

developed can be integrated into the operational analysis to identify hotspots along the freeway corridor, 

and assist with project prioritization and decision making. Future work involves evaluating the impact of 

other nonrecurring congestion sources identified by SHRP 2, including work zone, demand fluctuations, 

special events, traffic control devices, and inadequate base capacity. Also, since pattern matching 

algorithms are used in analysis for determining the recurrent congestion from historical data, i a web-

based platform should be developed to allow operators/researchers to customize duration of the historical 

data window to assist with interactively transportation analytics.  
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